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Abstract: Reconfigurable and multi-standard RF front-ends for wireless communication and sensor
networks have gained importance as building blocks for the Internet of Things. Simpler and
highly-efficient transmitter architectures, which can transmit better quality signals with reduced
impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture,
namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers
and frequency up-converters, and their resulting distortions, leading to an improved signal quality.
In this work, an augmented memory polynomial-based model for the behavioral modeling of such
mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been
carried out in order to validate the accuracy of the proposed modeling strategy. The performance
of the proposed model is evaluated using normalized mean square error (NMSE) for long-term
evolution (LTE) signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for
digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively.
Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE
using digital and analog combining, respectively. For further validation of the proposed model,
amplitude-to-amplitude (AM-AM), amplitude-to-phase (AM-PM), and the spectral response of the
modeled and measured data are plotted, reasonably meeting the desired modeling criteria.

Keywords: AM-AM; AM-PM; amplitude modulator; behavioral modeling; mixer-less transmitters;
NMSE; variable gain amplifiers

1. Introduction

The transmitter is the key block in any wireless communication and sensor network. It performs
the functions of digital modulation, frequency up-conversion, and amplification of the signal before
transmitting it through the antenna to a remote receiver. Various transmitter topologies have been
proposed in the literature, such as super-heterodyne, direct conversion, and low IF [1–4], with the
aim of improving the quality of the transmitted signal. The direct conversion transmitter is the most
commonly used topology due to the ease of implementation and its simplicity in architecture as it only
uses one frequency up-conversion stage as compared to the aforementioned counterparts.

In order to cater to the needs of different standards, the evolution of modern communication
signals has ignited the quest for multi-standard transmitters. Thus, reconfigurabilty, integration,
and cost efficiency are the prime parameters to develop an ideal software-defined radio (SDR) [5].
Multi-standard signals are subject to various distortions when passed through different stages
of the transmitter due to the imperfections in the various components present in the transmitter.
Several block-based behavioral models, such as Hammerstein–Wiener, augmented Weiner, augmented
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Hammerstein, and memory polynomial, are proposed for modeling the non-linear distortions in the
transmitters [6–12] introduced by the power amplifiers during the amplification of the signal.

These methods, however, do not consider the impairments introduced by the modulator, such as
in-phase and quadrature-phase (I/Q) imbalance and DC offset, and only mitigate the non-linear
distortions introduced by power amplifiers (PAs). Apparently, in the literature, several models such
as, Volterra series-based model, neural network-based models, and variations of memory polynomial
models, have been proposed, which successfully model and mitigate the impairments introduced by
modulator and power amplifiers [13–18]. However, this comes at the cost of complexity and higher
processing rates.

Evidently, impairments introduced by mixers are critical and need to be catered. Transmitter
architecture would be much simpler if the use of mixers is avoided altogether. Recently, in order to
avoid the impairments of the modulator, a new mixer-less polar transmitter topology was proposed [19].
The mixer-less polar transmitter, as shown in Figure 1, is implemented using a variable gain amplifier
(VGA) and a phase shifter. The envelope signal is generated digitally at the baseband and fed to the
gain control input pin of the VGA, which recreates the envelope signal at the RF output, while the
phase shifter translates the baseband signal to RF. Ultimately, the phase-modulated RF signal is
combined with the envelope of the VGA. Mixer-less polar transmitters have various advantages over
conventional transmitters, such as the omission of bulky filters and reduced complexity. However,
the phase shifter has issues with noise and affects the quality of the RF signal produced at its output.
Additionally, as suggested in [20], the phase variations exhibited by the phase shifter when driven
with a constant voltage could not be modeled and compensated for.
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Figure 1. Block diagram of the mixer-less polar transmitter. 
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Later, the mixer-less branch-by-branch three-way amplitude modulator-based transmitter was
proposed [20]. This topology avoided the use of a phase shifter and, thus, used three VGAs as envelope
modulators. A complex envelope of the signal was decomposed into three envelope components using
a three-way decomposition algorithm. The VGAs translated these three baseband components to
the carrier frequency. The three envelopes produced at the output of the VGAs were then combined
digitally before being transmitted. The method proposed in [20] also provides a reverse behavioral
model for the proposed architecture. The authors employ a memory polynomial model for each
branch of the transmitter to linearize each of its three branches. However, there are certain drawbacks
associated with such a modeling strategy, such as both the individual input and output of each branch
are required to model the system. This, in practice, is not effective since the splitter and combiner are
embedded and have to be removed to gain access to individual inputs/outputs. Additionally, time
delay and phase adjustments have to be performed individually in each branch, making the process
laborious and complex as separate time adjustment routines have to be performed for each branch of
the transmitter. Moreover, [20] reports the use of a digital splitter and combiner, which is not close to
a practical system implementation.

These disadvantages, however, can be mitigated if a model of the complete mixer-less three-way
amplitude modulator-based transmitter using analog splitters and combiners is used, thus imitating
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an actual system. This forms the motivation behind the proposed solution [21]. In order to model the
magnitude and phase non-linearities introduced in all the three braches by three VGAs in a single
block, a new augmented memory polynomial model is proposed. The performance of the modified
memory polynomial is tested using different bandwidths of the long-term evolution (LTE) signal.

This paper is organized as follows: Section 2 introduces the mixer-less three-way amplitude
modulator-based transmitter and proposed decomposition algorithm; Section 3 details the proposed
forward behavioral model for the mixer-less three-way transmitter architecture; Section 4 describes the
implementation of the transmitter architecture with analog and digital combining; Section 5 presents
the measurement results; and Section 6 concludes the paper.

2. The Mixer-Less Three-Way Amplitude Modulator-Based Transmitter Architecture

2.1. The Mixer-Less Three-Way Amplitude Modulator-Based Transmitter

The high level schematic diagram of the three-way transmitter architecture is shown in Figure 2.
It consists of three VGAs which work as envelope modulators, as explained in [20]. The local oscillator
(LO) signal is fed to a three-way power divider. The three outputs of the power divider are further
rotated by 0◦, 120◦, and 240◦ using phase shifters. The 0◦ LO phase-shifted signal is fed to the RF input
port of VGAx, the 120◦ phase rotated LO signal is fed to the RF input port of VGAy, and the 240◦

phase-shifted LO signal is fed to the RF input port of VGAz. Xvoltage, Yvoltage, and Zvoltage are
control voltages which are generated in the digital signal processor (DSP) by decomposing the LTE
signal and mapping them into voltages. These control voltages act as amplitude modulating signals to
the LO. Amplitude-modulated signals are obtained at the RF output port of each VGA, which is further
combined by a three-way power combiner to produce the complex RF output signal. The passive
components, such as the power combiner/divider and phase shifters, used are broadband. Moreover,
VGAs operate over a wide RF bandwidth and do not have any spurious emissions; hence, no filtering is
required in this distinct transmitter architecture. In a nutshell, this transmitter translates the baseband
I/Q signal to RF without using mixers, filters, phase modulators, and up-convertor circuits.
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Figure 2. High-level block schematic of the mixer-less three-way amplitude modulator-based 

transmitter. 

2.2. Signal Decomposition (Three Coordinate) 

A complex I/Q signal can be represented in polar format (r, θ) as: 
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Figure 2. High-level block schematic of the mixer-less three-way amplitude modulator-based transmitter.

2.2. Signal Decomposition (Three Coordinate)

A complex I/Q signal can be represented in polar format (r, θ) as:

r(n) =
√

I(n)2 + Q(n)2 (1)
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θ(n) = tan−1
(

Q(n)
I(n)

)
(2)

where r(n) and θ(n) are the magnitude and phase of the signal, respectively. A signal of the form
Sin(n) = r(n)ejθ (n) can be decomposed into three positive real components x(n), y(n), and z(n) with a phase
difference of 120◦ between them according to the law of sines, as suggested in [20]. From here on,
the sample index n has been removed for simplicity. For different values of θ, Sin can be decomposed into
x, y, and z components. Here, x is a vector that consists of xin1, xin2, and xin3 based on the coordinates
in which the present sample lies. For different values of θ, Sin can be decomposed into x, y, and z
components such that:

Sin = xin,1 + yin,1ej120◦ + zin,1ej240◦ (3)

When 0◦ < θ < 120◦, Sin can be decomposed as:

xin,1 = A1Sin + B1Sinej120◦ + C1Sinej240◦ (4)

yin,1 = A2Sin + B2Sinej120◦ + C2Sinej240◦ (5)

zin,1 = 0 (6)

where values of A1, B1, C1, A2, B2, and C2 are depicted in Table 1. Note that the zin,1 component is zero
in this coordinate as the signal lying in this sector will only have the x- and y-components and, hence,
the coefficients related to zin,1 are zero, as shown in Table 1.

Table 1. Value of constants when 0◦ < θ < 120◦.

Constants for xin,1 Constants for yin,1 Constants for zin,1

A1 =
sin3(θ − 120◦)

sin3(θ − 120◦)− sin3(θ)
A2 =

− sin3(θ)

sin3(θ − 120◦)− sin3(θ)
A3 = 0

B1 =
sin2(θ − 120◦) sin(θ)

sin3(θ − 120◦)− sin3(θ)
B2 =

− sin2(θ − 120◦) sin(θ)
sin3(θ − 120◦)− sin3(θ)

B3 = 0

C1 =
sin(θ − 120◦) sin2(θ)

sin3(θ − 120◦)− sin3(θ)
C2 =

− sin(θ − 120◦) sin2(θ)

sin3(θ − 120◦)− sin3(θ)
C3 = 0

Similar decomposition can be achieved for other ranges of θ. When 120◦ < θ < 240◦, Sin can be
decomposed as:

xin,1 = 0 (7)

yin,1 = A5Sin + B5Sinej120◦ + C5Sinej240◦ (8)

zin,1 = A6Sin + B6Sinej120◦ + C6Sinej240◦ (9)

where values of A5, B5, C5, A6, B6, and C6 are depicted in Table 2. In this coordinate, the xin,1 component
and its corresponding coefficients are zero as the signal lying in this sector will only have the y- and
z-components.

Similarly, when 240◦ < θ < 360◦, Sin can be decomposed as:

xin,1 = A7Sin + B7Sinej120◦ + C7Sinej240◦ (10)

yin,1 = 0 (11)

zin,1 = A9Sin + B9Sinej120◦ + C9Sinej240◦ (12)

where the values of A7, B7, C7, A9, B9, and C9 are depicted in Table 3 and yin,1 and its coefficients are
zero as the signal lying in this sector will only have the x- and z-components.
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Table 2. Value of constants when 120◦ < θ < 240◦.

Constants for xin,1 Constants for yin,1 Constants for zin,1

A4 = 0 A5 =
sin3(θ − 240◦)

sin3(θ − 240◦)− sin3(θ − 120◦)
A6 =

− sin3(θ − 120◦)
sin3(θ − 240◦)− sin3(θ − 120◦)

B4 = 0 B5 =
sin2(θ − 240◦) sin(θ − 120◦)

sin3(θ − 240◦)− sin3(θ − 120◦)
B6 =

− sin2(θ − 240◦) sin(θ − 120◦)
sin3(θ − 240◦)− sin3(θ − 120◦)

C4 = 0 C5 =
sin(θ − 240◦) sin2(θ − 120◦)

sin3(θ − 240◦)− sin3(θ − 120◦)
C6 =

− sin(θ − 240◦) sin2(θ − 120◦)
sin3(θ − 240◦)− sin3(θ − 120◦)

Table 3. Value of constants when 240◦ < θ < 360◦.

Constants for xin,1 Constants for yin,1 Constants for zin,1

A7 =
− sin3(θ − 240◦)

sin3(θ − 360◦)− sin3(θ − 240◦)
A8 = 0 A9 =

sin3(θ − 360◦)
sin3(θ − 360◦)− sin3(θ − 240◦)

B7 =
− sin2(θ − 360◦) sin(θ − 240◦)

sin3(θ − 360◦)− sin3(θ − 240◦)
B8 = 0 B9 =

sin2(θ − 360◦) sin(θ − 240◦)
sin3(θ − 360◦)− sin3(θ − 240◦)

C7 =
− sin(θ − 360◦) sin2(θ − 240◦)

sin3(θ − 360◦)− sin3(θ − 240◦)
C8 = 0 C9 =

sin(θ − 360◦) sin2(θ − 240◦)
sin3(θ − 360◦)− sin3(θ − 240◦)

In order to map xin,1, yin,1 and zin,1 components into control voltages, the following expression
is used:

Xvoltage = 20 · a · log10(xin,1) + b (13)

where a and b are constants acquired from DC voltage gain response of the VGA. Similarly, control
voltages Yvoltage and Zvoltage can be obtained from similar equations to the above with different values
for the constants a and b.

Apparently, the phase variation at the output of the VGA as a function of the gain control voltage
can be seen in Figure 3. The plot shows that as the LO signal propagates through the VGA, its phase
varies. Thus, at the RF output of VGAx, VGAy, and VGAz, the phases of the different components
x, y, and z will be affected by the phase response of the VGA. Ideally, at the output of VGAx, VGAy,
and VGAz the phases of the components are expected to be 0◦, 120◦, and 240◦, respectively. Although,
as seen from Figure 3, the variation in the gain control voltage affects the phase at the RF output of
the VGA. For the ith sample, the phase of the component x, y, and z at the output of VGAx, VGAy,
and VGAz can be represented as 0◦ + Φx(i), 120◦ + Φy(i), and 240◦ + Φz(i), respectively. Φx(i), Φy(i),
and Φz(i) are the phase errors for ith sample in degrees introduced by VGAx, VGAy, and VGAz,
respectively. To compensate for these phase errors, the complex point I + jQ is decomposed into new
components along the 0◦ + Φx(i), 120◦ + Φy(i), and 240◦ + Φz(i) axes as shown in Figure 4. As seen
from the figure, the new axes are X′, Y′, and Z′. Based on the new axes and the law of sines, which is
explained in [20], any complex I + jQ with magnitude r and angle θ can be decomposed into new
components X′, Y′, and Z′.
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3. Forward Behavioral Model for the Mixer-Less Three-Way Amplitude
Modulator-Based Transmitter

As discussed in the previous section, the three-way transmitter architecture consists of three
VGAs. Each VGA has a gain and phase response which needs to be modeled accurately. The method
proposed in [20] provides the modeling of dynamic non-linear gain and phase responses of the single
VGA using a memory polynomial model corresponding to each branch. In order to apply memory
polynomials individually, it is of extreme importance to have access to all three inputs and outputs
of the VGAs, namely, VGAx, VGAy, and VGAz. However, as mentioned earlier, this solution is not
feasible for practical systems as the output of all the VGAs is combined digitally, whereas, in actual
systems, splitting and combining are carried out via analog splitters and combiners in the RF domain.

In this work, in order to model the mixer-less three-way amplitude modulator-based transmitter
a new black box modified memory polynomial model is proposed. The output of a single VGA
(e.g., VGAx) can be represented in the following manner:

xout(n) =
Kx

∑
k=1

Mx

∑
m=0

hx
k,m(xin,1(n−m))k (14)

where hx
k,m are the complex model coefficients, xout is the output of the VGAx, while xin,1 is the input to

the model. Kx and Mx are the non-linearity order and memory depth, respectively. A model of VGAy
and VGAz can be mathematically represented in a similar fashion. From the previous section, we can
deduce that the value of xin,1, yin,1 and zin,1 can be represented as:

xin,1 = A1Sin + B1Sinej120◦ + C1Sinej240◦ (15)
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yin,1 = A2Sin + B2Sinej120◦ + C2Sinej240◦ (16)

zin,1 = A3Sin + B3Sinej120◦ + C3Sinej240◦ (17)

where A1, B1, C1, A2, B2, C2, A3, B3, and C3 are the constants whose values variy according to
the co-ordinates (specified by θ) and Sin is the complex input signal. The value of xin,1 is applied
in Equation (14), which is followed by the application of binomial theorem expansion and other
mathematical operations. Ultimately, we deduce the modified memory polynomial for 0◦ < θ < 120◦,
120◦ < θ < 240◦, and 240◦ < θ < 360◦, respectively, as:

Sout(n) =
K

∑
k=1

M

∑
m=0

∑
p1+p2=3k

Gk,m,p1,p2

sinp1(θ) sinp2(θ − 120◦)
sin3(θ − 120◦)− sin3(θ)

Sin
k(n−m); 0 ≤ θ ≤ 120◦ (18)

Sout(n) =
K
∑

k=1

M
∑

m=0
∑

p1+p2=3k
G′k,m,p1,p2

sinp1(θ − 120◦) sinp2(θ − 240◦)
sin3(θ − 240◦)− sin3(θ − 120◦)

Sin
k(n−m); 120◦ ≤ θ ≤ 240◦ (19)

Sout(n) =
K
∑

k=1

M
∑

m=0
∑

p1+p2=3k
G′′k,m,p1,p2

sinp1(θ − 240◦) sinp2(θ − 360◦)
sin3(θ − 360◦)− sin3(θ − 240◦)

Sin
k(n−m); 240◦ ≤ θ ≤ 360◦ (20)

where Gk,m,p1,p2 , G′k,m,p1,p2
, and G′′k,m,p1,p2

are the complex model coefficients, K and M are the
non-linearity order and memory depth, respectively, Sout(n) is the output of the model, and Sin(n) is
the complex input. The modeling coefficients can be obtained using least squares [12].

Figure 5 shows the block schematic of the transmitter architecture using analog combining
along with the digital signal processing blocks. Figure 6 shows the block schematic of the transmitter
architecture using digital combining along with digital signal processing blocks. Here, only a single
digital-to-analog convertor (DAC) is used and the measurement is taken for each branch separately
simply using a single DAC.

Sensors 2018, 18, x  7 of 17 

 

in,1

120 240
3 in 3 in 3 in= + +j jz A S B S e C S e   (17) 

where A1, B1, C1, A2, B2, C2, A3, B3, and C3 are the constants whose values variy according to the co-

ordinates (specified by θ) and Sin is the complex input signal. the value of xin,1 is applied in Equation 

(14), which is followed by the application of binomial theorem expansion and other mathematical 

operations. Ultimately, we deduce the modified memory polynomial for 0° < θ < 120°, 120° < θ < 240°, 

and 240° < θ < 360°, respectively, as: 

sin sin –
–

– –sin sin

1 2

1 2

1 2

out , , , in3 3
=1 =0 + =3

( ) ( 120 )
( ) = ( );               0 120

( 120 ) ( )

K M
k

k m
k m k

θ θ
S n G S n m

θ θ





  

p p

p p

p p

  (18) 

– –
–

– –

sin sin

sin s –in

1 2

1 2

1 2

out , , , in3 3
=1 =0 + =3

( 120 ) ( 240 )
( ) = ( );          120 240

( 240 ) ( 120 )

K M
k

k m
k m k

θ θ
S n G S n m

θ θ

 
 





  

p p

p p

p p

  (19) 

sin sin
36

sin s

– –
–

– – in –

1 2

1 2

1 2

out , , , in3 3
=1 =0 + =3

( 240 ) ( 360 )
( ) = ( );         240 0

( 360 ) ( 240 )

K M
k

k m
k m k

θ θ
S n G S n m

θ θ


 
 

 
  

p p

p p

p p

  (20) 

where 𝐺𝑘,𝑚,𝑝1,𝑝2
, 𝐺𝑘,𝑚,𝑝1,𝑝2

′ , and 𝐺𝑘,𝑚,𝑝1,𝑝2

′′  are the complex model coefficients, K and M are the non-

linearity order and memory depth, respectively, Sout(n) is the output of the model, and Sin(n) is the 

complex input. The modeling coefficients can be obtained using least squares [12].  

Figure 5 shows the block schematic of the transmitter architecture using analog combining along 

with the digital signal processing blocks. Figure 6 shows the block schematic of the transmitter 

architecture using digital combining along with digital signal processing blocks. Here, only a single 

digital-to-analog convertor (DAC) is used and the measurement is taken for each branch separately 

simply using a single DAC.  

A training sequence of 10,000 samples is used to extract the coefficients using the least square 

technique [12]. Coefficients are then applied to the whole input sequence of 100,000 samples in order 

to estimate the output. The normalized mean square error (NMSE) between the estimated and 

measured output is calculated to evaluate the performance of the model. NMSE is calculated as: 

mo

2

measured
10 2

=1 measure

d e

d

el d( ) - ( )1
NMSE = 10log ( )

( )

N

n

Y n Y n

N Y n
  (21) 

where Ymeasured(n) is the actual measured output and Ymodeled(n) is the estimated output obtained from 

the modified memory polynomial black box model. 

 

Figure 5. Block schematic of mixer-less three-way amplitude modulator-based transmitter, analog 

combining architecture with signal processing. 
Figure 5. Block schematic of mixer-less three-way amplitude modulator-based transmitter, analog
combining architecture with signal processing.

A training sequence of 10,000 samples is used to extract the coefficients using the least square
technique [12]. Coefficients are then applied to the whole input sequence of 100,000 samples in order to
estimate the output. The normalized mean square error (NMSE) between the estimated and measured
output is calculated to evaluate the performance of the model. NMSE is calculated as:

NMSE = 10 log10(
1
N

N

∑
n=1

|Ymeasured(n)−Ymodeled(n)|2

|Ymeasured(n)|2
) (21)
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where Ymeasured(n) is the actual measured output and Ymodeled(n) is the estimated output obtained
from the modified memory polynomial black box model.Sensors 2018, 18, x  8 of 17 
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4. Implementation of Mixer-Less Three-way Amplitude Modulator-Based Transmitter

The mixer-less three-way amplitude modulator-based transmitter is implemented using three
analog VGAs (ADL5330, Analog Devices Inc., Norwood, MA, USA) [22]. The specifications of the
ADL5330 are given in Table 4. The evaluation of all three boards are depicted in Figure 7. All the VGAs
are powered by a 5 V DC supply.
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phase shifters and analog combining.

Advanced Design System (ADS) is used to generate the complex baseband I/Q data. This complex
baseband I/Q signal is decomposed into three envelopes using three coordinate decomposition
algorithms and then mapped to control voltages in MATLAB. The three control voltages are then
downloaded to two different signal generators (ESG4438C) as each signal generator has only
two baseband outputs. Therefore, one signal generator is used for the generation of the control
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voltages Vx and Vy, while the second signal generator is used for the generation of control voltage Vz.
Both signal generators are operated in synchronization.

Table 4. Specification of the VGA (ADL5330).

Specification Value

Bandwidth on the gain control pin 3 MHz
Gain Range 60 dB

Control voltage range 0–1.4 V
Operating frequency 10 MHz–3 GHz

Linear-in-dB gain control function 20 mV/dB

Another signal generator (ESG4438C) is used as the local oscillator (LO). The signal generators
and the LO are triggered in synchronization. The analog gain control voltage Vx at the baseband output
of the ESG-1 is sent to the gain control pin of VGAx. A similar procedure is used for VGAy and VGAz,
respectively. The LO is provided to the three-way power divider (MACOM PN2090-6304-00) which has
a loss of 7 dB in all three branches and has a frequency range from 0.5 GHz to 18 GHz. The LO at the
first output port of the power divider is fed to the RF input port of VGAx. The LO at the second output
port of the power divider is fed to the phase shifter (ARRA 9428A) with a frequency range from DC to
18 GHz, which rotates the LO by 120◦. The output is then fed to the RF input port of VGAy. The LO at
the third output port of the power divider is fed to the phase shifter (ARRA 9428A) which rotates the
LO by 240◦. The output of the second phase shifter is fed to the RF input port of VGAz. The RF outputs
Vx, Vy, and Vz are summed together using a power combiner (MACOM PN2090-6304-00) to obtain
a complex RF signal which is captured and digitized using a spectrum analyzer (PSA E4440A) and VSA
software, respectively. The time alignment is carried out using the maximum correlation technique [23].
In order to retrieve the I/Q data from the captured signal, further signal processing is carried out
in MATLAB.

Finally, Figure 8 shows the branch-by-branch implementation of mixer-less three-way amplitude
modulator-based transmitter. In this setup the three VGAs are operated separately. The three voltages
are generated in MATLAB and fed to the gain control pin of the VGAs one after the other. The LO is
sent to the RF input port of the VGAs. The RF output of each VGA is captured separately using a power
spectrum analyzer and digitized using VSA software. Time alignment is carried out distinctly on each
branch using the maximum correlation technique. Finally, phase rotation and the power combining
operations are performed in the digital domain.
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5. Measurement Results

An LTE signal with a QPSK constellation is generated using ADS software to validate the proposed
modeling technique and to evaluate the performance of the proposed methodology. The LTE signal
is oversampled by a factor of 16 and the corresponding baseband signal has 100,000 samples which
are sampled at a rate of 30.72 Msamples/sec. The complex baseband signal is then subjected to
decomposition and processing. Components obtained after decomposition and digital processing
are then mapped to control voltages and fed to the experimental setup as described in the previous
section. The LO signal is sent at 2.2 GHz, having a power level of −3 dB. The signal is captured
by a power spectrum analyzer and demodulated by VSA software followed by time alignment.
The input to the proposed modified memory polynomial black box model is the original complex
baseband I/Q signal and the output is the complex signal captured from the output of the transmitter.
After obtaining the required input and output signals, model identification is performed to acquire the
modeling coefficients and, finally, the modeled output. NMSE is then calculated between modeled
output and measured output signals. The summary of results of the performance evaluation of the
branch-by-branch digital combining mixer-less three-way amplitude modulator-based transmitter
and analog combining mixer-less three-way amplitude modulator-based transmitter is depicted in
Tables 5 and 6, respectively. In terms of comparison, [20] shows a training NMSE of around −41 dB
for the reverse model using a 1.4 MHz signal with digital combining. The proposed model allows
obtaining a similar training NMSE for a forward model of the full three-way transmitter including the
impairments of the analog combiner.

Table 5. Summary of the performance evaluation of the branch-by-branch, digital combining, mixer-less
three-way amplitude modulator-based transmitter.

Specification Value

Signal bandwidth (MHz) 1.4
Number of testing samples 100,000

Number of training samples 10,000
Training NMSE (dB) −39.56
Testing NMSE (dB) −36.41

Non-linearity order and Memory depth K = 3, M = 2

Table 6. Summary of the performance evaluation of the analog combining, mixer-less three-way
amplitude modulator-based transmitter.

Specification Value

Signal bandwidth (MHz) 1.4
Number of testing samples 100,000

Number of training samples 10,000
Training NMSE (dB) −40.97
Testing NMSE (dB) −36.90

Non-linearity order and Memory depth K = 3, M = 2

To validate the proposed model, AM-AM and AM-PM of the modeled output and the measured
output signals for branch-by-branch digital combining transmitter architecture are demonstrated in
Figures 9 and 10, respectively. In order to corroborate the three-way transmitter architecture and the
model, the AM-AM and AM-PM of the modeled output and measured output signals for analog
combining are shown in Figures 11 and 12, respectively. Since the AM-AM and AM-PM plots are
resultant of all three VGAs, the non-linearity of the single VGA cannot be observed. In order to observe
the non-linearity exhibited by single VGA, the measured AM-AM and AM-PM responses of a single
VGA are shown in Figures 13 and 14, respectively.
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Figure 9. AM-AM characteristics of modeled and measured output signals for the branch-by-branch
digital combining architecture. The modeled gain is capable of imitating the actual gain of the transmitter.
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Figure 10. AM-PM characteristics of modeled and measured output signals for the branch-by-branch
digital combining architecture, showing that the proposed technique is able to model the phase
response efficiently.
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Figure 11. AM-AM characteristics of modeled and measured output signals for the analog combining
architecture. Similar to when digital combining is used, the proposed method works effectively for
modeling the gain response of the transmitter using analog combining.
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Figure 12. AM-PM characteristics of modeled and measured output signals for the analog combining
architecture. The figure illustrates that the proposed augmented memory polynomial-based method is
capable of modeling the phase response of the transmitter for analog combining.
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The spectral response of the modeled output, the measured output, and the error signal for the
branch-by-branch digital combining architecture and analog combining architecture are shown in
Figures 15 and 16, respectively. From the graphs we can deduce that the proposed forward model
works exceptionally well for the three-way transmitter architecture. The measurement results for
the performance evaluation of the three-way amplitude modulator-based transmitter for different
bandwidths of the LTE signal are summarized in Table 7. The LTE signal with a 5 MHz bandwidth
is oversampled by a factor of 48 and the baseband signal has 100,000 samples, sampled at a rate of
92.16 Msamples/s. The LO signal has a frequency of 2.2 GHz and a power level of−3 dBm. Bandwidth
on the gain control of the VGA is limited to 3 MHz as seen from Table 4. However, the three-way
architecture of transmitter and the proposed black box model works well with the 5 MHz bandwidth
of the LTE signal, which proves that model and transmitter topology is not limited to the bandwidth
of the LTE signal.
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Figure 15. Spectral response of the modeled and measured output along with the error signal for
the branch-by-branch digital combining architecture. The modeled output spectrum is closer to the
measured spectrum leading to reduced error.
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Figure 16. Spectral response of the modeled and measured output along with the error signal for the
analog combining architecture. The proposed method is capable of reducing the modeling error even
for analog combining.
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Table 7. Summary of performance evaluation of different architectures for LTE signals with a 5 MHz
bandwidth.

Specification Digital Combining Architecture Analog Combining Architecture

Signal bandwidth (MHz) 5 5
Number of testing samples 100,000 100,000

Number of training samples 10,000 10,000
Training NMSE (dB) −34.48 −34.56
Testing NMSE (dB) −31.93 −32.08

Non-linearity order and Memory depth K = 3, M = 2 K = 3, M = 2

6. Conclusions

Distortion associated with conventional transmitters due to the use of imperfect mixers
are nullified using the three-way transmitter topology as it employs VGAs for up-conversion.
The three-way mixer-less topology of the transmitter does not use any RF band filtering at its output.
In comparison with the conventional transmitter architecture, the absence of filters and wide RF
bandwidth of the VGAs, power combiners, and phase shifters make this transmitter topology more
reconfigurable and suitable for wideband applications.

A novel augmented memory polynomial forward model is proposed to model the characteristics
of the three-way transmitter architecture and is validated using laboratory measurements.
The performance of the proposed model, evaluated in terms of various figures of merits, shows the
enhanced modeling capability. In addition, it is closer to the practical scenario as compared to its
branch-by-branch counterpart [20].
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Appendix A

Calculation Details for the Forward Model Expression When Sin Lies in 0◦–120◦

Since the output of a single VGA can be modeled with a memory polynomial, the outputs xout,
yout, and zout of the three VGAs VGAx, VGAy, or VGAz, respectively, can be modeled as follows:

xout(n) =
Kx

∑
k=1

Mx

∑
m=0

hx
k,m(xin,1(n−m))k (A1)

yout(n) =
Ky

∑
k=1

My

∑
m=0

hy
k,m(yin,1(n−m))k (A2)

zout(n) =
Kz

∑
k=1

Mz

∑
m=0

hz
k,m(zin,1(n−m))k (A3)

where, hx
k,m, hy

k,m, and hz
k,m are the complex model coefficients of the memory polynomials modelling

VGAx, VGAy, and VGAz, respectively. (Kx, Mx), (Ky, My), and (Kz, Mz) are nonlinearity orders
and memory depths of the memory polynomials modelling VGAx, VGAy, and VGAz, respectively.
After, replacing the values of xin,1, yin,1, and zin,1 by their expressions from Equations (4)–(6) and after
applying binomial development, (A1)–(A3) can be written as:
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xout =
K

∑
k=1

M

∑
m=0

∑
i1+i2+i3=k

hx
k,mαi1i2i3 Ai1

1 Bi2
1 Ci3

1 Si1
1 Si2

2 Si3
3 (A4)

yout =
K

∑
k=1

M

∑
m=0

∑
i1+i2+i3=k

hy
k,mβi1i2i3 Ai1

2 Bi2
2 Ci3

2 Si1
1 Si2

2 Si3
3 (A5)

zout =
K

∑
k=1

M

∑
m=0

∑
i1+i2+i3=k

hz
k,mγi1i2i3 Ai1

3 Bi2
3 Ci3

3 Si1
1 Si2

2 Si3
3 (A6)

where αi1i2i3 , βi1i2i3 , and γi1i2i3 are constants resulting from the additions of binomial constants. Since the
output is obtained by summing the three VGAs’ outputs as follows:

Sout = xout + youtej120◦ + zoutej240◦ (A7)

By replacing xout, yout, and zout by their expressions from (A4)–(A6), we obtain:

Sout =
K

∑
k=1

M

∑
m=0

∑
i1+i2+i3=k


Hx

k,m,i1i2i3
Ai1

1 Bi2
1 Ci3

1 +

Hy
k,m,i1i2i3

Ai1
2 Bi2

2 Ci3
2 ej120◦+

Hz
k,m,i1i2i3

Ai1
3 Bi2

3 Ci3
3 ej240◦

Si1
1 Si2

2 Si3
3 (A8)

where Hx
k,m,i1i2i3

= hx
k,mαi1i2i3 , Hy

k,m,i1i2i3
= hy

k,mβi1i2i3 , and Hz
k,m,i1i2i3

= hz
k,mγi1i2i3 . As seen from Table 1,

we know that B1 = −B2 and C1 =−C2, while values of A1 and A2 are distinct. We also know that values
of A3, B3 and C3 are 0 for this sector. Therefore, Equation (A8) can be represented as:

Sout =
K

∑
k=1

M

∑
m=0

∑
i1+i2+i3=k

Bi2
1 Ci3

1

[
Hx

k,m,i1i2i3 Ai1
1 + (−1)i2+i3 Hy

k,m,i1i2i3
Ai1

2 ei120◦
]
Si1

1 Si2
2 Si3

3 (A9)

Now, by substituting the values of A1, A2, B1, and C1 from Table 1, we obtain:

Sout =
K

∑
k=1

M

∑
m=0

∑
i1+i2+i3=k

D−k
1

[
Hx

k,m,i1i2i3
sini2+2i3(θ)sin3i1+2i2+i3(θ − 120◦)+

(−1)k Hy
k,m,i1i2i3

sin3i1+i2+2i3(θ)sin2i2+i3(θ1 − 120◦)ej120◦

]
Si1

1 Si2
2 Si3

3

(A10)
where D1 represents the denominator in 0◦–120◦, and can be represented as:

D1 = sin3(θ − 120◦)− sin3(θ) (A11)

leading to the final expression shown in Equation (18) shown below:

Sout(n) =
K

∑
k=1

M

∑
m=0

∑
p1+p2=3k

Gk,m,p1,p2

sinp1(θ) sinp2(θ − 120◦)

(sin3(θ − 120◦)− sin3(θ))
k Sin1

k(n−m) (A12)

where Gk.m,p1,p2 are constants obtained by adding the terms Hy
k,m,i1i2i3

and (−1)k Hz
k,m,i1i2i3

corresponding to the same exponents p1 and p2 of the term sinp1(θ) sinp2(θ − 120◦).
Similar analysis can be done for the other two sectors. The outputs can then be obtained for

120◦ < θ < 240◦:

Sout(n) =
K

∑
k=1

M

∑
m=0

∑
p1+p2=3k

G′k,m,p1,p2

sinp1(θ − 120◦) sinp2(θ − 240◦)

(sin3(θ − 240◦)− sin3(θ − 120◦))
k Sin1

k(n−m) (A13)

where G′k,m,p1,p2
are constants from A4, B4, C4, A5, B5, C5, A6, B6, and C6 similarly to Gk.m,p1,p2 .
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For 240◦ < θ < 360◦:

Sout(n) =
K

∑
k=1

M

∑
m=0

∑
p1+p2=3k

G′′k,m,p1,p2

sinp1(θ − 240◦) sinp2(θ − 360◦)

(sin3(θ − 360◦)− sin3(θ − 240◦))
k Sin1

k(n−m) (A14)

where G′′k,m,p1,p2
are constants from A7, B7, C7, A8, B8, C8, A9, B9, and C9, similarly to Gk,m,p1,p2 .
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