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Abstract

Mice with spontaneous coat mutations are ideal animal models for studying skin develop-

ment and tumorigenesis. In this study, skin hair growth cycle abnormalities were examined

in NIH hairless mice 42 days after birth (P42) by using hematoxylin-eosin (H&E) staining.

To examine the gene expression patterns in the skin of mutant mice, the dorsal skin of P42

female NIH mice and NIH hairless mice was sequenced by RNA-Seq, and 5,068 differen-

tially expressed genes (DEGs) were identified (false discovery rate [FDR]� 2, P < 0.05). A

pathway analysis showed that basal cell carcinoma, the cell cycle and the Hippo, Hedgehog

and Wnt signaling pathways were up-regulated in NIH hairless mice. Previous studies have

shown that these pathways are closely associated with cell proliferation, cell cycle, organ

size and cancer development. In contrast, signal transduction, bacterial and parasitic infec-

tion, and receptor-mediated pathways, including calcium signaling, were down-regulated in

NIH hairless mice. A gene interaction network analysis was performed to identify genes

related to hair follicle development. To verify the reliability of the RNA-Seq results, we used

q-PCR to analyze 12 key genes identified from the gene interaction network analysis, includ-

ing eight down-regulated and four up-regulated genes, and the results confirmed the reliabil-

ity of the RNA-Seq results. Finally, we constructed the differential gene expression profiles

of mutant mice by RNA-Seq. NIH hairless mice exhibited abnormalities in hair development

and immune-related pathways. Pik3r1 and Pik3r3 were identified as key genes, laying the

foundation for additional in-depth studies of hairless mice.

Introduction

Hair follicle growth and development have a certain periodicity and include three stages: ana-

gen, catagen and telogen. The control of these processes is important in hair generation and

degradation [1, 2]. Mice with spontaneous coat mutations are useful animal models for the

study of hair follicle development and hair growth [3–5], and studies of skin follicle growth

and development have received increasing attention [6, 7]. Currently, researchers are focusing

on the growth phenotype and changes in hair growth caused by certain mutations as well as

the biological principles and molecular mechanisms underlying these characteristics [8, 9].

The use of mice with spontaneous coat mutations and targeted genetic engineering will
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provide invaluable information for the study of the mechanisms and principles of hair devel-

opment disorders [10].

In our previous study, selected biological characteristics of NIH hairless mouse were stud-

ied, thereby providing a research basis for the study of this mouse model with a mutation

affecting the coat and hair.[11]. To understand the hair development state, we observed the

skin structure at the time points embryonic stage 16.5(E16.5), postnatal day 3(P3), P7, P12,

P16, P21, P28, P33, P37, P42, and P60 by H&E staining (although only the results of P7 and

P42 are shown), and we found significant differences between the phenotypes and pathology

of the skin of the mice at P42. Through inbreeding, we established a mutant mouse strain with

hair follicle development and growth cycle disorders (NIH hairless mice), making this strain a

good animal model for studying human diseases.

Transcriptome sequencing is used to study transcripts of particular tissues or organs of a species

in a particular state and is superior to microarrays in terms of information volume and accuracy

[12]. By constructing a transcriptome library, we can obtain information about transcripts and

alternative splicing and can determine the differential expression patterns of specific genes [13–16].

In the present study, the expression patterns of skin-related genes in NIH hairless mice at

P42 were examined by RNA-Seq, and these patterns were then compared with those in NIH

normal mice. Through Gene Ontology (GO), pathway and differentially expressed gene

(DEG) interaction network analyses, the potential associations between these DEGs and hair

follicle development were analyzed to identify key genes important in the development of the

mouse hair follicle. The differences in some DEGs were then validated by q-PCR.

Materials and methods

Ethics statement

All animal experiments were approved by the Institutional Animal Care and Use Committee

(IACUC) of Jilin University. The animal experiments were performed in accordance with the

requirements of the Experimental Animal Ethics and Welfare guidelines (Permit Number:

20160205).

Histological analysis of NIH normal and NIH hairless mice

SPF-grade female NIH hairless and NIH normal mice of the strain SCXK-2011-0003 (201600

017738) were originally purchased from the Institute of Biological Products Co., Ltd(Chang-

chun, China). Mice were bred in the Laboratory Animal Center of Jilin University. In the place

of the back midline’s right and one centimeter above the tail, scissor a lump of skin whose

length is around one centimeter and width is about 0.25 centimeter at postnatal day 7 (P7) and

P42. Skin samples were embedded in paraffin, fixed, cut into 6-μm slices, and subjected to

hematoxylin-eosin (H&E) staining following a standard method. Images were acquired on an

optical microscope (Olympus, Tokyo, Japan).

Sample preparation

Six-week-old female NIH hairless and NIH normal mice were sacrificed by cervical dislocation

(n = 5 per group). In the place of the back midline’s right and one centimeter above the tail,

scissor a lump of skin whose length is around 0.5 centimeter and width is about 0.25 centime-

ter, and total RNA was extracted with TRIzol reagent following the manufacturer’s instruc-

tions (Invitrogen, Carlsbad, CA, USA). The RNA quality was determined on a Bioanalyzer

2200 (Agilent), and the samples were stored at −80˚C. RNA with an RIN> 6.0 was used for

cDNA library construction.

NIH hairless mice
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GO analysis

GO analysis was applied to analyze the main functions of the DEGs according to Gene Ontology

[17]. Fisher’s exact tests and χ2 tests were used to classify the GO categories, and the false discov-

ery rate (FDR) [18] was calculated to correct the P-value (smaller FDRs indicated a smaller error

in judging the P-values). The FDR was defined as FDR = 1—Nk / T, where Nk refers to the num-

ber of Fisher’s test P-values that were less than the χ2 test P-values. The P-values for the GO anno-

tations of all DEGs were calculated. Enrichment provides a measure of the significance of the

function: as the enrichment increases, the corresponding function is more specific, which helps

us determine the GO categories with more concrete descriptions. Within the significant category,

the enrichment Re was given by Re = (nf / n) / (Nf / N), where nf is the number of DEGs within

the particular category, n is the total number of genes within the same category, Nf is the number

of DEGs in the entire microarray, and N is the total number of genes in the microarray [19].

Pathway analysis

A pathway analysis was performed to determine the significant DEG pathways. Pathway anno-

tations were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) data-

base (http://www.genome.jp/Kegg/). Fisher’s exact test was used to identify the enriched

pathways. The resulting P-values were adjusted using the Benjamini-Hochberg (BH) FDR

algorithm [20]. Pathway categories with an FDR< 0.05 were selected for further analysis.

Enrichment provides a measure of the significance of the function; as the enrichment

increases, the corresponding function is more specific, which helps us determine the signifi-

cant pathways. The enrichment was calculated as enrichment = (ng / n) / (Ng / n), where ng is

the number of DEGs within the particular pathway, na is the total number of genes within the

same pathway, ng is the number of DEGs with at least one pathway annotation, and na is the

number of genes with at least one pathway annotation in the entire microarray.

Gene interaction network analysis

The KEGG database was used to build a network of genes based on the relationships between

the genes, proteins and compounds in the database [21–24].

Co-expression network

For a comprehensive analysis of the expressed genes that takes into account all significantly

differentially expressed transcripts, we used a well-described (unsupervised) methodology for

gene correlation network analysis to cluster transcripts into groups of highly interconnected

modules based on a topological overlap mapping method known as weighted gene correlation

network analysis (WGCNA) [25].

Within the network analysis, degree centrality is the simplest and most important measure

of the centrality of a gene within a network, indicating its relative importance. Degree central-

ity is defined as the number of links that one node has with another [26]. Moreover, to exam-

ine the network properties, W-cores were introduced in order to simplify the graph topology

analysis. A W-core is a subnetwork in which all nodes are connected to at least W other genes

in the subnetwork. A W-core of a protein-protein interaction network usually contains cohe-

sive groups of proteins [26, 27]. The purpose of the network structure analysis is to locate core

regulatory factors (genes) in one network, with core regulatory factors defined as those that

connect the most adjacent genes and have the highest degrees. The core regulatory factors

were determined by the differences in degree between two class samples [28]. These factors

always have the largest differences in degree.

NIH hairless mice
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Real-time q-PCR analysis

Real-time q-PCR was performed to validate the gene expression data obtained from the RNA-

Seq analysis. Total RNA was reverse-transcribed using TRIzol (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s instructions. Approximately 1 μg of total RNA was used

for first-strand cDNA synthesis. Each q-PCR contained 2 μL of DNA template, 12.5 μL of

SYBR Fast q-PCR Mix (Takara, Tokyo, Japan), 8.5 μL of ddH2O, 1 μL of upstream primer F

and 1 μL of downstream primer R in a final volume of 25 μL. The q-PCR reaction parameters

included a 15-s denaturation step at 95˚C and 40 cycles of 95˚C for 5 s and 60˚C for 30 s fol-

lowed by a melting curve analysis. The primer pairs used for q-PCR amplification were

designed using Integrated DNA Technologies (IDT, http://sg.idtdna.com/site). The CT value

in the fluorescent quantitative reaction indirectly represents the expression level of the gene,

and the relative quantification of gene expression can be achieved by comparison with a house-

keeping gene. In this experiment, Actb was used as the internal reference, and relative gene

expression was calculated using the following formula: ΔΔCt = ΔCt (case)—ΔCt (control),

with the difference determined according to 2-ΔΔCt [29].

Immunohistochemistry

The proteins Pik3r1 and Pik3r3 in tissue sections from female NIH normal and NIH hairless

mice at P7 and P42 were detected using the SABC method. Tissue sections (6 μm) from each

group were dehydrated in xylene and a graded ethanol series, and other reagents were added in

the following order: primary antibody [Pik3r1 (1:300), Pik3r3 (1:300); rabbit polyclonal

Fig 1. Phenotypes of NIH hairless and NIH normal mice. A: Hair loss in seven- and 42-day-old HL (NIH hairless) and NIH (NIH normal) mice. At P7, body

hair completely covers NIH mice, whereas HL mice have completely bare pink skin. B: Histological features of HL mice at P7 and P42. H&E-stained sections

show the arrangement of neat, normally growing hair follicles (HFs) and hair shafts in NIH mice at P7 (displayed in the red box). In HL mice, the hair shaft

cannot penetrate the epidermis. At P42, the HFs of NIH normal mice exhibited normal cycling. In contrast, the subcutaneous fat layer of HL mice contains

abnormal hair follicles and hair follicle development cycle abnormalities. Bar = 200 microns.

https://doi.org/10.1371/journal.pone.0182463.g001

NIH hairless mice
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antibodies, BBI, Shanghai, China)], biotinylated secondary antibody, SABC reagents and DAB

solution (Wuhan Boster Co, Wuhan, China.). The sections were then rinsed in distilled water,

dehydrated using alcohol and xylene, mounted on coverslips using permanent mounting

medium and observed under an optical microscope equipped with a 10× objective (Olympus,

Tokyo, Japan). For negative controls, the slides were treated with PBS instead of the primary

antibody.

Results

Phenotypic descriptions

NIH normal and NIH hairless mice appeared identical at birth. At P7, NIH mice were

completely covered with body hair, whereas the NIH hairless (HL) mice retained their bare

pink skin (Fig 1A). With age, the HL mice grew sparse hair and had clearly distinct histological

Fig 2. Gene expression profiles in HL mouse skin using RNA-Seq. A: In total, 5,068 DEGs (FDR� 2, P < 0.05) were obtained after sequencing

analysis, and these included 2,337 up-regulated genes and 2,731 down-regulated genes. B: Hierarchical clustering represents the differential

expression of genes in the skin between NIH hairless and NIH normal mice. There were five repetitions within each group.

https://doi.org/10.1371/journal.pone.0182463.g002

NIH hairless mice
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features at P7 and P42. The H&E-stained sections of the NIH mouse skin showed neatly

arranged hair follicles (HFs) and normal growth at P7. At P42, the HFs of NIH normal mice

exhibited normal cycling. Conversely, the subcutaneous tissue fat layer of HL mice contained

abnormal hair follicles and showed abnormal hair follicle development (Fig 1B).

RNA-Seq analysis of NIH normal and NIH hairless mice

RNA-Seq libraries were constructed from NIH normal and HL mice. Fast-QC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) software was used to evaluate the quality of the

sequencing data, which included the base quality value distribution, position distribution, GC con-

tent and PCR duplication content. The quality control results are shown in S1 Table. Map Splice

software was used to compare the RNA-Seq data. The mapping statistics are shown in S1 Table.

Identification of DEGs

We examined the expression of 22,426 genes. Differential gene expression analysis of the con-

trol (NIH normal mice) and case (NIH hairless mice) groups was performed using the DESeq

algorithm.

We obtained a total of 5,068 DEGs, of which 2,337 were up-regulated and 2,731 were

down-regulated (Fig 2; see S1 File for details).

Fig 3. GO analysis of all differentially expressed unigenes. A: Up-regulated genes in the skin of NIH HL and NIH normal mice. B: Down-regulated

genes in the skin of NIH HL and NIH normal mice.

https://doi.org/10.1371/journal.pone.0182463.g003

NIH hairless mice
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GO and pathway analysis

GO enrichment analysis was performed on the RNA-Seq data. Among the 5,068 DEGs, 4,188

were annotated to 1,256 significant biological process GO categories (P< 0.05); 4,271 were

annotated to 170 significant cell component GO categories (P< 0.05); and 4,152 were anno-

tated to 334 significant molecular function GO categories (P< 0.05). As shown in Fig 3, kerati-

nization, epidermis development, cell cycle, mitotic nuclear division, hair follicle development,

keratinocyte differentiation and skin development were associated with genes that were highly

expressed in NIH HL mice, whereas genes that were weakly expressed in NIH HL mice were

mainly associated with the innate immune response, the immune response, the inflammatory

response, cell adhesion and defense responses to virus infection (see S2–S4 Files for details).

We then used the KEGG database to analyze pathways associated with the DEGs and iden-

tified 37 up-regulated pathways and 118 down-regulated pathways. The comparison between

NIH hairless and NIH normal mice showed that the DEGs were associated with immunity,

cell cycle, apoptosis, cancer and microbial infection. Fig 4 presents the up- and down-regulated

pathways obtained from pathway analysis and sorted by confidence level. The GO and path-

way analyses allowed us to preliminarily classify the DEGs, which will provide important infor-

mation for the screening of functional genes (see S5 File for details).

Weighted gene co-expression network analysis

The WGCNA clustered 5,068 transcripts into four co-expression modules. The module con-

servation across all datasets is shown as a dendrogram in (Fig 5). Based on WGCNA convec-

tion, the four enriched modules were colored turquoise, yellow, brown and blue. Among

Fig 4. Pathway analysis of all differentially expressed unigenes. A: Up-regulated genes in the skin of NIH HL and NIH normal mice. B: Down-

regulated genes in the skin of NIH HL and NIH normal mice.

https://doi.org/10.1371/journal.pone.0182463.g004

NIH hairless mice
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them, the turquoise module (Fig 5) represents the genes of interest and shows the 838 DEGs

identified and the results of the GO and pathway analyses (see S6 File for details).

Gene interaction network and pathway interaction network analyses

To further study the interactions between genes and the internal links between pathways, we

built two gene interaction networks and one pathway interaction network based on the KEGG

database. We first chose genes that were not associated with human diseases to build the gene

interaction network (Fig 6). In total, 628 DEGs were included in this network, in which red

represents the down-regulated genes and green represents the up-regulated genes in the exper-

imental group. The degree is arranged based on the degree of involvement of the genes in the

network. Genes in the PI3K family, including Pik3r1, Pik3r3 and Pik3cd, were identified as

Fig 5. Results of the weighted co-expression analysis of DEGs using the WGCNA algorithm. A: Network heat map. The branch in the hierarchical

cluster tree corresponds to the module. B: Relationships between HL and NIH module traits. Different colors represent different classification modules. C:

GO analysis of DEGs in the turquoise module. D: Pathway analysis of DEGs in the turquoise module.

https://doi.org/10.1371/journal.pone.0182463.g005

NIH hairless mice
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core genes. We also analyzed the differences in DEGs associated with human diseases. The

gene interaction network (Fig 7A) showed that the PI3K family members were still situated at

the core of the network. We also built a pathway interaction network between human diseases

and organismal systems (Fig 7B).

Confirmation of RNA-Seq results by q-PCR

To ensure that our sequencing data were true and reliable, we selected several relatively

important genes obtained from the gene interaction network analysis, four up-regulated

genes (Krt17, Plxna2, Pik3r3 and Ctse) and eight down-regulated genes (Pik3r1, Pik3cd,

Itgb3, Kdr, Gnaq, Htra3, Jak1 and Pik3r5) (12 total), which were verified by q-PCR (Fig 8).

The results obtained from the two methods were consistent for each gene (see S7 File for

details).

Fig 6. Gene interaction network and pathway interaction network analyses. For genes that are not

associated with human diseases, larger dots correspond to higher degrees of participation in the interaction

network. Red represents down-regulated genes, and green represents up-regulated genes.

https://doi.org/10.1371/journal.pone.0182463.g006

NIH hairless mice
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Expression of Pik3r1 and Pik3r3 proteins in tissue sections

To study the relationship between the Pik3r1 and Pik3r3 genes and hair development, we used

immunohistochemistry to observe the expression of these two proteins in the skin. We found

that the Pik3r1 and Pik3r3 proteins were mainly expressed in the hair follicles, even though

the sebaceous glands also showed some levels of Pik3r1 and Pik3r3 expression. Interestingly,

although these two proteins were both found in some hair follicles and were not expressed in

others, we hypothesized that this result was related to whether the hair follicles were active or

inactive. However, the specific evidence for this phenomenon requires further in-depth studies

(Figs 9 and 10).

Discussion

Mice with spontaneous coat mutations are useful animal models for the study of hair follicle

development and hair growth [30]. The skin is the body’s first immune barrier. The functions

of the skin are integrated into the skin immune, pigmentary, epidermal and adnexal systems

and are in continuous communication with the systemic immune, neural and endocrine sys-

tems [31]. Mice with skin mutations often exhibit immune dysfunctions, which indicates that

bodily infections also have important implications for immunity [32]. Previous studies have

shown that the skin is affected by the regulation of corticotropin-releasing factor (CRF), which

produces some direct or indirect phenotypic effects that can regulate epidermal barrier func-

tion and the skin immune, pigmentary, adnexal, and dermal functions necessary to maintain

local and systemic homeostasis [33, 34]. To date, several hairless mouse strains have been used

to investigate immune responses, tumorigenesis, skin development and other research ques-

tions. Some such models are nude mice with Foxn1 gene mutations; these mice lack thymic

cell immunity and are used for tumor modeling and for evaluating drug effects [35–37].

Fig 7. Gene interaction network and pathway interaction network analyses. A: For genes that are associated with human diseases and immune

pathways, larger dots correspond to higher degrees of participation in the interaction network. Red represents down-regulated genes, and green represents

up-regulated genes. B: The pathway interaction network between human diseases and organismal systems. Circular nodes represent pathways, and an

arrow between two nodes represents an interaction target between pathways.

https://doi.org/10.1371/journal.pone.0182463.g007

NIH hairless mice
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Fig 8. Confirmation of RNA-Seq results by q-PCR. A: Four up-regulated genes (Krt17, Plxna2, Pik3r3 and Ctse).

B: Eight down-regulated genes (Pik3r1, Pik3cd, Itgb3, Kdr, Gnaq, Htra3, Jak1 and Pik3r5).

https://doi.org/10.1371/journal.pone.0182463.g008

NIH hairless mice
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Another model is the hairpoor mouse (hrhp), which was generated via N-ethyl-N-nitrosourea

(ENU) mutagenesis and has a coat of abnormal hairs [55]; this mouse was found to have a

point mutation in the hairless gene, making it a good animal model for studying the human

familial genetic disease Marie Unna hereditary hypotrichosis (MUHH). We found that NIH

hairless mice exhibit hair follicle developmental disorders in the first hair growth cycle. Addi-

tionally, other researchers have reported progressive hair loss and abnormal hair growth cycles

in these mice.

We used RNA-Seq high-throughput sequencing technology [38–40] to examine and com-

pare the phenotypes and skin structures of six-week-old female NIH normal and NIH HL

mice. We found that keratinization, epidermis development, hair follicle development and

skin development were up-regulated in NIH hairless mice. H&E staining of P42 skin slices

showed that in NIH normal mice, the second hair growth cycle was in telogen, whereas in

HL mice, the hair growth cycle was still in anagen. The innate immune response, immune

Fig 9. Expression of Pik3r1 protein in tissue sections. The Pik3r1 antibody shows signals in partial hair follicles. In addition, the sebaceous glands also

show some Pik3r1 expression.

https://doi.org/10.1371/journal.pone.0182463.g009

NIH hairless mice
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response, viral response and other pathways closely associated with immune defense showed

downward trends, indicating abnormal immune function in NIH hairless mice [41–43]. These

results are consistent with the spontaneous tumor formation that occurs when breeding NIH

hairless mice. Pathway analysis showed that genes involved in basal cell carcinoma, the cell

cycle and the Hippo, Hedgehog and Wnt signaling pathways were up-regulated in HL mice;

these pathways are associated with cell proliferation, growth, cycle, organ size and cancer [30,

44]. In contrast, genes involved in signal transduction, receptor-mediated signaling (e.g., cal-

cium, cytokine-cytokine receptor, and PI3K-Akt signaling) and bacterial and parasitic infec-

tion (e.g., Staphylococcus aureus infection) were down-regulated in HL mice.

Because many genes might affect the screening of core genes and the construction of the

interaction network, we used WGCNA to classify genes based on their expression patterns and

to categorize the modules by color (the turquoise modules are closely related to our research

aims). To further understand the importance of gene and pathway interactions and to screen

for key genes and pathways that play significant roles in the case group (NIH hairless mice),

Fig 10. Expression of Pik3r3 protein in tissue sections. The Pik3r3 antibody shows an expression pattern similar to that of the Pik3r1 antibody.

https://doi.org/10.1371/journal.pone.0182463.g010

NIH hairless mice
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we built two gene interaction networks and one pathway interaction network based on the

direct or systemic interactions assigned between pathways in the KEGG database. Based on

the degrees of involvement of the genes in the network, Pik3r1, Pik3r3, Pik3cd, Kdr, Itgb3 and

Itgb7 were identified as key genes.

Previous studies have shown that the PI3K / AKT signaling pathway is involved in cell

regulation processes, including cell growth, proliferation, transformation, epithelial-to-mesen-

chymal transition and survival, and cell pathology [45–47]. Disruption of the PI3K / AKT sig-

naling pathway can lead to cell growth, proliferation and survival disorders, thus affecting

normal bodily activities. Studies of the Pik3r1 gene have described its association with the

occurrence and metastasis of cancer [48–50]. Notably, the analysis of atopic dermatitis

sequencing data revealed a crucial role for Pik3r1 in atopic dermatitis [30, 51]. However,

research on its involvement in hair follicle development is lacking. Finally, we found that

Pik3r1 and Pik3r3 proteins were specifically expressed by hair follicles.

In summary, we constructed gene expression profiles for the skin of six-week-old NIH hair-

less and NIH normal mice. A bioinformatics analysis of the 5,068 DEGs revealed differences in

the cell cycle, immune response and skin development. Screening of the Pik3r1 and Pik3r3
genes will be of great importance in our future research.
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