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Background. Differential expression analysis is a standard approach in molecular biology. For example,
genes whose expression levels differ between diseased and non-diseased samples are considered to be
associated with that disease. On the other hand, differential variability analysis focuses on the differences
of the variances of gene expression between sample groups. Although differential variability is also
known to capture biological information, its interpretation remains unclear and controversial. Recent
single-cell analyses have revealed that differences between sample groups can affect gene expression
in a cellular subset-specific manner or by altering the proportion of a particular cellular subset. The
aim of this study is to clarify the interpretation of mean and variance of bulk gene expression data.
Method. We developed a mathematical model in which the bulk gene expression value is proportional

to the mean value of the single-cell gene expression profile. Based on this model, we performed theoret-
ical, simulated and real single-cell RNA-seq data analyses.
Result and Conclusion. We identified how differences in single-cell gene expression profiles affect the

differences in the mean and the variance of bulk gene expression. It is shown that differential expression
analysis of bulk expression data can overlook significant changes in gene expression at the single-cell
level. Further, differential variability analysis capture the complex feature affected by different gene
expression shifts for each subset, changes in the proportions of cellular subsets, and variation in
single-cell distribution parameters among samples.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Performing differential expression (DE) analysis of different
sample groups is a standard approach in molecular biology. In
recent years, transcriptome data have been used to comprehen-
sively identify DE genes in different experimental groups [1], and
several bioinformatics methods have been developed for this pur-
pose [2–4]. In DE analysis, if gene expression levels differ signifi-
cantly between diseased and non-diseased donors, then the
genes are considered to be associated with that disease. Similarly,
a comparison of gene expression data from different tissues or
anatomical regions can therefore be used to identify tissue/
region-specific genes [5–7]. Expression quantitative trait locus
analysis (eQTL) can be used to identify genetic variants in genotype
groups that are significantly associated with gene expression
levels, and in so doing, can facilitate an understanding of the
mechanisms underlying gene regulation and interpretations of
functional genetic variants [8,9]. Specifically, these DE analyses
identify differences in mean expression values for bulk gene
expression data between the groups based on disease, tissue or
genotype (Fig.1(a)).

On the other hand, differential variability (DV) analysis is
another approach for identifying differences in gene expression
[10]. DV analysis captures differences in variance of gene expres-
sion values between the groups (Fig.1(a)). DV can capture biologi-
cal information about a target disease or trait. To date, studies have
employed DV analysis of transcriptome data to provide biological
insights about disease and aging [11–14]. For example, a strong
relationship has been reported between variability in gene expres-
sion and a chronic lymphocytic leukemia subtype [14]. In the con-
text of eQTL analysis, the genetic loci associated with variance in
bulk gene expression value are discussed as expression variability
QTL (evQTL) [15]. Although the biological processes underlying DV
have been investigated from a biological standpoint, such as gene
expression noise or epigenetics [16], the interpretation of DV of
gene expression remains unclear and controversial.
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Fig. 1. Background of the study. (a) Concept of differential expression (DE) and differential variability (DV) in gene expression analysis. DE and DV analysis capture the mean
and the variance of bulk expression distributions between groups, such as control vs. disease groups, respectively. (b) Graphical illustrations showing changes in the
distribution of two types of single-cell expression; the first type is characterized by a shift in expression levels in each cellular subset (left). The magnitude and direction of the
shift can differ for each cellular subset, and can be expressed as a change in the individual distributions that make up the single-cell expression distribution. The second type
is a change in the cellular subset proportion (right). This can be expressed as a change in the proportion of the component distribution.
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Due to cellular heterogeneity, bulk gene expression data in DE
or DV analyses are not typically sufficient for capturing the
changes in the gene expression profiles of a cell population. Each
sample in an experiment contains randomly selected cells, and
each cell has a different gene expression level. Consequently, the
cell population profile can be expressed as a probability distribu-
tion of gene expression, and the bulk gene expression data cap-
tures information of the average value of this distribution [17].
Recent advances in single-cell analysis have reported the existence
of two different types of changes in a single-cell expression profile;
shifts in gene expression and changes in the proportion of cellular
subsets.

First, group differences shift the level of gene expression in the
cell, and the direction and magnitude of this shift depends on the
cellular subset. For example, it is known that tumor cell sub-
populations show distinct drug responses [18]. The recent studies
combining single nucleotide polymorphism (SNP) genotype data
with single-cell RNA-seq (scRNA-seq) data or cytometry has shown
that the effects of genetic variants on gene expression may differ
depending on cellular subsets [19–21]. Such changes in the
single-cell expression distribution can be expressed as shown in
the left panel of Fig.1(b).

Second, group differences change the proportion of cellular
subsets, as shown in the right panel of Fig.1(b). Differences
among groups can alter proportion of cellular subsets by
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affecting cell differentiation, maturation and transformation.
Studies have been conducted to identify cellular subsets with
different proportions between sample groups [22,23]. Previous
studies combining SNP genotype and cytometry analyses identi-
fied SNPs associated with different lymphocyte subsets [24,25].
In addition, it has been suggested that a large number of SNPs
are associated with individual differences in lymphocyte profiles,
even though their effects are small [25]. Changes in the propor-
tion of cellular subsets can affect the bulk gene expression value.
For example, when the proportion of a cellular subset with a rel-
atively high gene expression level increases, the bulk expression
levels also increase.

In the complex physiological and pathological changes that
occur within cells, both shifts in gene expression and changes in
cellular subset proportions can occur simultaneously, resulting in
a combined contribution to the bulk expression value. For example,
both of them in intestinal epithelial cell population have been
observed in patients with Crohn’s disease [26]. Evaluating how
these changes in single-cell expression profiles are manifested in
DE and DV genes is central to understanding the biological mech-
anisms underlying both DE and DV analysis. Further, given the
increased interest in single-cell expression analysis in recent years,
it is important to evaluate the results of single-cell expression
analyses and compare them to the results of bulk expression anal-
yses that have been reported to date.
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In this study, we describe a mathematical model for examining
bulk gene expression levels and the single-cell expression distribu-
tion behind them. Specifically, single-cell expression profiles are
modeled using a mixed probability distribution, and the relation-
ships among their parameters and the mean and variance of the
bulk expression values among samples are clarified. The model
proposed in this study clarifies the interpretation of DE and DV
analysis and provides new insights into the relationship between
bulk and single-cell data analyses.
Fig. 2. Mathematical model of the relationship between single-cell expression profiles
expression profile and bulk gene expression values. The single-cell expression profile
component distributions and r is the proportion of cellular subset. Bulk samples are obta
Bulk gene expression values are proportional to the expected value of the population di
data analysis. In the bulk data analysis, multiple sample values are taken where lþ;l� ,
relationships among the statistics of lþ;l� and r, and the bulk gene expression Y.
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2. Methods

2.1. Mathematical model for relationship between a single-cell
expression profile and a bulk gene expression value

We developed the following mathematical model to clarify the
relationship between one single-cell expression profile and its bulk
gene expression value for one gene (Fig.2(a)). The bulk samples of
multicellular organisms consist of many cells, which show cellular
and bulk expression data. (a) Model of the relationship between the single-cell
is modeled as a mixture distribution. lþ and l� are the expected values of the
ined as statistical samples where the number of cells contained is sufficiently large.
stribution + the measurement error (k � E½y� þ e). (b) Model of the bulk expression
and r have different values in each sample. This mathematical model evaluates the
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heterogeneity and consist of multiple cellular subsets. The distri-
bution of gene expression for these cells can be expressed as a mix-
ture distribution of those of different cellular subsets.

To evaluate the effect of a specific cellular subset, we used cel-
lular subset + and cellular subset-. The single-cell expression value
for a cell of cellular subset + is assumed to follow a probability dis-
tribution fþðyÞ with mean lþ. Similarly, that for a cell in cellular
subset- is assumed to follow a probability distribution f�ðyÞ with
mean l�. Let the proportion of cellular subset + be r and that of cel-
lular subset- be 1� r. Due to genetic and environmental effects,
the parameters affecting the single-cell expression distributions
are assumed to vary among donors. We modeled lþ;l�; r by
assuming that these are random variables that are independent
of each other.

Under this model, the single-cell expression level y follows a
mixture probability distribution, as follows:

y � rfþðyÞ þ ð1� rÞf�ðyÞ ð1Þ
The bulk gene expression value (Y) can be considered as the

mean value for a single-cell expression distribution. If the bulk
sample contains a sufficient number of cells, then the bulk gene
expression level (Y) can be modeled with a proportionality con-
stant k and measurement error (e) as follows:

Y ¼ kE½y� þ e
¼ krlþ þ kð1� rÞl� þ e

ð2Þ

where, e is assumed to be independent of other random variables
lþ;l�; r.

For simplicity, we set k = 1 in the discussion.

Y ¼ rlþ þ ð1� rÞl� þ e

As a result, the group difference in bulk expression data, such as
control vs. disease, are interpreted via the single-cell gene
expression distribution according to Eq. 3. In DE analysis, the
bulk data for the disease group (Group D) and the control group
(Group C), E½YD� � E½YC � can be detected statistically as the differ-
ence of bulk expression values for each group. This model allows
us to mathematically evaluate the relationship between the
parameters for the single-cell expression distribution with cellu-
lar heterogeneity and the results of the bulk gene expression
analysis (Fig.2(b)).

2.2. Relationships among cellular heterogeneity, DE and DV analyses in
the bulk experiment

From Eq. 3, the bulk expression value Y can be written as

E½Y � ¼ E½r�E½lþ� þ ð1� E½r�ÞE½l�� ð4Þ
Consider the case of comparing bulk data for disease group (Group
D) and the control group (Group C). In Group D, the expected value
for the parameters of single-cell expression distribution in the
model is shifted from those of group C, as follows:

E½lD
þ� ¼ E½lC

þ� þ Dlþ
E½lD

�� ¼ E½lC
�� þ Dl�

E½rD� ¼ arE½rC �
ð5Þ

where Dlþ;Dl� and ar express the difference in lþ;l� and r
between groups. Note that arE½rC � is restricted to the range 0 to 1.
The differential expression between the two groups, i.e., E½YD� -
E½YC �, can be expressed as follows, based on Eq. 4 (see Appendix A
for details).
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E½YD� � E½YC � ¼ ðEC
þ � EC

�ÞðEC
r ðar � 1Þ þ arE

C
r dþ þ ð1� arE

C
r Þd�Þ

where, dþ ¼ Dlþ
ðEþ�E�Þ and d� ¼ Dl�

ðEþ�E�Þ. In addition, we let EC
þ; E

C
� and EC

r

equivalent to E½lþ�; E½l�� and E½r� in Group C, respectively.

Depending on the combination of ar ; dþ, and d�; E½YD� � E½YC �
can take a value of zero and never be identified by DE analysis,
even though positive activation of gene expression is occurring at
the single-cell level. Based on these results, if a group difference
affects both the cellular subset proportion and the gene expression
level in each cell, then it can be missed in the bulk gene expression
analysis.

Indeed, if dþ > 0 and d� > 0, then the condition for
E½YD� � E½YC � � 0 can be expressed as follows (from Eq. 6):

ar �
1� d�

ECr

1þ dþ � d�
ð7Þ

where we assumed EC
þ > EC

�; r > 0;1þ dþ � d� > 0. E½YD� ¼ E½YC � is
satisfied when the equal sign holds.

On the other hand, variance in the bulk gene expression value
can be calculated from Eq. 3, as follows:

V ½Y� ¼ V ½rlþ þ ð1� rÞl� þ e� ð8Þ
From Eq. 8, the following relationship can be mathematically
derived (see Appendix B for details):

V ½Y� ¼ ðEþ � E�Þ2Vr þ E2
r Vþ þ ð1� ErÞ2V� þ ðVþ þ V�ÞVr

þ V ½e� ð9Þ
In addition, we let Eþ; E�; Er;Vþ;V� and Vr be equivalent to
E½lþ�; E½l��; E½r�;V ½lþ�;V ½l�� and V ½r�, respectively. Eq. 9 suggests
that there are three main factors that explain the differential vari-
ability between groups. First, Vþ;V� and Vr directly affect the vari-
ability in bulk gene expression. Second, the change in Er affects the

variability in bulk gene expression via the term E2
r Vþ þ ð1� ErÞ2V�.

If the group difference increases the more variable subset propor-

tion, then V ½Y� can be increased. Third, ðEþ � E�Þ2 can affect V ½Y�.
If the group difference changes ðEþ � E�Þ2, then it affects the bulk

expression variance via the term ðEþ � E�Þ2Vr . Importantly, even if
V�;Vþ and Vr do not change, a change in Eþ; E� and Er can change
the variance in the bulk gene expression. Note that cell-to-cell vari-
ability V ½y� does not appear in this equation.

2.3. Visualization of the difference between DE and DV genes

Based on the above theory, we visualized the relationship
between the parameter (dþ; d�;ar) and an increase or decrease
in the mean and variance of the bulk gene expression. We focused
on a situation where expression is increased in both cellular sub-
sets (dþ � 0; d� � 0) and the proportion of cellular subset + is
decreased (ar � 1). For the combinations of equally spaced
d + and d- (0, 0.1, 0.2, . . ., 1) and three patterns of ar (0.2, 0.5,
0.8), we calculated the difference in the means and variances,
and visualized the parameter space with an increase and a
decrease in the mean and the variance of the bulk gene expression.
We set other parameters in the model as follows:
Eþ ¼ 2; E� ¼ 1; Er ¼ 0:5;Vþ ¼ 0:3;V� ¼ 0:1 and Vr ¼ 0:05.

2.4. Simulation analysis of DV genes

We created a computational simulation scheme for the pro-
posed mathematical model. First, this model contains fourteen
parameters: N is the number of samples,
Eþ;Vþ; E�;V�; Er ;Vr ; dþ; d� and ar are the parameters that define
individual differences in the distribution parameters described in
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the above model, n is the number of cells in the bulk sample, Verr is
the measurement noise associated with quantifying the bulk
expression value, and Vyþ and Vy� are the variances of single-cell
expression levels in each subset.

First, for N samples in the Group C, lþ;l� and r are sampled
from the Normal or uniform distributions as shown below, and
assigned to each sample. Normal and uniform distributions are
uniquely determined by the mean and variance parameters.

lþ � NormalðEþ;VþÞ
l� � NormalðE�;V�Þ
r � UniformðEr;VrÞ

Also, for N samples in the Group D, lþ;l�; r are sampled according
to dþ;d� and ar , based on Eq. 5.

lþ � NormalðEþ þ dþ;VþÞ
l� � NormalðE� þ d�;V�Þ
r � UniformðarEr ;VrÞ

Next, we generated the single-cell expression value (y) of each sam-
ple based on Eq. 1, where fþðyÞ and f�ðyÞ are modeled as normal
distributions. From the following formula, we sampled n cells
independently.

y � rNormalðlþ;VyþÞ þ ð1� rÞNormalðl�;Vy�Þ
After sampling n single-cell expression values, the bulk expression
value is calculated as the mean of y ¼ ½y1; y2 . . . yn� and a measure-
ment error (e) is added.

Y ¼ �y þ e

e � Normalð0;VerrÞ
As a result, the bulk expression values for N control samples and N
disease samples were simulated.

Based on this simulation scheme, we simulated two situations
in which only the variance of the bulk expression is changed with-
out changing the mean value. Eq. 9 shows that the difference in Er

(Example1) or ðEþ � E�Þ2 (Example2) can change the bulk expres-
sion variance, even if Vþ;V� and Vr are the same in the two groups.

(Example1) We simulated an example where the variance in
bulk gene expression decreases as Er decreases in the disease group
when Vþ > V�. The model parameters were as follows:
N ¼ 1000; Eþ ¼ 2; E� ¼ 1; Er ¼ 0:9;Vþ ¼ 1;V� ¼ 0:1;Vr ¼ 0:001;
n ¼ 10000;Verr ¼ 0:1;Vyþ ¼ 1 and Vy� ¼ 1. dþ; d� ¼ 0:5 were used
so that the value of Eþ � E� was the same in the control and disease
groups. ar was set so that E½YC � ¼ E½YD�was satisfied. We checked
the simulated bulk expression data for the two groups to confirm
whether the changes in the proportions of cellular subsets could
cause DV.

(Example2) We simulated an example where the variance in
the bulk gene expression increases as Eþ � E� increases. The model
parameters were as follows: N ¼ 1000; Eþ ¼ 2;
E� ¼ 1; Er ¼ 0:9;Vþ ¼ 0:01;V� ¼ 0:01;Vr ¼ 0:001;n ¼ 10000;
Verr ¼ 0:1;Vyþ ¼ 1 and Vy� ¼ 1. Vþ and V� were the same to
repress the effect of differences in the proportions of different cells.
Instead, dþ ¼ 10 and d� ¼ 0:1 were used so that Eþ � E� increases.
ar was determined so that E½YC � ¼ E½YD�was satisfied. We checked
the simulated bulk expression data for the two groups to confirm
whether the different gene expression shifts for each subset could
could cause DV.

2.5. Real single-cell RNA-seq data analysis

Here, we described the analysis of real single-cell RNA-seq data
by applying our method to elucidate single-cell expression changes
underlying bulk DE and DV genes. We used the public scRNA-seq
4854
dataset for ulcerative colitis (UC) (NCBI GEO ID:GSE125527) [27].
In this study, we used data for the processed scRNA-seq of human
peripheral blood mononuclear cells (PBMCs) from seven patients
with ulcerative colitis (UC) and eight control donors (NCBI GEO
ID:GSM3576411-GSM3576425). After log(1 + count value) trans-
formation, the sum of the gene expression values for each cell
was normalized to be 106 and used for downstream analysis.

The DE genes and DV genes were identified at the bulk level
using the following procedure. Bulk gene expression levels for each
sample were defined as the average of the single-cell expression
values among cells. For the genes with an average bulk gene
expression level of > 20 in the 15 samples, we performed Welch’s
t-test and F-test analyses to compare the UC and the control groups
and calculated p values. We applied Benjamini-Hochberg (BH) cor-
rection [28] to the t-test p values and identified the genes with
adjusted p values < 0:05 as DE genes. We also applied BH correc-
tion to the F-test p values and identified the genes with adjusted
p values < 0:05 as DV genes.

For the identified top DE gene and top DV gene with the small-
est p value, we estimated the parameters of single-cell expression
distribution (lþ;l� and r). In many cases, the single-cell expres-
sion distribution consists of the cell population with zero or small
expression values, and cell populations with higher expression val-
ues. For the single-cell expression distribution of each gene in each
sample, we applied kmeans clustering and divided the cells into
subset + and subset-. By calculating the mean expressions and pro-
portions of subset + and subset- cells, we could then estimate
lþ;l� and r for each sample. We then evaluated the distributions
of these estimated parameters for the samples and identified dif-
ferences in the single-cell expression distributions that underlie
the bulk expression of DE and DV genes.
3. Results

3.1. Theoretical and simulation analyses

Fig. 3(a) shows E½YD� � E½YC � for the combination of dþ; d� and
ar . Even though the expression shift is positive for subsets
(dþ � 0; d� � 0), the difference in mean expression value can be
negative depending on ar . Fig.3(b) shows the difference in variance
for the combination of dþ; d�, and ar . Compared to Fig.3(a), the plot
pattern is different. These results indicate that DE and DV analysis
capture different features of the single-cell distribution.

We simulated situations where the variance in bulk expression
differed between sample groups without changing mean values.
Fig.4(a) shows an example where only changes in the proportions
of cellular subsets alters variance of bulk gene expression. This is
because the subset + cells with large variance decrease in number
and the subset- cells with small variance increase in number. Fig. 4,
(b,c) shows the parameter distributions for lþ;l� and r in the two
groups in this simulation. Fig.4(d-f) shows another example where
a shift in gene expression changes variance of bulk gene expres-
sion. These results show that a changes in the proportions of cellu-
lar subsets or a different expression shifts for cellular subsets can
cause DV.
3.2. Real single-cell RNA-seq data analysis

We used a public human scRNA-seq dataset compiled using
data for seven patients with UC and eight control subjects. The
results of a bulk level analysis showed that there were 289 DE
genes and four DV genes. No matches were observed between
these DE and DV genes. We investigated the top DE and DV genes
with smallest p value in detail.



Fig. 3. Exampleof theoretical analysis involving the comparison of the bulk mean and variance between two groups. (a) Exampleof plotting difference in mean expression for
each combination of dþ;d� and ar . Combinations where E½YD� > E½YC � are plotted in red and combinations where E½YD� � E½YC � are plotted in blue. Even if dþ > 0;d� > 0, it is
possible that E½YD� � E½YC �. (b) Exampleof plotting difference in variance for each combination of dþ;d� and ar . Combinations where V ½YD� > V ½YC � are plotted in red and
combinations where V ½YD� � V ½YC � are plotted in blue. DE and DV analysis capture different features of the single-cell distribution.

Fig. 4. Results of the simulation analysis. (a) Bulk expression result with no mean difference and a significant difference in variance in Example1 of simulation analysis. (b)
and (c) are the distributions of lþ;l� and r among samples in this simulation. (d-f) are the those of Example2.
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The top DE gene in the bulk expression analysis was POM121,
whichhadameanbulk expressionvalue that decreased significantly
inUC group (Fig.5(a); t-test p value is 1:51 � 10�5). Fig.5(b) shows a
histogram of single-cell expression values for pooled cells of each
group, which shows that the expression level for this gene was
low in a large number of cells (cellular subset -) and high in a small
number of cells (cellular subset+). Fig.5, (c,d,e) shows the estimated
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lþ and l�; r values for each sample group. The findings suggest that
the gene expression level increasedmarkedly in subset + cells in UC
group,while the proportion of these cells decreased. Although these
twoeffects act inoppositedirections, thegreater influenceof the for-
mer effect increases bulk gene expression.

The top DV gene is MAP1LC3B2 whose bulk expression variance
is significantly decreased in UC group (Fig.6(a); the F-test p value is



Fig. 5. Analysis of top DE gene with the smallest p value (POM121). (a) Bulk gene expression levels of control (C) and ulcerative colitis (U) groups. The red points in the plot
represent the mean of the bulk expression values for each group. (b) A histogram showing single-cell expression levels for the C and U groups, plotted for the pooled cells in
all samples in each group. (c, d, e) Estimated parameters for single-cell expression distributions (l̂þ; l̂� and r̂) for the samples. Red points represent the mean values obtained
for each group.
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8:77 � 10�7). Fig.6(b) shows a histogram of single-cell expression
values for pooled cells of each group, which also shows that the
expression level for this gene was low in a large number of cells
(cellular subset -) and high in a small number of cells (cellular sub-
set+). Fig.6, (c,d,e) shows the estimated lþ and l�; r values for each
sample group. While the mean and variance of the bulk expression
level decreased in UC group, lþ increased. The large decrease in
the mean and variance of r in UC group is considered to lead signif-
icant difference of variance.

4. Discussion

The proposed model provides the insights for the interpreta-
tions of DE and DV genes identified using bulk data. First, when
changes in the proportions and expression shifts in cellular subsets
occur, they may cancel each other out and not be detected in bulk
data analysis. Second, underlying DV gene, there is a combined
contribution of different expression shifts for cellular subsets,
changes in the proportion of cellular subsets, and changes in indi-
vidual differences in the parameters for single-cell expression pro-
files. These are important considerations when interpreting the
results obtained from bulk expression analysis. Third, DV and DE
capture different aspects of single-cell expression profile differ-
ences. In recent years, methods for directly detecting dissimilari-
ties in single-cell expression distributions using scRNA-seq or
cytometry data have been proposed [29–33]. Our findings provide
an insight into the theoretical relationships among DE and DV gene
identified in bulk experiment, and differential distributed genes
identified in single-cell experiment.
4856
Here we examine the difference between variability in the bulk
expression data (V ½Y �) and the cell-to cell variability (V ½y�).
Recently, studies on single-cell analysis have examined cell-to-
cell variability and the statistical methods for analyzing this
expression characteristics [34,35]. Our analysis showed that the
formula for V ½Y � does not include V ½y� and that there is no direct
relationship between themwhen the sample contains a sufficiently
large number of cells. Nevertheless, shifts in gene expression or
changes in the proportion of cellular subsets will also induce
changes in V ½y� in the same direction in individual samples. In
addition, changes in V ½y�;V ½lþ�;V ½l�� and V ½r� due to disease or
aging may indicate the existence of a common mechanism for dis-
ruption of the control mechanism for biological phenomena.

The scRNA-seq expression data is characterized by the inclusion
of many zero values [36]. Then, statistical models that can handle
zero-inflation are often used in single cell data analysis. Specifi-
cally, it is often modeled by probability distributions such as neg-
ative binomial, poisson, zero-inflated negative binomial or zero-
inflated poisson [36]. Our model is applicable to any probability
distribution including the zero-inflation model. Since the relation-
ship between expectation value of distribution and its parameters
is known mathematically for these theoretical distributions, it is
possible to calculate the values such as Eþ or Vþ from the mean
and variance of the parameter values among samples, which pro-
vide the insights about the mean and variance of the bulk gene
expression values. If future large scale single cell genomics studies
will provide insight into the distribution of the parameters among
samples, it will enhance our understanding of the relationship
between single cell and bulk data analysis even more.



Fig. 6. Analysis of the top DV gene with the smallest p value (MAP1LC3B2). (a) The bulk gene expression level of control (C) and ulcerative colitis (U) groups. The red points in
the plot represent the mean of the bulk expression values for each group. (b) A histogram showing single-cell expression levels for C and U groups, plotted for the pooled cells
in all samples for each group. (c, d, e) Estimated parameters of single-cell expression distributions (l̂þ; l̂� and r̂) for the samples. Red points represent the mean values
obtained for each group.
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The analysis of real scRNA-seq data presented in this study is an
effective tool for examining the relationship between scRNA-seq
data and bulk data, but the study has several limitations. A major

limitation is that the estimates obtained for Êþ; Ê�; Êr ; V̂þ; V̂� and

V̂ r are not always accurate. These estimates can be affected by
biases associated with clustering and parameter estimation. Also,
the number of cellular subsets that are actually present in a tissue
is not always known, and the identification and classification of
cellular subsets using bioinformatic methods is a major research
task in the field of single-cell genomics. Combining the mathemat-
ical model proposed in this study with advanced bioinformatics
methods may further the study of single-cell genomics.

In our theoretical framework, the assumption that the bulk
gene expression value is proportional to the mean value of the
single-cell gene expression profile is essential. In real data analysis,
the attention should be paid to whether this assumption holds. If
very rare subset has non-zero expression value, the analysis will
be susceptible to sampling bias. In such cases, it would be neces-
sary to obtain data from a larger number of cells to capture the
information of distribution. In addition, this assumption is also
an unstable for low expressed gene because gene expression quan-
tification by RNA-seq is unstable technically. Therefore, filtering
the low expressed genes are important step as preprocessing under
our theoretical framework.

The model described in this study could potentially be used in
theoretical fields. Extending the model to poly-genes will allow
more bulk expression analysis methods to be applied at the
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single-cell level. For example, gene co-expression network analysis
is performed extensively in transcriptome analysis where it is used
to infer biological processes and the roles of important transcrip-
tion factor genes in complex traits [37,38]. It is necessary to con-
sider at least two genes when using the model to investigate
correlations between gene expression. While gene co-expression
analysis has been used to clarify relationships in gene regulation,
it is unclear what exactly the identified relationships captures.
Another extension would be a model that considers spatial infor-
mation. When acquiring bulk gene expression data, not only infor-
mation on the shape of the distribution but also spatial information
is lost. In recent years, with the development of spatial genomics
technology, single cell transcriptome data can be obtained with
spatial information [39]. Since our framework works as a model
of cellular population heterogeneity in general, it is possible to
interpret cellular subset as spatial information. For example, it
can also be used as a model for spatial information by setting
fþðyÞ as the distribution on the specific region and f�ðyÞ as those
on another region. As candidate for future improvements, mathe-
matical models that simultaneously consider cellular subsets and
regional information can be considered.

On the application side, our mathematical model could be
applied, not only to the analysis of gene expression data, but also
to the analysis of arbitrary biomolecular expression data. For
example, in the epigenome layer, an increase in the variability of
DNA methylation intensity at the bulk level has been reported to
be associated with aging [40–43]. In recent years, single-cell
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expression data have been obtained for various omics layers. It is
considered that the concepts presented in this study will be useful
for reinterpreting molecular biology knowledge obtained at the
bulk level using single-cell data.

5. Conclusion

In this study, we present a mathematical model to clarify
single-cell expression profiles with cellular heterogeneity and bulk
gene expression data. The model considered the shift in gene
expression and changes in the proportion of cellular subsets. The-
oretical and simulation analyses showed that the DE analysis can
overlook significant changes in gene expression at the single-cell
level. In addition, it is revealed that DV analysis capture the feature
affected by different expression shifts for cellular subsets, changes
in the proportions of cells, and variations in single-cell distribution
parameters among samples. The model presented in this study
effectively clarifies the differences in interpretation of DE gene
and DV gene identified in bulk experiment and provides new
insights into the relationship between bulk data analysis and
single-cell data analysis.
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Appendix A. The detail of Eq. (6)

We calculated E½YD� � E½YC � using the parameters for the single-
cell expression distribution lþ;l� and r. We use the following
properties for the expected value of the sum and product of two
random variables, A and B.

E½Aþ B� ¼ E½A� þ E½B� ðA:1Þ
Further, if A and B are independent,

E½AB� ¼ E½A�E½B� ðA:2Þ
With the above formula, E½YD� � E½YC � can be expressed as follows.
Here, we let EC

þ; E
C
� and EC

r be equivalent to E½lþ�; E½l�� and E½r� in
control group, respectively.

E½YD� � E½YC �
¼ arE

C
r ðEC

þ þ DlþÞ þ ð1� arE
C
r ÞðEC

� þ Dl�Þ � EC
r E

C
þ � ð1� EC

r ÞEC
�

¼ EC
r ðar � 1ÞðEC

þ � EC
�Þ þ EC

r arDlþ þ ð1� EC
r arÞDl�

¼ ðEC
þ � EC

�ÞfEC
r ðar � 1Þ þ arE

C
r

Dlþ
ECþ�EC�

þ ð1� arE
C
r Þ Dl�

ECþ�EC�
g
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dþ and d� can be calculated as follows:

dþ ¼ Dlþ
ðECþ�EC�Þ

d� ¼ Dl�
ðECþ�EC�Þ

where, dþ and d� represent the normalized shift in the gene expres-
sion value corrected using the difference in the expected value of
the gene expression value between the subsets.

As a result, the following Eq. 6 can be derived:

E½YD� � E½YC � ¼ ðEC
þ � EC

�ÞðEC
r ðar � 1Þ þ arE

C
r dþ þ ð1� arE

C
r Þd�Þ
Appendix B. The detail of Eq. 8

The following properties of the variance and covariance proper-
ties of the two random variables A and B are used:

V ½Aþ B� ¼ V ½A� þ V ½B� þ 2Cov ½A;B� ðB:1Þ

The covariance can be expressed using expected values, as
follows:

Cov ½A;B� ¼ E½AB� � E½A�E½B� ðB:2Þ

The following equation holds for the variance of the product of
independent random variables.

V ½AB� ¼ V ½A�V ½B� þ E½A�2V ½B� þ E½B�2V ½A� ðB:3Þ

Using these formulas, the variance V ½Y� of the bulk expression value
can be expressed mathematically as follows, where we let
Eþ; E�; Er;Vþ;V� and Vr be equivalent to E½lþ�; E½l��; E½r�;V ½lþ�;
V ½l��;V ½r� respectively.

V ½Y� ¼ V ½rlþ þ ð1� rÞl� þ e�
¼ V ½rlþ þ ð1� rÞl�� þ V ½e�
¼ V ½rlþ� þ V ½ð1� rÞl�� þ 2Cov ½rlþ; ð1� rÞl�� þ V ½e�

ðB:4Þ

V ½rlþ�;V ½ð1� rÞl�� and Cov ½rlþ; ð1� rÞl�� can be transformed into
the following equations, respectively:

V ½rlþ� ¼ VrVþ þ E2
r Vþ þ E2

þVr

V ½ð1� rÞl�� ¼ V ½1� r�V� þ E½1� r�2V� þ E2
�V ½1� r�

¼ VrV� þ ð1� ErÞ2V� þ E2
�Vr

Cov ½rlþ; ð1� rÞl�� ¼ E½rð1� rÞlþl�� � E½rlþ�E½ð1� rÞl�Þ�
¼ E½rð1� rÞ�EþE� � ErEþE½1� r�E�
¼ ðEr � E½r2�ÞEþE� � ErEþð1� ErÞE�

¼ ErEþE� � E½r2�EþE� � ErEþE� þ E2
r EþE�

¼ EþE�ðE2
r � E½r2�Þ

¼ �EþE�Vr

As a result, from Eq. B.4, Eq. 8 can be derived as follows:

V ½Y� ¼ V ½rlþ� þ V ½ð1� rÞl�� þ 2Cov½rlþ; ð1� rÞl�� þ V ½e�
¼ VrVþ þ E2

r Vþ þ E2
þVr þ VrV� þ ð1� ErÞ2V� þ E2

�Vr

�2EþE�Vr þ V ½e�
¼ ðEþ � E�Þ2Vr þ E2

r Vþ þ ð1� ErÞ2V� þ ðVþ þ V�ÞVr þ V ½e�

https://github.com/DaigoOkada/ScBulkModel
https://github.com/DaigoOkada/ScBulkModel
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