
Int. J. Mol. Sci. 2014, 15, 3580-3595; doi:10.3390/ijms15033580 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review 

Interactive Association of Drugs Binding to Human  
Serum Albumin 

Feng Yang *, Yao Zhang and Hong Liang * 

State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal 

Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin 541000, 

Guangxi, China; E-Mail: zhangyao1006@gmail.com 

* Authors to whom correspondence should be addressed; E-Mails: jxyangfeng@gmail.com (F.Y.); 

hliang@mailbox.gxnu.edu.cn (H.L.); Tel./Fax: +86-773-212-0958 (F.Y. & H.L.). 

Received: 27 January 2014; in revised form: 17 February 2014 / Accepted: 18 February 2014 /  

Published: 27 February 2014 

 

Abstract: Human serum albumin (HSA) is an abundant plasma protein, which attracts 

great interest in the pharmaceutical industry since it can bind a remarkable variety of drugs 

impacting their delivery and efficacy and ultimately altering the drug’s pharmacokinetic 

and pharmacodynamic properties. Additionally, HSA is widely used in clinical settings as a 

drug delivery system due to its potential for improving targeting while decreasing the side 

effects of drugs. It is thus of great importance from the viewpoint of pharmaceutical 

sciences to clarify the structure, function, and properties of HSA–drug complexes. This review 

will succinctly outline the properties of binding site of drugs in IIA subdomain within the 

structure of HSA. We will also give an overview on the binding characterization of 

interactive association of drugs to human serum albumin that may potentially lead to 

significant clinical applications. 
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1. Introduction 

Human serum albumin (HSA), being the most abundant protein of blood plasma, has many 

important physiological functions. Among them, HSA regulates colloidal osmotic pressure, and transports 

numerous endogenous compounds such as fatty acids (FA), hormones, bile acids, amino acids,  
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metals and toxic metabolites [1–6]. Additionally, there is a wide variety of drugs that are delivered to 

their targeting organs/tissues by binding with HSA [1,7–9]. Therefore, HSA not only protects the 

bound drugs against oxidation and influences the in vivo drug distribution, but also alters the 

pharmacokinetic and pharmacodynamic properties of drugs [7,10–13]. 

HSA is a single-chain, non-glycosylated polypeptide with a molecular weight of 66,500 Da 

containing 585 amino acids [1]. HSA is a helical protein with turns and extended loops, and resembles 

a heart shape, with approximate dimensions of 80 × 80 × 30 Å [1,14]. In general, drugs have two 

forms in circulation, namely, bound or unbound to plasma proteins. The unbound drugs can passively 

diffuse through the barriers constituted by endothelial cells into the organs where they are metabolized, 

biliary excretion or glomerular filtration in kidney [7,15,16]. The unbound drugs can also be 

distributed intracellularly via specific transport systems. Only free drug molecules interact with 

therapeutic targets to produce therapeutic effects [7,17]. In most instances, the unbound drug concentration 

of drug in the tissue depends on the unbound drug concentration in the plasma [7]. Thus, HSA–drug 

interactions are an important factor to understand the pharmacokinetics and pharmacological effects  

of drugs [18–22]. 

The interactions between HSA and ligands have been extensively studied for several decades using 

a variety of methods [23–36]. However, since HSA is a flexible macromolecule featuring sophisticated 

binding sites for drugs, a detailed study of this system has been difficult to achieve. In fact, despite various 

HSA crystals were obtained several decades ago, the structure of this protein was difficult to elucidate 

due to the X-ray structure obtained from a crystal has low resolution [37–39]. It was not until 1992 that 

the HSA structure was really resolved by Carter et al. [40]. Furthermore, the structure of high 

resolution HSA complex was resolved in 1998 by curry et al. for the first time [41]. Subsequently,  

the structures of HSA forming complexes with other compounds have been popular and extensively 

studied by other groups, especially the group of Curry [42–66]. The structure of HSA reveals the 

presence of three domains, namely domains I (residues 1–195), II (196–383) and III (384–585),  

which, as predicted from amino acid sequence comparison, are not only topologically identical,  

but they also have similar three-dimensional structures [14,40]. The three domains are further divided 

into sub-domains A and B (Figure 1A). HSA contains 35 cysteine residues, and all of them except one, 

Cys34 (in domain I), are involved in disulfide bonds stabilizing the structure of HSA [14]. 

A fundamental characteristic of HSA is its surprising capacity to bind a large variety of drugs [1]. 

Taking into account the high concentration of HSA in plasma, the binding affinity of drugs to HSA is 

an important factor to be considered when designing and developing new drugs [67–71]. In addition, 

the interactive association of drugs that bind simultaneously to HSA can change the HSA binding 

behavior and potentially modulate the final therapeutic efficiency of the drugs [72]. Recent reported 

structures of HSA–ligands complexes not only clearly demonstrate the location of different drug 

binding sites on HSA, but they also revealed how several drugs interact with HSA [53,73–76].  

Such knowledge on the binding properties of drugs to HSA is an important issue when analyzing the 

mechanisms affecting the pharmacological effects of these compounds. In this work, we focused on 

the nature of the HSA binding sites and the mechanisms of interactive association of drugs to HSA 

based on the available structural evidence found on HSA–drug complexes. Additionally, we highlight 

possible strategies that could be implemented to improve HSA-based delivery systems. 
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Figure 1. The overall structures of human serum albumin (HSA) (A) and HSA–fatty acids 

(FA) (B). Carbon atoms of FA molecule are shown in yellow; oxygen in red; nitrogen in blue; 

domain IA, in red; domain IB, in green; domain IIA, in blue; domain IIB, in magenta; domain 

IIIA, in cyan; domain IIIB, in grey. 

(A) (B) 

 

2. Binding Site of Drugs in IIA Subdomain of HSA 

Since HSA has a limited number of high-affinity binding sites, detailed molecular information 

about these sites could be helpful in the assessment of cooperative effects during the binding of other 

drugs or endogenous ligands. Furthermore, the structural information of both high and low-affinity 

binding sites is useful when designing new drugs whether the aim is to avoid binding to HSA,  

or to make use of its depot function [67]. Therefore, the studies of drug binding sites on HSA have 

been important in the past and they keep being popular to date. Sudlow et al. did pioneering studies in 

this field by using a fluorescent probe displacement method in 1975 and 1976 [77,78]. With this 

method they showed through a screening, that there are two specific drug binding sites on HSA, 

namely, site I (also called the warfarin binding site) and site II (the benzodiazepine binding site).  

These excellent studies promoted the topology analysis and mapping of the drug binding sites on HSA. 

Using albumin fragments derived from pepsin and trypsin digestions, Bos et al. proposed that sites I 

and II are located in domains II and III, respectively [79,80]. Current crystallographic studies have 

proved that the majority of drugs bind to the above two main binding sites [53,74–76]. Certainly,  

these findings do not exclude the presence of other special binding sites on HSA [41,44,46,65,68]. 

However, in this review we only describe the main one binding site of HSA, namely, site I (IIA subdomain) 

owing to the following reasons. First of all, in the presence of fatty acids (FA), drugs bind 

preferentially to IB and IIA subdomain because IIIA subdomain is the strong binding site for fatty 

acids, thus fatty acids occupy this site inhibiting other drugs to bind here [81,82] (Figure 1B);  

In contrast, FA weakly bind to IIA subdomain, and is usually replaced by drugs. Additionally, 

interactive association of drugs binding to HSA usually occurs in IIA subdomain because site I is a big 

hydrophobic cavity that is possible to hold several drugs at the same time. 

Site 1 is a preformed binding pocket within the core of subdomain IIA, which comprises six  

helices of the subdomain and a loop-helix feature (residues 148–154) contributed by subdomain IB.  

The interior of the pocket is hydrophobic, predominantly delimited by residues Trp214, Leu219, 

Phe223, Leu238, His242, Leu260, Ile264, Ser287, Ile290, and Ala291. However, it also contains also 
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two clusters of polar residues, an inner cluster of residues toward the bottom of the pocket (Tyr150, 

His242, Arg257) and an outer cluster at the pocket entrance composed of Lys195, Lys199, Arg218, 

and Arg222 (Figure 2A). The large binding cavity is comprised of a central zone from which three 

distinct compartments extend. The distal end of the pocket is divided by residue Leu264 into left and 

right hydrophobic sub-chambers, whereas a third sub-chamber, delineated by residues Phe211, Trp214, 

Ala215, Leu238, as well as aliphatic portions of residues Lys199 and Arg218, protrudes from the front 

of the pocket (Figure 2A). Upon FA binding, residue Tyr150 from subdomain IB moves to interact 

with the carboxylate moiety of the lipid bound to a site that straddles domains I and II (fatty acid site 

FA2). This interaction helps to drive the relative rotation of domains I and II and has a large impact on 

only one side of drug site I. Extensive rearrangement of the H-bond network occurs, involving residues 

Tyr150, Glu153, Gln196, His242, Arg257, and His288, which opens a solvent channel between 

Tyr150 and Gln196, thus increasing the pocket volume and altering the distribution of polarity: the 

inner polar cluster is disrupted and partially neutralized by FA binding, whereas residue His242 is 

relatively unaffected (Figure 2B). 

Figure 2. The binding environment of ligand site in IIA subdomain of HSA. (A) Site I;  

(B) Site I in HSA–FA. Domain IB, in green; domain IIA, in blue; Dashed line (red), 

hydrogen bond. 

  

3. Interactive Association of Drug–Drug with HSA 

Drug–drug interactions at the protein-binding level can be useful for therapeutic purposes because 

alteration in protein binding may change the volume of distribution, clearance, and elimination of a 

drug and may modulate its therapeutic effect [8,72,83]. It was the first structures of drug–drug 

interactions with HSA resolved by Curry et al., which provided a high value template for exploring 

drug–drug interactions [53]. Curry et al. initially suggested that indomethacin (IMN) would co-bind 

with some other site I specific compounds such as azapropazone (AZP), oxyphenbutazone, phenylbutazone 

(PLZ), 3,5-diiodosalicylic acid and tri-iodobenzoic acid by superposing the HSA–FA–IMN structure 

with those for other HSA–FA–drug complexes. To test this idea, PLZ–IMN and AZP–IMN double-drug 

were soaking into HSA–FA crystals. As a matter of fact, their experiment fit well with their 

hypothesis. The structures revealed that IMN and either AZP or PLZ do not displace one another from 

HSA, but simultaneously co-exist in the IIA subdomain (Figure 3A,B). Interestingly, the two drugs are 
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slightly shifted if we compared them with their positions in the corresponding single drug complexes 

presumably as a result of drug–drug contacts [53]. The most striking effect of co-binding of these two 

drugs is the concerted rearrangement of Arg218 and Arg222, the principal effect of which is to 

substitute Arg222 instead of Arg218 as a binding partner for the carbonyl group of PLZ [53]. 

Additionally, Huang et al. think the presence of fatty acid is necessary for drugs’ co-binding in IIA 

subdomain due to fatty acid can induce conformational changes of HSA to create new sub-site [56]. 

For example, they observed that two compounds (3'-azido-3'-deoxythymidine (AZT) and FA) coexist 

in the IIA subdomain [56]. HSA–FA–AZT structure revealed that AZT does not displace FA7,  

but moves to a new subsite of the IIA subdomain which is different from the subsite of IMN  

(Figure 3A–C). FA7 is still at the centre of IIA subdomain, and forms a hydrogen bond with AZT 

(Figure 3C). This new AZT subsite is close to subdomain IB and is besieged by hydrophilic and polar 

amino acids, including Glu153, Ser192, Lys195, Gln196 from subdomain IB and Lys199, His242, 

Arg257, Glu292 from site I [56]. Interestingly, from the HSA–FA–AZT–salicylic acid complex 

structure, Huang et al. [56] also observed the coexistence of AZT with another drug (salicylic acid 

(SA)) in IIA subdomain. SA replaces FA7 and bind at the center of IIA subdomain; AZT still remains 

in its original position, but AZT has no contact with SA although AZT forms hydrogen bonds with 

Glu153 and Arg257 (Figure 3C,D). Therefore, Huang et al. suggest that site I of HSA can be divided 

into three non-overlapped subsites: a SA subsite, an IMN subsite and an AZT subsite [56]. 

Unfortunately, the above structures only showed that the binding mode and binding site of drugs can 

affect each other when they co-bind to the IIA subdomain, but how is their binding affinity? Namely, 

is the binding affinity of drugs increasing, decreasing or do not influence each other? Fluorescence 

quenching demonstrated that the binding affinity of IMN to HSA is stronger than that of cinnamic acid 

(CA). The structures of the corresponding HSA complexes revealed that IMN and CA have a common 

binding site in the IIA subdomain. What would happen if IMN and CA interact with HSA at the same 

time? The structure revealed that IMN is at the center of the binding site, which is different form 

binding properties of IMN in PLZ–IMN and AZP–IMN interactions, but CA reposition itself through 

an alternative binding in a new subsite (Figure 3A,B,E). However, both the binding modes and binding 

affinities of these drugs suffer changes. In the presence of IMN, the binding affinity of HSA for CA 

decreased about five times compared with the same measure in the absence of IMN (Table 1). On the 

other hand, the binding affinity of IMN to HSA in the presence of CA was enhanced 1.4 times 

compared to the same measure in the absence of CA. These differences are attributable to their 

corresponding interaction forces with HSA [74]. CA just forms one hydrogen bond with IMN, 

contacting fewer residues of HSA than CA without IMN. However, IMN not only forms hydrogen 

bonds and salt bonds with HSA, but also interacts with CA. Obviously, CA is helpful in the binding of 

IMN to the IIA subdomain because Gibbs free energy (ΔG) of IMN interacting with HSA–CA is less 

than that of IMN with HSA. Although IMN inhibits CA to bind IIA subdomain to some extent, IMN 

supports lamivudine (LMD) to bind with IIA subdomain in that ΔG of LMD directly binding to HSA 

is higher than that of LMD interacting with HSA–IMN (Table 1), which improves about two times the 

binding affinity of HSA for LMD compared to the same measure in the absence of IMN [64].  

LMD rotates approximately 20° compared to LMD in HSA–FA–LMD structure, interacting with IMN 

(Figure 3F). To sum up, binding of a drug to HSA sometimes influences simultaneous binding of other 

drugs, thus their binding characterization may be affected by each other. 
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Table 1. The binding constants (K) and free energy change (ΔG) of HSA and HSA complexes 

for drugs. 

Drugs Ref. HSA/HSA complex K (×104 M−1) ΔG (kJ/mol)

(CA) 

[74] 

HSA 5.329 ± 0.11 −26.965 

HSA−IMN 1.107 ± 0.06 −23.071 

HSA−IMN−LMD 3.296 ± 0.07 −25.774 

(IMN) 

[74] 

HSA 5.947 ± 0.09 −27.237 

HSA−CA 10.563 ± 0.13 −28.660 

HSA−CA−LMD 8.019 ± 0.11 −27.977 

(LMD) 

[64,74]

HSA 1.688 ± 0.16 −24.116 

HSA–IMN 4.07 ± 0.12 −27.85 

HSA−CA−IMN 3.220 ± 0.05 −25.717 

(AH) 

[73] 

HSA–myristate acids 1.909 ± 0.03 −24.421 

HSA–octanoic acid 2.745 ± 0.11 −25.321 

4. Interactive Association of Drug–Drug–Drug with HSA 

In clinical practice, several drugs are often used to treat the disease synergistically, the binding 

strength of drugs to HSA plays a role in final therapeutic efficiency of the drugs [11]. Therefore, 

maybe we play optimal efficiency of drugs by interactions of drugs to regulate their binding affinity. 

The analysis of HSA structures has revealed that two drugs may co-bind the large hydrophobic cavity 

of the IIA subdomain (Figure 3). However, can several drugs co-bind this subdomain at the same time? 

To confirm the hypothesis, Yang et al. superposed the three structures corresponding to the complexes 

HSA–FA–IMN, HSA–FA–CA and HSA–FA–AZT, which showed that the three drugs have no 

overlap as they bind different positions of the IIA subdomain, which suggest that the three drugs  

could coexist simultaneously in the IIA subdomain [74]. As a matter of fact, the structure of the  

HSA–FA–CA–IMN–LMD complex revealed that the three drugs bind in the same binding site of the 

IIA subdomain [74]. Surprisingly, LMD does not bind to new subsite like AZT, but is at the center of 

IIA subdomain (Figure 4A). In fact, the binding affinity of CA and IMN to HSA are great stronger 

than that of LMD to HSA, but CA and IMN makes reposition (Figure 4B,C). The binding affinity of 

HSA for CA is a little affected by the presence or absence of IMN and LMD because CA moves to 

new subsite where AZT binds, forming hydrogen bonds with Glu153 and Ser192 (Figure 4A,C). 

However, the binding affinity of IMN to HSA is weaker than that of IMN in the presence of CA or CA 
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and LMD. Obviously, the presence of the other drugs strengthens IMN to bind with IIA subdomain. 

Upon coexisting with other drugs, IMN is also easier to bind with HSA because the Gibbs free energy 

of IMN interacting with HSA is higher than that of IMN to HSA in the presence of other drugs. 

Figure 3. Structural basis of drug–drug co-binding to subdomain IIA of HSA.  

(A) azapropazone (AZP)–indomethacin (IMN); (B) phenylbutazone (PLZ)–IMN;  

(C) FA-3'-azido-3'-deoxythymidine (AZT); (D) salicylic acid (SA)–AZT; (E) IMN–cinnamic 

acid (CA); (F) Comparison of binding mode of lamivudine (LMD) to IIA subdomain of 

HSA in the presence/absence of IMN. Dashed line (red), hydrogen bond. 

 

Figure 4. (A) Structural basis of IMN–CA–LMD co-binding to subdomain IIA of HAS;  

(B) the reposition route of IMN in the presence of CA and LMD; (C) the reposition route 

of CA in the presence of IMN and IMN–LMD. Dashed line (red), hydrogen bond. 

 

Treatment of brain disease is difficult to date because the majority of drugs cannot pass through the 

blood brain barrier, which hinders the drugs to reach their target and be clinically efficient [84–86]. 

Therefore, HSA delivery systems have been extensively studied for treating brain disease since HSA 

can pass through the blood brain barrier [87–92]. Disappointingly, HSA prefers to bind anionic but not 
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cationic drugs in the IIA subdomain [93,94]. The structure of the complex HSA–lidocaine revealed 

that the drug binds to a unique site formed by residues from subdomain IB facing the central 

interdomain crevice [67]. The binding is mainly the result of cation–π interactions with Arg114, polar 

interaction with Lys190, and electrostatic attraction to Asp187 [67]. The IIA subdomain is a big 

hydrophobic binding site that can hold several drugs at the same time in theory. It raises the tempting 

possibility that we might be able to change the binding environment of the IIA subdomain to regulate 

the binding of cationic drugs which could be achieve by using other anionic drugs or by mutating nearby 

residues [73]. Yang et al. proved that these ideas are feasible. Fluorescence experiments demonstrated 

that a cationic drug, amantadine hydrochloride (AH), cannot bind the IIA subdomain when the molar 

ratio of FA to HSA is less than 1:7, but when the molar ratio of FA to HSA is at least 1:8 [73].  

To explain the regulatory mechanism that describes the binding of AH to the IIA subdomain in 

presence of FA, the structure of the complex HSA–FA–AH was resolved (Figure 5A). The analysis of 

this structure revealed that one fatty acid (FA7) rotates about 90° and moves toward the bottom of 

binding cavity, which makes space to hold another fatty acid (FA8, Figure 5B). When both fatty acids 

are bound to the IIA subdomain, the binding of AH is stabilized by presence of interactions of the 

carboxyl group of FA8 that forms hydrogen bonds with the amino group of AH (Figure 5A). 

Interestingly, the binding position of AH overlaps the position where the drugs tend to bind (Figure 5B). 

Fortunately, the other anionic drugs also stabilize the binding of AH to the IIA subdomain [73]. 

Therefore, including modification to the IIA subdomain may be a promising strategy to enhance the 

drug binding and deliver capabilities of HSA especially when we want to redesign HSA to be carrier 

for drugs that cannot normally bind this protein [95]. These results provide evidence that it is possible 

to fully exploit the unique binding capacity of HSA’s IIA subdomain to achieve the simultaneous 

delivery of anionic and cationic drugs [73]. 

Figure 5. (A) Structural basis of AH and two FAs co-binding to subdomain IIA of HAS; 

(B) Binding mechanism of AH regulated by two FAs in IIA subdomain of HAS. Dashed 

line (red), hydrogen bond. 

 

5. Conclusions 

HSA is a non-toxic and non-antigenic endogenous protein that can carry different hydrophobic and 

hydrophilic drugs throughout the blood circulation system [95,96]. In addition, the drugs binding with 

HSA can directly form a “nano-drug” increasing drug bioavailability [2,95]. Thus, HSA-based delivery 

systems may be one of the most promising drug delivery systems [97–100]. To date, cancer treatment 

is still a big challenge for humans because anticancer drugs are associated with severe side effects and 
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an inconvenient evolution of drug resistance during treatment [101–103]. Therefore, HSA-based 

delivery systems have been exploited to improve the targeting of anticancer drugs and decrease their 

side effects [104–107]. Additionally, we can conjugate HSA with active targeting molecules such as 

aptamers, antibodies, and various over-expressed receptors [108–110]. The ideal carrier should 

improve drugs efficiency and control the release rate of drugs at the right place [101]. The structural 

analysis of HSA complexes can guide us in the rational design of this protein by changing its drug 

binding ability using several strategies including, the modification of compounds’ structure, or the 

regulation of drugs to each other, or edit certain HSA amino acids rendering the HSA carrier more 

effective for drug delivery to the target site [96]. No doubt, HSA will be more extensively studied in 

various fields except that it will be more application in medicine field owing to its fascinating 

properties [95,111–119]. 
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