1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Nat Ecol Evol. Author manuscript; available in PMC 2021 August 14.

-, HHS Public Access
«

Published in final edited form as:
Nat Ecol Evol. 2020 September ; 4(9): 1239-1246. doi:10.1038/s41559-020-1232-4.

Birth of a pathway for sulfur metabolism in early amniote
evolution

Marco Malatestal, Giulia Moril, Domenico Acquotti2, Barbara Campanini3, Alessio
Peracchil, Parker B. Antin4, Riccardo Percudanil”

1Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma,
Italy.

2Centro Interdipartimentale Misure “Giuseppe Casnati”, University of Parma, Italy.
SDepartment of Food and Drug, University of Parma, Italy.

4Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA

Abstract

Among amniotes, reptiles and mammals are differently adapted to terrestrial life. It is well
appreciated that terrestrialization required adaptive changes of vertebrate metabolism, particularly
in the mode of nitrogen excretion. However, the current paradigm is that metabolic adaptation to
life on land did not involve synthesis of enzymatic pathways de novo but repurposing of existing
ones. Here, by comparing the inventory of pyridoxal phosphate-dependent enzymes (PLPome) in
different amniotes, we identify /n sifico a pathway for sulfur metabolism present in chick embryos
but not in mammals. Cysteine lyase (CL) contains heme and PLP cofactors and converts cysteine
and sulfite into cysteic acid and hydrogen sulfide. A specific cysteic acid decarboxylase (CAD)
produces taurine while hydrogen sulfide is recycled into cysteine by cystathionine beta-synthase
(CBS). This reaction sequence enables the formation of sulfonated amino acids during embryo
development in the egg at no cost of reduced sulfur. The pathway originated around 300 million
years ago in a proto-reptile by CBS duplication, CL neofunctionalization, and CAD co-option.
Our findings indicate that adaptation to terrestrial life involved innovations in metabolic pathways
and reveal the molecular mechanisms by which such innovations arose in amniote evolution.

Amniotes split ~320 million years ago soon after their origin into two lineages that dominate
animal life on land: Sauropsida (Reptilia) including turtles, lizards, snakes, crocodiles,

and birds, and Synapsida whose extant representatives are mammals' 3. Before separation,
amniotes had developed few derived characters, most notably a protective and nourishing
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structure for embryo development®. After separation, reptiles and mammals evolved distinct
adaptations to terrestrial life>. These adaptations are less well understood at the molecular
level. It has long been known that the two amniote clades evolved patterns of nitrogen
elimination (uricotelism and ureotelism) suitable for their survival and development in
terrestrial ecosystems®7. Such modifications in nitrogen metabolism involved the use of

old pathways for a new purpose®?, supporting the notion that terrestrialization did not
require novel enzymes and metabolic pathways. Consistent with this view, no evidence has
been found for enzymatic pathways that originated in early amniote evolution19-12. Whole
genome comparisons, however, have revealed a number of genes that are not shared between
the two classes of amniotes -more than two thousand in the case of Gallus gallus versus
Homo sapiens'3. Whether these genetic differences correspond to innovations in molecular
processes and pathways is largely unknown. Conversely, there is evidence for metabolic
pathways present in sauropsids but absent in mammals for which the genes have not been
identified.

According to 35S radiotracer experimentsi413, chicken embryos synthesize sulfonated
amino acids through incorporation of sulfite into cysteine with release of H,S. During
development, this activity (cysteine lyase; EC 4.4.1.10) is first observed in germ layer cells
and increases with the differentiation of the yolk-sac endoderm?®. The presence of cysteine
lyase was confirmed in other sauropsids, but not in mammals!’. The partially purified
enzyme® was found to be dependent on pyridoxal 5’-phosphate (PLP). This activity,
however, has never been reported, even as a side reaction, for any known PLP-dependent
protein. In embryonated eggs, sulfite or sulfate 3°S is finally incorporated into taurinel415,
a sulfonated amino acid (2-aminoethane sulfonic acid) with a vital role in vertebrates
during development and adult life1%20, In mammals, taurine is synthesized in a pathway
starting with cysteine/cysteamine oxidation1921.22, However, during fetal development in
humans?3, cats?0, and mice24, taurine is provided by maternal transfer. In view of previous
evidence, a pathway for taurine biosynthesis involving cysteine lyase and oxidized sulfur
should exist in embryonated chicken eggs. The understanding of this pathway, however,
has been limited by the lack of knowledge of its molecular components. Such missing
pieces of information in metabolic reactions, or “pathway holes”25, represent a substantial
portion (10-30% depending on the organism) of pathway databases (e.g. Kegg: https://
www.genome.jp/kegg; Metacyc: https://metacyc.org). With the availability of complete
genomes, the genes responsible for such unassigned functions can be searched in a finite list
of sequences by bioinformatics. There are several bioinformatics methods for the prediction
of gene-trait associations2>26, Here we devised a procedure to limit the search space based
on information of the reaction mechanism and dependency on a particular cofactor.

To identify this pathway, we assumed that Gallus gallus has a gene encoding a PLP-
dependent enzyme that is absent in mammals. Enzymes that depend on PLP (the active
form of vitamin B6) are remarkable for their evolvability: they catalyze a wide variety

of reactions, but have a limited number of evolutionary origins, making it possible to
identify an organism’s PLPome /n sifico. We initially compared the Gallus gallus and Homo
sapiens PLPomes (Fig. 1a) with the genome analysis tool of B6db2. This side-by-side
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comparison (Extended Data Fig. 1) showed that these species encode only ~50 of the >300
known families contained in the database. Most of the proteins in the two amniotes have

a 1:1 orthologous relationship. However, 8 human and 4 chicken proteins do not have a
correspondence in the other species (Fig. 1a). One of the 4 proteins uniquely present in
Gallus (XP_015151050; predicted threonine aldolase) could be excluded as comparisons
that included other species revealed that this gene is generally present in mammals. Detailed
examination of the remaining proteins identified a single strong candidate for the sought
function. In the B6db classification, the XP_015156382 protein (gene: LOC418544) was
assigned to the same family as cystathionine beta-synthase (CBS), an enzyme catalyzing
B-replacement reactions similar to cysteine lyase. In particular, the main cysteine lyase
activity (reaction 1, Fig. 1b) resembles the serine hydro-lyase activity of CBS (reaction

4, Fig. 1c), while a secondary activity of cysteine lyase, i.e. formation of lanthionine
(reaction 2, Fig. 1b), resembles the main CBS activity (reaction 3, Fig. 1c). We used 3D
structures of experimentally validated CBS proteins and structural models of homologous
Gallus sequences to analyze the conservation of residues lining the active site. The protein
annotated as CBS (XP_015156364) had perfect conservation in this region, while the protein
annotated as CBS-like (XP_015156382) showed conservation of the catalytic lysine (K119),
but several non conservative substitutions of active site residues (Fig. 1d). Chicken embryo
gene expression data in the GEISHA database?8 suggested LOC18544 expression at an
extra-embryonic location consistent with the reported cysteine lyase activityl®. In view of
the evidence of the bioinformatics analysis we undertook the characterization of the protein
encoded by LOC418544. Based on the observations described below, we named this gene
cysteine lyase (CL).

The GgCL protein sequence has the same level of similarity with either GgCBS or HsCBS
(65.1% and 64.6% identity), less than the similarity between the two CBS sequences (75.3%
identity) (Extended Data Fig. 2a). Domain analysis predicts for GgCL an architecture
similar to CBS29, with a N-terminal heme-binding domain, a central PLP-binding domain,
and two C-terminal CBS repeats (Fig. 1e). As previously reported for CBS30, soluble
expression could be achieved with a truncated protein lacking the regulatory CBS repeats (aa
1-396, Fig. 1e). Recombinant GgCL was produced in £. coli and purified to homogeneity
as an orange protein (Extended Data Fig. 2b,c). Conservation of residues for heme and

PLP coordination (Extended Data Fig. 2a,d) suggests that CL has maintained the ability to
bind these cofactors. The absorbance spectra of GgCL showed the typical Soret peak of
heme-binding proteins (Extended Data Fig. 2e). The presence of PLP was not apparent in
the absorbance spectrum due to the dominant signal of heme. However, the fluorescence
emission spectrum upon excitation at 412 nm showed a peak centered at 510 nm (Extended
Data Fig. 2f) attributable to the ketoenamine tautomer of bound PLP31.,

We monitored spectrophotometrically the GgCL activity by trapping /in situ generated H,S
with lead acetate to form lead sulfide (PbS), a dark compound. H,S release was observed
with cysteine alone, and was much faster in the presence of sulfite (Extended Data Fig. 29),
suggesting that GgCL catalyzes both cysteine lyase reactions (see Fig. 1b). In the absence
of lead acetate, these reactions, albeit conducted with just micromoles of reagents, could
be perceived for their rotten egg odor. H,S is a volatile molecule with a role as gaseous
messenger in vertebrate32. The dependence of reaction velocity on substrate concentrations
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followed Michaelis-Menten kinetics (Extended Data Fig. 2h—i) with Fitting to the MM
equation gave a k,z value of 17.32 + 1.05 s™1 and K}, values of 12.75 + 2.16 mM for
cysteine and 0.096 + 0.018 mM for sulfite. Formation of the cysteine reaction product

was directly followed by time-resolved H NMR spectrometry. In the presence of excess
sulfite, cysteine was completely converted into cysteic acid (CA) (Fig. 1f), whereas a partial
conversion into lanthionine was observed in the absence of sulfite (Extended Data Fig.

2j). GgCL showed no activity with serine and homocysteine, or serine and H,S (Extended
Data Fig. 3a,b), indicating that it is unable to catalyze the CBS reactions (see Fig. 1¢c and
Extended Data Fig 3c). While incompetent in the B-replacement of serine, GgCL is able to
abstract the serine alpha proton (Extended Data Fig. 3d—¢), i.e. to complete the first step of
the reaction mechanism. By contrast, recombinant GgCBS was found to be able to catalyze
the CBS reactions, including the B-replacement of serine with H,S to form cysteine (Fig.

19).

The CA product of the CL reaction could be converted into taurine in a single step. This
reaction, which involves a-decarboxylation of an amino acid, is presumably catalyzed by a
PLP-dependent enzyme. Our PLPome comparison did not reveal a putative decarboxylase
uniquely present in Gallus. However, Gallus has a bona fide ortholog (XP_025001259; see
Fig. 1a and Extended Data Fig. 1) of mammalian cysteine sulfinic acid decarboxylase
(CSAD), a protein reportedly able to catalyze CA decarboxylation, albeit with lower
efficiency with respect to its CSA substrate33, The XP_025001259 protein, containing the
typical domain of PLP-dependent decarboxylases (Fig. 1h), was produced in £. colias a
PLP-bound protein, with a prevalent enolimine tautomer of the cofactor (Extended Data
Fig. 4a—-b). Surprisingly, not only the Gallus protein was able to efficiently catalyze CA
decarboxylation to taurine (Fig. 1i), but it was specific for CA, with CSA serving as a

poor substrate (Fig. 1j and Extended Data Fig. 4c). The presence of CSA and its reaction
product hypotaurine was inhibitory for CA decarboxylation (Extended Data Fig. 4d-f).

To acknowledge its substrate specificity, we propose to name CA decarboxylase (CAD)

the enzyme encoded by the Gallus gene annotated as CSAD based on its orthology34.

We confirmed the opposite preference for the CSA substrate in human CSAD in our
experimental conditions, and observed the same preference for CSA in a CSAD ortholog of
a basal vertebrate (Danio rerio) (Fig. 1k). No conserved differences in residues of the active
site cavity were found in GgCAD and sauropsidian orthologs with respect to CSAD proteins
from other vertebrates. However, two conserved substitutions (hydrophobic — hydrophilic)
in sauropsidian sequences were observed in residues located within 5 A from the active

site cavity (Extended Data Fig. 5a). Analysis of the activity with the two substrates in
single (Q467V and T470A) and double site-directed GgCAD mutants, showed that these
two substitutions contribute to the preference of the Gallus protein for CA (Extended Data
Fig. 5b,c).

To determine the expression of CL, CBS and CSAD genes during early stages of
embryogenesis, whole mount /n7 situ hybridization analyses were performed in chicken
embryos between 0.5 and 4 days of development (Hamburger-Hamilton [HH] stages 4—
24)35, At HH stage 4, CL expression was first detected in the extraembryonic endoderm

at the boundary of the area pellucida and area opaca (Fig. 2a). At HH stages 10 and 18,

CL mRNAs were broadly detected throughout the extraembryonic endoderm (Fig. 2b,c). At
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HH stage 18 and 24, widespread expression was also evident in the embryo proper (Fig.
2c,d). CBS expression was first detected at HH stage 4 weakly in the epiblast (Fig. 2¢).

At HH stage 10, CBS mRNAs were localized to the head region and in the intermediate
mesoderm, with strong expression in the primitive blood cells of the extraembryonic blood
islands (Fig. 2f). Broad CBS expression was evident throughout the embryo at HH stages 18
and 24 (Fig. 2g,h). CSAD expression was first detected at HH stage 4 in the extraembryonic
endoderm (Fig. 2i). Expression in extraembryonic endoderm persisted at HH stages 10 and
18 (Fig. 2j,k). At HH stage 24, CSAD mRNAs were detected throughout the embryo, with
higher levels of expression observed in liver and mesonephros (arrowhead and arrow, Fig.
2l). Inspection of the genomic regions containing CL, CBS, and CSAD genes revealed

that CL is adjacent to CBS in a head-to-tail orientation on the chromosome 1 (Fig. 2m).
Analysis of available RNA-seq profiles shows a prevalence of CBS over CL transcripts in
the aggregated dataset. Tissue-specific RNA-seq profiles show abundant CBS transcripts in
adult kidney and liver where CL transcripts are barely detected. Conversely, CL transcripts
are more abundant than CBS transcripts in adult duodenum (Fig. 2m). CSAD is located on
chromosome 33 adjacent to ZNF740 in a head-to-head orientation (Fig. 2n). The same
organization is also observed for the human gene (www.nchi.nlm.nih.gov/gene/51380),
supporting orthology. CSAD transcripts are present in several adult tissues and especially
abundant in kidney, liver, and duodenum (Fig. 2n).

By combining the evidence obtained with CL, CBS, and CAD proteins, one can define

the pathway that produces sulfonated amino acids in embryonated chicken eggs (Fig. 3).
The replacement of the thiol group of cysteine with sulfite by CL produces CA, which is
decarboxylated by CAD to produce taurine (Fig. 3, upper branch). When these proteins

are used together in the presence of sulfite, cysteine is quantitatively converted into taurine
with little transient accumulation of CA (Extended Data Fig. 6a). Analysis of CL orthologs
(see below) suggests that this pathway is universal in sauropsids. By contrast, the pathway
is absent in synapsids or other vertebrates, in which taurine is formed through cysteine
oxidation by cysteine dioxygenase (CDO) followed by CSA decarboxylation to hypotaurine
and hypotaurine oxidation922 (Fig. 3, lower branch). The sauropsidian pathway is shorter
and does not involve formation of hypotaurine and sulfur oxidation. The H»S produced by
the CL reaction can be recycled for the formation of cysteine from other amino acids (Fig.
3, dashed line). In particular, the formation of cysteine from serine and H,S is catalyzed

by CBS (see Fig. 1g), whose gene is expressed at early stages in the chicken embryo (see
Fig. 2e-h). CBS should be thus responsible for the serine hydrolase activity described in the
chicken embryo liver38. By adding in vitro GGCBS and serine to the other components of
the pathway, a similar consumption of cysteine (Extended Data Fig. 6B) produces twice as
much taurine (Extended Data Fig. 6¢) with complete consumption of serine (Extended Data
Fig. 6d).

Evolution of an enzyme able to catalyze the CL reaction has been key to the origin of
the metabolic pathway. We found bona fide CL orthologs only in sauropsids, suggesting
an origin of the protein family in this lineage. CL sequences form a separate group
within the vertebrate CBS tree (Extended Data Fig. 7). In the maximum likelihood (ML)
protein tree, the CL clade branches basal to teleostei (Extended Data Fig. 7a), while

in the ML nucleotide tree, CL branches basal to amniotes (Extended Data Fig. 7b).
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These phylogenetic reconstructions are complicated by differences in evolutionary rates

and possible long-branch attraction artifacts3” causing attraction of the fast evolving clade
(CL) towards the basal clades. Rate differences between CL and CBS are mainly due

to amino acid substitutions (Extended Data Fig. 7a,b). The ML tree obtained with the

third (~synonymous) codon position showed reduced differences in branch lengths and

the expected sister relationship of sauropsidian CBS and CL clades (Extended Data Fig.

7¢). The CBS-CL locus (see Fig. 2m) is present in conserved synteny in all sauropsidian
genomes and absent in non-sauropsids (Fig. 4). This suggests that CL evolved by tandem
duplication of CBS after the split of sauropsids and synapsids in the late Paleozoic, c.a.

300 MYA. After duplication, one copy retained the original function while the other
developed a novel catalytic ability through molecular changes involving one deletion and
five substitutions of conserved active site residues; this neofunctionalization process was
completed before separation of extant sauropsids (Fig. 4 and Extended Data Fig. 8). A
further step involved adaptation of CSAD ortholog to the new function (co-option, Fig. 4) by
promoting a secondary activity (CAD) to the main one. Interestingly, this tuning of substrate
specificity occurred with substitution of residues located externally to the active site (see
Extended Data Fig. 5). Based on evidence from extant genes and ancestral reconstruction,
all sauropsids are expected to have inherited and maintained the CL pathway for taurine
biosynthesis.

Discussion

Identification in this study of a route to taurine biosynthesis that originated in the common
ancestor of birds and reptiles reveals that early amniote adaptation to terrestrial habitats
-particularly embryonic development in the reptilian egg - also entailed the evolution of
novel enzymes and metabolic pathways. Knowledge of the requirement of a particular
cofactor (PLP) for the enzymatic activity has been key to the discovery of the CL gene

since it allowed restriction in the search to a limited number of proteins expected to use that
cofactor. The experimental characterization of the CL candidate provided clear-cut evidence
for its functional assignment. The identification of the cysteic acid decarboxylase (CAD)

as the enzyme responsible for the conversion of the CL reaction product into taurine has
been a surprising outcome of the experimental validation process. No such enzyme has

been previously described in literature. The Gallus ortholog of mammalian cysteine sulfinate
decarboxylase (CSAD) was tested in view of the reported ability of CSAD to decarboxylate
CA as secondary reaction. Unexpectedly, this protein revealed a strong preference for CA.
The evolutionary shift of CSAD towards a preference for the CL reaction product (see Fig.
1k) gives independent support to the physiological relevance of the CL reaction and pathway
for taurine biosynthesis. It further suggests that the CDO pathway (see Fig. 3) is less relevant
for taurine production in sauropsids despite maintenance of a CDO gene in their genomes.

While physiological roles of taurine in specific organs such as retina, brain, muscles, and
kidneys have been investigated only in mammals'?, there is evidence of the importance

of taurine in the formation of bile in sauropsids38-40. Only taurine conjugates are

found in chicken bile, owing to the inability of the Gallus bile acid-CoA:amino acid
N-acyltransferase (BAAT) enzyme to use glycine in substitution of taurine*!. During embryo
development, bile aids utilization of lipids, the major source of energy of the egg yolk
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and a source of metabolic water42. Fats are absorbed through the yolk sac membrane, by
specialized endodermal cells containing bile and lipases*3. Expression of the CL gene in the
extraembryonic endoderm during early development (see Fig. 2a—d) suggests that formation
of bile for fat digestion is a role of the taurine produced by this pathway. However, the

more pleiotropic expression of the CSAD gene, especially during later development (see
Fig. 2i-1), is consistent with a broader physiological role of taurine in different organs, such
as regulation of cellular osmolarity** and cytoprotection?®, as observed in mammals.

Given that taurine biosynthesis is required in the reptilian egg, a question is why sauropsids
evolved a different pathway. A possible advantage of the novel biosynthetic route is that it
does not require molecular oxygen. Although gas exchange is ensured by microscopic pores
in the egg shell, oxygen is limiting for the growth of chick embryos and critical for embryo
survival in reptile species that nest underground#®:47. The saving of reduced sulfur can be
an additional advantage of the CL pathway, as oxidized sulfur (SO327) is used instead of
cysteine oxidation to obtain sulfonated amino acids. In the chicken egg, also sulfate (SO42°)
is eventually incorporated into taurine by enzymatic conversion to sulfitel®. Sulfite and
sulfate are products of spontaneous oxidation of the sulfur present in the cell. Conversely,
animals are unable to reduce oxidized sulfur to sulfide for its incorporation into amino
acids. Therefore, in oviparous amniotes the reduced sulfur needed for embryo development
until hatching must be stored in the egg. This sulfur content is witnessed by features
observed in everyday use of unfertilized eggs: release of H,S during heating contributes to
the distinct egg flavour and is responsible for formation of FeS precipitates that turn green
the yolk surface of hard-boiled eggs*8. The CL pathway can provide a more efficient way
to synthesize taurine by finding a use for oxidized sulfur that otherwise would be a waste
-likely toxic#® - product of cellular metabolism. In addition, functional and phylogenetic
links between CBS and CL support the existence of a reduced sulfur cycle in the reptilian
egg allowing the reuse of H,S in amino acids (see Fig. 3). Origin and maintenance of this
pathway in the saupsidian lineage provide evidence that the need to complete development
out of water in a self-contained life-supporting structure imposes a selective pressure on
embryo metabolism for efficient use of resources.

In silico subtraction of PLPomes

Gallus gallus and Homo sapiens PLPomes were compared side-by-side using the “whole
genome analysis” tool of Bédb (http://bioinformatics.unipr.it/B6db) with the option “exclude
isoforms”. To facilitate identification of common and unique genes, the results were visually
inspected with the help of the “highlight BRH” option on the results page painting in

color entries that are Best Reciprocal Hits (BRH) in the two species. The comparison was
extended to other sauropsids (e.g. Anolis carolinensis) and mammals (e.g. Mus musculus) to
infer the conservation of unique genes in their respective taxonomic classes.

To determine active site conservation of the identified Gallus genes, substrate-binding
cavities of human CBS (PDB: 4L3V) and CSAD (PDB: 2JIS) were determined through
cavity computation by CAVER Analyst 2.0 BETA with Large Probe and Probe (respectively.
3.00 and 2.50 A in CBS, and 4.00 and 2.80 in CSAD). Residues corresponding to the cavity
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were highlighted in multiple alignments (see Extended Data Fig. 2A, 5A, and 8B) using
Espript ver. 3.0 (http://espript.ibcp.fr).

Molecular phylogeny

Protein sequences were downloaded from NCBI and aligned with Clustalw 2.1. To obtain
coding sequence (CDS) alignments, CDS were extracted from the corresponding mRNA
sequences using ORFfinder 0.4.3 with the options “-s 0 -ml 1000 -strand plus -outfmt

17, and aligned based on amino acid alignment with macse v2.03. Phylogenetic trees
were constructed with RAXML v. 7.7.8 using the general time reversible (GTR) amino
acid substitution matrix with optimization of substitution rates and GAMMA model of
rate heterogeneity. The partitioning of codon positions was specified in a partition file to
generate separated alignment sets for the first and second codon positions and third codon
position using the option ‘-f s’. Maximum-likelihood reconstruction of ancestral character
states including insertions/deletions®! was obtained with the FastML web server (http:/
fastml.tau.ac.il/) based on extant CBS and CL sequences and a phylogenetic tree assuming
CBS duplication in the sauropsidian ancestor.

Embryo Collection and In Situ Hybridization

Fertile chicken eggs (Hy-Line, lowa) were incubated in a humidified incubator at 37.5

°C for 0.5 to 5 days. Embryos were collected into chilled chick saline (123 mM NacCl),
removed from the vitelline membrane and cleaned of yolk. Extra-embryonic membranes
and large body cavities (brain vesicles, atria, allantois, eye) were opened to minimize
trapping of the in situ reagents. Embryos were fixed overnight at 4°C in freshly prepared
4% paraformaldehyde in PBS, washed twice briefly in PBS plus 0.1% Triton X-100

then dehydrated through a graded MEOH series and stored at —20 °C overnight in 100%
MEOH. cDNA templates for generating all antisense RNA probes were obtained by reverse
transcriptase-polymerase chain reaction using pooled RNA from embryos between HH
stages 4 and 30. Primer sequences were designed using the mRNA sequence in the

NCBI database. Embryo processing, antisense RNA probe preparation and whole-mount
ISHs were performed as described®2. Experiments with fertilized eggs were conducted in
accordance with federal agency guidelines. A detailed protocol is available for download at
http://geisha.arizona.edu.

Plasmid Construction

For construction of GgCL expression plasmids, the LOC418544 (NCBI GenelD:
418544) CDS sequence (XM_015300896) inserted into pcDNA3.1+/C-(K)DYK vector
was purchased from GenScript (USA Inc.). The sequence was then amplified using
CBSL_Fw, CBSL_Rev primers (native GgCL) or CBSL_Fw, CBSL_short_Rev (truncated
GgCL) by PCR, using Phusion DNA polymerase, and inserted into pET-28b expression
vector at Ndel/Xhol sites, generating respectively pET-28b-native GgCL and pET-28b-
truncated GgCL.. Details of the designed primers are reported in supplementary Table 1.
A first transformation of the constructs into £. coli XL1Blue strain by electroporation
was performed for plasmid amplification. Plasmids were extracted by alkaline lysis and
transformed into £. co/iBL21 Codon Plus strain by electroporation. For construction
of GgCAD expression plasmids, GgCAD wild-type sequence (NCBI GenelD: 426184)
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and mutated sequences (Q467V, T470A, Q467V-T470A) inserted into pET-28b expression
vector were purchased from GenScript (USA Inc.), generating respectively pET-28b-
GgCAD, pET-28b-GgCAD_Q467V, pET-28b-GgCAD_T470A, pET-28b-GgCAD_Q467V-
T470A. The constructs were transformed directly into £. co/iBL21 Codon Plus by
electroporation. The authenticity of all constructs was verified by sequence analysis.

Protein expression and purification

Protein expression was performed inoculating a single colony of every clone in a Liter of
autoinducing LB broth obtained by adding 0,5 g/L glucose and 2 g/L lactose to standard
LB medium. Cells were grown at 30°C for 16h (GgCL, GgCBS), or at 20°C for 16h after
a pre-induction phase at 30°C for 8h (GgCAD). Cell pellets were resuspended in 50 mL of
Lysis Buffer (NaH,PO4 20 mM pH 7.0, NaCl 100 mM, 20 uM PLP, 50 mM imidazole),
sonicated (1s on/off alternatively at 30 W for 30 min) and centrifuged (14000 rpm for 40
minutes). Supernatant was loaded onto a 50 mL Superloop of AKTA pure system FPLC
and purified by Affinity Chromatography (AC) using HisTrap 5 mL FF column. Proteins
were eluted with AC Elution Buffer (NaH,PO,4 20 mM pH 7.0, NaCl 100 mM, 20 uM
PLP, 500 mM imidazole). GgCL fractions were collected and diluted in 50 mL of Loading
Buffer (MES 20 mM pH 6.5, 20 uM PLP) for Cation Exchange Chromatography (CIEX)
using HiTrap SP FF column, and eluted in 35 mL gradient of CIEX Elution Buffer (MES
20 mM pH 6.5, 1M NacCl, 20 uM PLP). Protein fractions (see Extended Data Fig. 2b) were
collected and concentrated by Vivaspin™ centrifugation for further purification steps. Size
Exclusion Chromatography (SEC) was performed with Superdex 200 column using SEC
Buffer (NaH,PO4 20 mM pH 7.0, NaCl 100 mM) used as well as Storage Buffer. GgCAD
fractions after AC were collected and diluted in 50 mL of Loading Buffer (NaH,PO4 20
mM pH 8.0, 20 uM PLP) for Anion Exchange Chromatography (AIEX) using HiTrap Q FF
column, and eluted in 35 mL gradient of AIEX Elution Buffer (NaH,PO4 20 mM pH 8.0,
1M NaCl, 20 uM PLP).

UV-Visible and fluorescence spectroscopy

JASCO spectrophotometer was used to measure absorbance spectra of purified enzymes
and for determination of kinetic parameters of GgCL. Eluted fractions of enzymes

were measured for protein quantification. For the quantification of GgCL, absorbance

at 428 nm (Soret peak) was measured, using an extinction coefficient of 84900 M1

cm~1 previously determined for /sCBS®3. For the quantification of different CSAD/CAD
proteins, absorbance at 280 nm was measured, using molar extinction coefficients computed
with ProtParam (57410 M~1 cm™1 GgCAD, 61880 M1 cm™1 HsCSAD, 72880 M~ cm™1
DrCSAD).

H,S release due to CL reactions was followed spectrophotometrically at 390 nm as
formation of PbS using the previously calculated 54 extinction coefficient of 5500 M-1
cm-1. Reaction mixture were prepared in a 1 mL plastic cuvette with 50 mM NaH,PO,4 pH
7.0, different concentrations of cysteine and sulfite, and 0.4 mM of lead acetate; the reaction
was started by addition of 1 UM GgCL. Velocity with different concentrations of cysteine
and sulfite were taken at maximum speed reached by the enzyme, that did not correspond to
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the initial velocity of the kinetic, due to an appreciable delay at start (see Extended Data Fig.
2g). Data were fitted to the Michaelis-Menten equation using SigmaPlot 14.0.

The presence of PLP bound to the protein was assessed by fluorescence spectroscopy®.
Fluorescence measurements were performed on a FluoroMax-3 spectrofluorometer
(HORIBA Jobin Yvon, Kyoto, Japan) equipped with a thermostatic bath, set at 20 °C.
GgCL concentration was 40 uM in 20 MM NaH,PO4 pH 7.0, 100 mM NaCl; GgCAD
concentration was 20 UM in 20 mM NaH,PO,4 pH 8.0, 100 mM NacCl. Excitation and
emission slits width was set to 7 nm and the integration time to 0.6 seconds. GgCL emission
spectrum was recorded between 425 nm and 600 nm using an excitation wavelength of

412 nm. GgCAD emission spectrum was recorded between 355 nm and 500 nm using an
excitation wavelength of 340 nm. The spectra were corrected for buffer contribution.

NMR Spectroscopy

1H NMR spectra were acquired with a JEOL ECZ600R spectrometer in no spinning mode.
Samples were loaded in Wilmad ECONOMY NMR tubes, solved in 600 ul of H,0:D,0
(9:1). For single spectra measurement (i.e. substrates spectra tg) we used simple DANTE
presat sequence for H,O suppression. To monitor the reaction kinetics, we use a kinetic
array of DANTE presat sequence with 600 min periods for 1h, 2h, 3h depending on reaction
speed. NMR experiments were performed with 50 mM NaH,PO,4 pH 7.0 to avoid signals

of organic buffers in IH NMR spectra. The time-courses of the CAD reaction at a given
initial substrate concentration were fitted with the integrated Michaelis-Menten equation®°
using the R software. The R script containing the equation and commands (SM.tar.gz)

used to produce the fitting shown in Fig 1j is provided in the dataset deposited at the
Harvard dataverse repository (https://doi.org/10.7910/DVN/UYAUBO). Specific activities of
CSAD/CAD enzymes and mutants were determined by quantifying the reaction products
obtained with CSA and CA substrates after 5 minutes of reactions stopped with 1 M HCI.
All the spectra and kinetics were collected at 25°C.
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Extended Data

Activity
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Homo sapiens
E-value
0
4.2E-295
NP_001159828.1 2.4E-277
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NP_954635.1 1E-268
2.2E-237
7.4E-299
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0
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1.2E-305
3.4E-275
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NP_005300.1
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0.00000052
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Extended Data Fig. 1. In silico subtraction of chicken and human PL Pomes.
Comparison of the complete set of PLP-dependent enzymes (one isoform per gene) in

Gallus gallus and Homo sapiens as classified by B6db. Orthologous proteins (BRH test)
are colored blue. Gallus proteins without human orthologs are in bold. E-values indicate
significance of the protein alignments with family-level Hidden Markov Models.
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Extended Data Fig. 2. GgCL isaheme and PLP protein with cysteine lyase activity.
a, Multiple alignment of H. sapiens CBS (HsCBS) with G. gallus CBS and CL proteins

(GgCBS, GgCL). Filled circles indicate residues that recognize heme (red), PLP (yellow)
and serine (white) in the holo CBS structure (PDB code 3PC4). Conserved residues based on
the alignment of 8 CL and 22 CBS sequences from vertebrates are shaded in black. Green
shading indicates conserved differences between CBS and CL groups. b, Photograph of

the FPLC collector after cation exchange, showing the vivid orange color of GgCL protein
fractions (upper panel); selected fractions were subjected to SDS-PAGE electrophoresis

and stained with Coomassie Brilliant Blue (lower panel). c, Gel filtration chromatogram
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(Superdex 200) with dual wavelength detection (A = 280, 428 nm), showing a molecular
weight corresponding to GgCL monomer. d, GgCL predicted interactions with heme (left)
and PLP (right) are shown with residues conserved in the alignment of CBS/CL proteins
highlighted in colors. e, Absorbance spectrum of recombinant GgCL (16.5 pM) in NaH,PO4
(20 mM), pH 7.0. f, Fluorescence emission spectrum (excitation: 412 nm) of recombinant
GgCL (22 pM) in NaH,POy4, pH 7.0. g, Kinetics of H,S release by the CL reaction
monitored spectrophotometrically at 390 nm in 50 mM NaH,POy, pH 7.0 with GgCL (1
uUM), lead acetate (0.4 mM), cysteine (5 mM) in the absence (dashed line) or in the presence
of Na,SO3 (5 mM, solid line). h-i, Non linear fitting to the Michaelis Menten equation of
the dependency on substrate concentrations of the initial reaction velocity of GgCL (1 uM)
with fixed (h) Na,SO3 (5 mM) and (i) cysteine (40 mM). Data are means + SDV of three
independent experiments. j, Time-resolved 1H NMR spectra of cysteine (10 mM) in the
presence of GgCL (1 uM), showing partial conversion into lanthionine.
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Extended Data Fig. 3. Absence of CBS activity in GgCL .
a, Time-resolved 'H NMR spectra of 5 mM of serine (atoms labeled in blue) and 5

mM of DL-homocysteine (atoms labeled in red) in the presence of GgCL (1 pM). b,
Time-resolved IH NMR spectra of serine (5 mM) and Na,S (5 mM) in the presence of
GoCL (1 uM). ¢, Time-resolved IH NMR spectra of 5 mM of serine (atoms labeled in
blue) and 10 mM of DL-homocysteine (atoms labeled in red) in the presence of GgCBS (4
UM), showing complete consumption of serine and partial conversion of DL-homocysteine
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in cystathionine (atoms labeled in green) due to the stereospecific enzymatic reaction. d,
Hydrogen-Deuterium exchange of serine alpha proton catalysed by GgCL (1 uM) in 95%
D,0. Spectra were superimposed at time 0’ (red), 60 (green), 260’ (black). e, 1H peak
integration of serine Ca proton is plotted in the interval 0’-260’.
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Extended Data Fig. 4. Gallus CSAD encodes a PL P-dependent cysteic acid decar boxylase (CAD).
a, Absorbance spectrum of GgCAD in 20 mM NaH,PO4 pH 8.0 and 100 mM NaCl; The

absorbance region of PLP tautomers (enolimine 340 nm, ketoenamine 415 nm) is shown in
the inset. b, Fluorescence emission spectrum of PLP enolimine tautomer upon excitation at
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340 nm. ¢, Time-resolved 1H NMR spectra of cysteine sulfinic acid (5 mM) in the presence
of GgCAD (1 uM), showing partial formation of hypotaurine (inset). d, Time-resolved 1H
NMR spectra of 5 mM of cysteic acid (atoms labeled in blue) and 5 mM of hypotaurine
(atoms labeled in red) in the presence of GgCAD (1 uM), showing slight inhibition of CAD
activity. e, Time-resolved 1H NMR spectra of 5 mM of cysteic acid (atoms labeled in blue)
and 5 mM of cysteine sulfinic acid (atoms labeled in red) in the presence of GgCAD (1
M), showing strong inhibition of CAD activity. f, IH peak integration of CA signals in the
presence of GgCAD and hypotaurine (CA + Hyp) or cysteine sulfinic acid (CA + CSA).
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Extended Data Fig. 5. Analysis of Gallus CSAD site-directed mutants.
a, Multiple alignment of CSAD orthologs from (1) non-sauropsids and (2) sauropsids.

Conserved differences between groups are shaded in green. Residues that recognize PLP
(yellow) or line the active site cavity (white) or are within 5 A from the active site cavity
(blue) in the human holo CSAD structure (PDB code 2J1S) are indicated by filled circles;
positions of site-directed mutants are indicated by red arrows. b, Specific activities of
wild-type (WT), single (Q467V, T470A), and double (Q467V/T470A) GgCAD mutants with
CA and CSA substrates. ¢, IH NMR spectra showing decarboxylation activity of wild-type
(WT), single (Q467V, T470A) and double (Q467V-T470A) mutants in the presence of
cysteic acid (right) and cysteine sulfinic acid (left) after 5° of reaction stopped with 1M HCI.
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Extended Data Fig. 6. One-pot enzymatic synthesis of taurine from cysteine.
a, Time-resolved 1H NMR spectra of cysteine (5 mM) and sulfite (7 mM) in the presence

of recombinant GgCL (1 uM) and GgCAD (1 uM) proteins. b-d, 1H peak integration of (b)
cysteine, (c) taurine, and (d) serine NMR signals in the same reaction conditions as (a) in the
absence (black dots) or in the presence (blue dots) of serine (5 mM) and GgCBS (4 uM).
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Extended Data Fig. 7. Phylogeny of CBS and CL proteinsin vertebrates.
Unrooted maximum-likelihood (ML) trees obtained from protein and nucleotide alignments

of 35 CBS and CL sequences from 26 vertebrate species. Protein and nucleotide accession
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numbers corresponding to tree tip names are indicated; sauropsidian sequences are shaded in
blue. Scale bars represent the number of calculated substitutions per site. a, Protein ML tree
(436 alignment patterns) showing branching of the CL clade basal to teleostei. b, Nucleotide
ML tree (1277 alignment patterns) showing branching of the CL clade basal to amniotes. c,
Third codon position ML tree (613 alignment patterns) showing branching of the CL clade

within sauropsida.
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Extended Data Fig. 8. Ancestral substitutionsin

CL neofunctionalization.

a, Evolutionary dendrogram used in ancestral state reconstructions assuming split of

amniote last common ancestor (Amniote; N2)

into two lineages before the gene duplication

(GD; N12) leading to saurospidian CL (sCL; N13) and CBS (sCBS; N21). Sequence
identifiers are as in Figure S7. b, Multiple alignment of reconstructed ancestral sequences
corresponding to nodes N2, N12, N13, and N21. Active site residues are indicated by
blue triangles. Positions with Identical residues in the four nodes and human CBS are
shaded gray. Numeration is in accordance with the human CBS sequence. c, Character
state probabilities for active site residues substituted in GgCL showing high probability of

fixation before the split of extant sauropsids.
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Fig. 1. Identification of the genesinvolved in sulfonated amino acids biosynthesisin Gallus gallus.
a, Venn diagram of the in silico comparison of Gallus gallus and Homo sapiens

PLPomes summarizing the numbers of shared and unique genes. Accession numbers of

the proteins identified as cysteine lyase (CL), cystathionine beta-synthase (CBS), cysteic
acid decarboxylase (CAD) are indicated. b, Reactions catalyzed by CL: synthesis of
cysteate (1) and synthesis of lanthionine (2). c, Reactions catalyzed by CBS: synthesis of
cystathionine (3) and conversion of serine into cysteine via addition of hydrogen sulfide (4).
d, Conservation of the catalytic lysine (K119) and non conservative substitutions of active
site residues of Gallus gallus CBS-like (XP_015156382). Numeration is according to the
human CBS sequence. e, GgCL and GgCBS domain composition; the dashed line indicates
gene truncation for recombinant protein expression in GgCL (K396) and GgCBS (5427). f,
Time-resolved IH NMR spectra of cysteine (5 mM) in the presence of Na,SO3 (7 mM) and
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GoCL (1 pM), showing complete conversion into cysteic acid. (g) Time-resolved IH NMR
spectra of serine (5 mM) in the presence of Na,S (30 mM) and GgCBS (4 uM), showing
complete conversion into cysteine. h, GgCAD domain composition. (i) Time-resolved 1H
NMR spectra of cysteic acid (5 mM) in the presence of GgCAD (1 uM), showing complete
conversion into taurine. j, Example of GgCAD kinetics in the presence of cysteic acid (CA)
or cysteine sulfinic acid (CSA); the black curve is the fitting of the experimental points with
the integrated Michaelis-Menten equation®® with Ky = 6.95 + 3.23 mM, kgt = 10.54 + 3.46
s71. k, Specific activities of Gallus, Homo, and Danio CSAD orthologs with CA or CSA
substrates. Data are means = SDV of three independent experiments.
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Fig. 2. CL, CBS, and CSAD genes are expressed since early stages of embryogenesis.
a-d, /n situ hybridization analysis of CL expression in chick embryos at Hamburger-

Hamilton developmental stages 4, 10, 18, and 24, sorted from left to right. e-h, /n situ
hybridization analysis of CBS expression at HH stages 4, 10, 18, and 24, sortexd from

left to right. i-l, /n situ hybridization analysis of CSAD expression at HH stages 4, 10,

18, and 24, sorted from left to right. Scale bars: 1mm (a-c, e-g, i-k) 5mm (d, h, i). m,
NCBI Sequence-viewer representation of the genomic region on Gallus gallus chromosome
1 (annotation release 104) encompassing the CBS and CL genes. Gene exon structure

is represented by green segments. Blue bars represent RNA-seq exon coverage (log2
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scaled) for aggregate, kidney (SAMEA2201372), liver (SAMEA2201470), and duodenum
(SAMNO03376186) datasets. n, NCBI Sequence-viewer representation of the genomic region
on Gallus gallus chromosome 33 encompassing the CSAD gene; tracks are as in panel m.
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Fig. 3. The CL pathway for taurine biosynthesis.
The identified pathway for sulfonated amino acids biosynthesis is shown in comparison with

the known pathway for taurine biosynthesis. The dashed line shows recycle of hydrogen
sulfide into cysteine catalyzed by CBS. Cysteine and sulfite sulfur atoms are denoted in
different colors to highlight the different sources of sulfur. Enzymes are indicated by EC
numbers (if any) and protein abbreviations as follows: cystathionine beta-synthase (CBS),
cysteine lyase (CL), cysteic acid decarboxylase (CAD), cysteine dioxygenase (CDO),
cysteine sulfinic acid decarboxylase (CSAD), flavin-containing monooxygenase 1 (FMOL).
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Fig. 4. Origin and conservation of the CL pathway in birdsand reptiles.
Key evolutionary events in the origin of the metabolic pathway are mapped on a vertebrate

chronogram. Phylogenetic relationships and divergence times are from TimeTree 1; empty
nodes correspond to unresolved relationships in NCBI taxonomy. The dashed line indicates
uncertainty in dating the events along the branch and within the temporal boundaries
delimited by blue segments. The configuration of the CBS locus in the different species is
represented at the terminal nodes, showing conservation of CBS-CL synteny in sauropsids.
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