
POPULATION GENETICS

Why structure matters
Great care is needed when interpreting claims about the genetic basis of

human variation based on data from genome-wide association studies.
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H
uman height is the classic example of a

quantitative trait: its distribution is con-

tinuous, presumably because it is influ-

enced by variation at a very large number of

genes, most with a small effect (Fisher, 1918).

Yet height is also strongly affected by the envi-

ronment: average height in many countries

increased during the last century and the chil-

dren of immigrants are often taller than relatives

in their country of origin – in both cases presum-

ably due to changing diet and other environ-

mental factors (Cavalli-Sforza and Bodmer,

1971; Grasgruber et al., 2016; NCD Risk Fac-

tor Collaboration, 2016). This makes it very dif-

ficult to determine the cause of geographic

patterns for height, such as the ‘latitudinal cline’

seen in Europe (Figure 1).

Are such patterns caused by environmental

or genetic differences – or by a complex combi-

nation of both? And to the extent that genetic

differences are involved, do they reflect selec-

tion or simply random history? A number of

recent papers have relied on so-called Genome-

Wide Association Studies (GWAS) to address

these questions, and reported strong evidence

for both genetics and selection. Now, in eLife,

two papers – one by Jeremy Berg, Arbel Harpak,

Nasa Sinnott-Armstrong and colleagues

(Berg et al., 2019); the other by Mashaal Sohail,

Robert Maier and colleagues (Sohail et al.,

2019) – independently reject these conclusions.

Even more importantly, they identify problems

with GWAS that have broader implications for

human genetics.

As the name suggests, GWAS scan the

genome for variants – typically single nucleotide

polymorphisms (SNPs) – that are associated with

a particular condition or trait (phenotype). The

first GWAS for height found a small number of

SNPs that jointly explained only a tiny fraction of

the variation. Because this was in contrast with

the high heritability seen in twin studies, it was

dubbed ‘the missing heritability problem’

(reviewed in Yang et al., 2010). It was sug-

gested that the problem was simply due to a

lack of statistical power to detect polymor-

phisms of small effect. Subsequent studies with

larger sample sizes have supported this explana-

tion: more and more loci have been identified

although most of the variation remains ‘unmap-

pable’, presumably because sample sizes on the

order of a million are still not large enough

(Yengo et al., 2018).

One way in which the unmappable compo-

nent of genetic variation can be included in a

statistical measure is via so-called polygenic
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scores. These scores sum the estimated contri-

butions to the trait across many SNPs, including

those whose effects, on their own, are not statis-

tically significant. Polygenic scores thus repre-

sent a shift from the goal of identifying major

genes to predicting phenotype from genotype.

Originally designed for plant and animal breed-

ing purposes, polygenic scores can, in principle,

also be used to study the genetic basis of differ-

ences between individuals and groups.

This, however, requires accurate and unbi-

ased estimation of the effects of all SNPs

included in the score, which is difficult in a struc-

tured (non-homogeneous) population when

environmental differences cannot be controlled.

To see why this is a problem, consider the classic

example of chopstick-eating skills (Lander and

Schork, 1994). While there surely are genetic

variants affecting our ability to handle chop-

sticks, most of the variation for this trait across

the globe is due to environmental differences

(cultural background), and a GWAS would

mostly identify variants that had nothing to do

with chopstick skills, but simply happened to dif-

fer in frequency between East Asia and the rest

of the world.

Several methods for dealing with this prob-

lem have been proposed. When a GWAS is car-

ried out to identify major genes, it is relatively

simple to avoid false positives by eliminating

associations outside major loci regardless of

whether they are due to population structure

confounding or an unmappable polygenic back-

ground (Vilhjálmsson and Nordborg, 2013).

However, if the goal is to make predictions, or

to understand differences among populations

(such as the latitudinal cline in height), we need

accurate and unbiased estimates for all SNPs.

Accomplishing this is extremely challenging, and

it is also difficult to know whether one has

succeeded.

One possibility is to compare the population

estimates with estimates taken from sibling data,

which should be relatively unbiased by environ-

mental differences. In one of many examples of

this, Robinson et al. used data from the GIANT

Consortium (Wood et al., 2014) together with

sibling data to estimate that genetic variation

contributes significantly to height variation

across Europe (Robinson et al., 2015). They also

argued that selection must have occurred,

because the differences were too large to have

arisen by chance. Using estimated effect sizes

provided by Robinson et al., a more sophisti-

cated analysis by Field et al. found extremely

strong evidence for selection for height across

Europe (p=10�74; Field et al., 2016). Several

other studies reached the same conclusion

based on the GIANT data (reviewed in

Berg et al., 2019; Sohail et al., 2019).

Berg et al. (who are based at

Columbia University, Stanford University, UC

Davis and the University of Copenhagen) and

Sohail et al. (who are based at Harvard Medical

School, the Broad Institute, and other institutes

in the US, Finland and Sweden) now re-examine

these conclusions using the recently released

data from the UK Biobank (Sudlow et al., 2015).

Estimating effect sizes from these data allows

possible biases due to population structure con-

founding to be investigated, because the UK

Biobank data comes from a (supposedly) more

homogenous population than the GIANT data.

Using these new estimates, Berg et al. and

Sohail et al. independently found that evidence

for selection vanishes – along with evidence for

a genetic cline in height across Europe. Instead,

they show that the previously published results

were due to the cumulative effects of slight

biases in the effect-size estimates in the GIANT

data. Surprisingly, they also found evidence for

confounding in the sibling data used as a control

Figure 1. Distribution of average male height in Europe, calculated from studies

performed between 1999–2013. In general, southern Europeans tend to be shorter than

northern Europeans. Image reproduced from Grasgruber et al., 2014 (CC BY 3.0).
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by Robinson et al. and Field et al. This turned

out to be due to a technical error in the data dis-

tributed by Robinson et al. after they published

their paper.

This means we still do not know whether

genetics and selection are responsible for the

pattern of height differences seen across

Europe. That genetics plays a major role in

height differences between individuals is not in

doubt, and it is also clear that the signal from

GWAS is mostly real. The issue is that there is no

perfect way to control for complex population

structure and environmental heterogeneity.

Biases at individual loci may be tiny, but they

become highly significant when summed across

thousands of loci – as is done in polygenic

scores. Standard methods to control for these

biases, such as principal component analysis,

may work well in simulations but are often insuf-

ficient when confronted with real data. Impor-

tantly, no natural population is unstructured:

indeed, even the data in the UK Biobank seems

to contain significant structure (Haworth et al.,

2019).

Berg et al. and Sohail et al. demonstrate the

potential for population structure to create spu-

rious results, especially when using methods that

rely on large numbers of small effects, such as

polygenic scores. Caution is clearly needed

when interpreting and using the results of such

studies. For clinical predictions, risks must be

weighed against benefits (Rosenberg et al.,

2019). In some cases, such as recommendations

for more frequent medical checkups for patients

found at higher ‘genetic’ risk of a condition, it

may not matter greatly whether predictors are

confounded as long as they work. By contrast,

the results of behavioral studies of traits such as

IQ and educational attainment (Plomin and von

Stumm, 2018) must be presented carefully,

because while the benefits are far from obvious,

the risks of such results being misinterpreted

and misused are quite clear. The problem is

worsened by the tendency of popular media to

ignore caveats and uncertainties of estimates.

Finally, although quantitative genetics has

proved highly successful in plant and animal

breeding, it should be remembered that this

success has been based on large pedigrees,

well-controlled environments, and short-term

prediction. When these methods have been

applied to natural populations, even the most

basic predictions fail, in large part due to poorly

understood environmental factors

(Charmantier et al., 2014). Natural populations

are never homogeneous, and it is therefore

misleading to imply there is a qualitative differ-

ence between ‘within-population’ and ‘between-

population’ comparisons – as was recently done

in connection with James Watson’s statements

about race and IQ (Harmon, 2019). With

respect to confounding by population structure,

the key qualitative difference is between control-

ling the environment experimentally, and not

doing so. Once we leave an experimental set-

ting, we are effectively skating on thin ice, and

whether the ice will hold depends on how far

out we skate.
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