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Abstract: The COVID-19 pandemic raises awareness of how the fatal spreading of infectious disease
impacts economic, political, and cultural sectors, which causes social implications. Across the world,
strategies aimed at quickly recognizing risk factors have also helped shape public health guidelines
and direct resources; however, they are challenging to analyze and predict since those events still
happen. This paper intends to invesitgate the association between air pollutants and COVID-19
confirmed cases using Deep Learning. We used Delhi, India, for daily confirmed cases and air
pollutant data for the dataset. We used LSTM deep learning for training the combination of COVID-
19 Confirmed Case and AQI parameters over the four different lag times of 1, 3, 7, and 14 days. The
finding indicates that CO is the most excellent model compared with the others, having on average,
13 RMSE values. This was followed by pressure at 15, PM2.5 at 20, NO2 at 20, and O3 at 22 error rates.

Keywords: COVID-19; AQI; air pollutant; correlation analysis; deep learning; LSTM; lag times

1. Introduction

Although we remember and contemplate that during 26 January–3 October 2020,
more than 300,000 people died in the United States, with two thirds of those deaths
directly associated to COVID-19 [1], we might also assess what the newest science says
about the pandemic. We know that those who live in places with severe levels of air
pollution will face several hazards concerning their respiratory health throughout this
outbreak. Currently, new research focuses on the correlations between air pollution and
severe COVID-19 sickness, emphasizing the crucial need for everyone to breathe clean air.
Research published in December 2020 attempted to assess the extent to which COVID-19
mortality is due to long-term exposure to fine particle pollution [2]. Using a combination of
epidemiological data, satellite data, and other monitoring data worldwide, the researchers
concluded that chronic air pollution might be responsible for 15% of COVID-19 fatalities
globally [2]. The experts also distinguished air pollution generated by fossil fuels and
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pollution that is induced by other human activities. In the United States, fossil fuel-related
air pollution is responsible for 15% of COVID-19 mortality, indicating that fossil fuel related
air pollution contributes considerably to overall U.S. air quality [2].

Several researchers used machine learning to evaluate the association and prediction
cases when investigating the relationship between two parameters [3,4]. Machine learning
is commonly used in drug development research to anticipate chemical characteristics
and help identify active molecules. Perez and Bajorath [5] provide a new method to
discover links between target proteins that incorporate internal model information from
chemical activity predictions. Feature importance correlation analysis is proven to discover
comparable drug binding features based on a large-scale investigation that compared
machine learning models for more than 200 proteins. Surprisingly, the research also finds
functional links between proteins that are not dependent on active chemicals or binding
properties. Malki et al. [6] also provide several regressor machine learning algorithms to
extract the association between different parameters and the COVID-19 distribution rate. By
extracting the association between the number of confirmed cases and the climatic variables
in specified places, the machine learning methods used in this study assess the influence
of weather variables such as temperature and humidity on COVID-19 transmission. As a
result of this finding, they may deduce that temperature and humidity are critical factors
in determining COVID-19 death rates. Furthermore, it has been shown that the greater
the temperature, the lower the number of infection cases. To collectively predict the
correlated time series, Wan et al. [7] suggested CTS-LSTM, a unique variation of LSTM.
Experiments are carried out on two types of real-world datasets: civil aviation passenger
demand data and air quality data. In addition, when compared with state-of-the-art
baselines, CTS-LSTM achieves at least 9.0%, 16.5%, and 21.3% reduced RMSE, MAE, and
MAPE. An LSTM recurrent neural network-based technique for predicting the load of non-
residential customers utilizing various correlated sequence information is provided in [8].
The suggested methodology is evaluated on a real data set containing energy consumption
data from 48 non-residential users in China. The results of the experiments suggest that
this strategy can effectively use numerous sequence information and successfully capture
the relationships between different sequences.

Therefore, based on the previous research on the potential correlation of two or more
different resources conducted by some experts, we examined the relationship between
air pollutants and COVID-19 using deep learning. The objectives of this paper are listed
as follows:

1. To correlate COVID-19 Confirmed Case with AQI parameters.
2. To train the integration of COVID-19 Confirmed Case and AQI parameters in four

different lag times, 1, 3, 7, and 14 days, using long short-term memory (LSTM)
deep learning.

3. To evaluate and compare the RMSE values for the trained models.

The contribution of this paper might leverage the research of correlation and prediction
analysis of air pollutants and COVID-19 using different approaches, such as lag times and
LSTM methods combined with correlation analysis.

2. Background Review and Related Work

Cui et al. [9] discovered that the residents of a severely polluted area of China were
more likely to die of SARS than residents in a less polluted area. Kan et al. [10] discovered
that increases in particulate matter air pollution enhanced the probability of dying from
the disease during the 2003 SARS pandemic. Numerous viruses, including adenovirus
and influenza virus, have been proven to be transmitted by air particles. Zhao et al. [11]
concluded that particulate matter was probably a factor in the propagation of the 2015
avian influenza. According to Chen et al. [12], air pollution can hasten the spread of
respiratory diseases.
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2.1. Research on Association of Air Pollutant and COVID-19

Researchers conducted the study related to the association of air pollution and COVID-
19 in various countries. We examined their works to enrich our knowledge of this topic,
as follows.

Zhu et al. [13] investigated the association between ambient air pollution and coron-
avirus infection. Between 23 January 2020 and 29 February 2020, in China, daily confirmed
cases, air pollution concentrations, and climatic data were collected in 120 cities. They
used a generalized additive model to examine the relationships between six air pollutants
(PM2.5, PM10, SO2, CO, NO2, and O3) and verified instances of COVID-19.

Gupta et al. [14] estimated the increased risk of coronavirus disease (COVID-19),
caused by severe acute respiratory syndrome coronavirus 2, by establishing a link between
the mortality rate of infected individuals and air pollution, specifically Particulate Matters
(PM) with aerodynamic diameters of 10 m and 2.5 m. Nine Asian cities’ data are studied
using statistical techniques such as analysis of variance and regression modeling.

Lolli et al. [15] quantified the relationship between COVID-19 transmission and mete-
orological and air quality indices in two significant urban regions in Northern Italy, Milan,
and Florence, as well as the autonomous province of Trento. Milan, the capital of the
Lombardy region, is often regarded as the heart of Italy’s HIV epidemic.

Bashir et al. [16] investigated the relationship between COVID-19 and climatic indica-
tors in New York City, United States of America. They analyzed secondary public data from
the New York City Department of Health and the National Weather Service in the United
States of America. The average temperature, lowest temperature, maximum temperature,
rainfall, average humidity, wind speed, and air quality are all covered in the research. The
Kendall and Spearman rank correlation tests were used to analyze the data.

Suhaimi et al. [17] investigated the relationships between air quality, climatic variables,
and COVID-19 cases in Kuala Lumpur, Malaysia. The Department of Environment Malaysia
provided air pollutants and meteorological data from 2018–2020, whereas the Ministry of
Health Malaysia provided daily new COVID-19 case data in 2020.

Mehmood et al. [18] used geospatial tools to analyze the relationship between COVID-
19 cases, air pollution, meteorological, and socioeconomic characteristics in three provincial
capital cities and the federal capital city of Pakistan.

Hoang and Tran [19] investigated the temporal association in seven metropolitan
centers and nine regions across Korea using the generalized additive model. The find-
ings indicate a substantial nonlinear relationship between daily temperature and verified
COVID-19 cases.

Travaglio et al. [20] matched current SARS-CoV-2 cases and fatalities from public
databases to regional and subregional air pollution data collected across England.

In Singapore, Lorenzo et al. [21] examined the relationship between core air pollutant
concentrations, climatic factors, and daily verified COVID-19 case numbers. We collected
data on air pollutant concentrations (particulate matter [PM2.5, PM10], ozone [O3], carbon
monoxide [CO], nitrogen dioxide [NO2], sulphur dioxide [SO2], pollutant standards index
[PSI]), and climatic variables (rainfall, humidity, and temperature). Table 1 summarizes
recent studies on the association between air pollutants and COVID-19.

Table 1. Recent research on Association of Air Pollutant and COVID-19.

Author (Year) Objective Location Finding

Zhu et al. (2020)
Investigate the link between

ambient air pollution and the
new coronavirus infection.

One-hundred and twenty
cities in China

PM2.5, PM10, NO2, and O3
levels were significantly higher

in the previous two weeks in
areas with newly confirmed

COVID-19 cases.
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Table 1. Cont.

Author (Year) Objective Location Finding

Gupta et al. (2021)

Calculate the elevated incidence
of coronavirus disease

(COVID-19) induced by severe
acute respiratory syndrome

coronavirus 2 by demonstrating a
correlation between the death rate

of infected individuals and air
pollution, especially Particulate

Matters (PM).

Nine cities in Asia, Delhi
India, Nagpur India, Kanpur

India, Islamabad Pakistan,
Lahore Pakistan, Jakarta
Indonesia, Tianjin China,

Guilin China, Hebei China

There is a positive association
between a region’s degree of air

pollution and the mortality
associated with COVID-19,

demonstrating that air pollution
is a significant and hidden factor

exacerbating the worldwide
burden of

COVID-19-related mortality.

Lolli et al. (2020)

The correlation between
meteorological and air quality

indicators and COVID-19
transmission was quantified.

Northern Italy, Milan,
and Florence

Although elements such as
temperature and humidity are
inversely connected with viral

transmission, air pollution (PM2.5)
is positively correlated (to a

lesser degree).

Bashir et al. (2020)
The connection between

COVID-19 and climatic factors
was analyzed.

New York City, USA

The COVID-19 pandemic was
substantially related with average
temperature, lowest temperature,

and air quality.

Suhaimi et al. (2020)
Establish connections between air

quality, climatic variables, and
COVID-19 instances.

Kuala Lumpur, Malaysia

Spearman’s correlation analysis
revealed a positive connection
between COVID-19 cases and

PM10 (r = 0.131, p < 0.001), PM2.5
(r = 0.151, p < 0.001), SO2
(r = 0.091, p = 0.003), NO2
(r = 0.228, p < 0.001), CO

(r = 0.269, p = 0.001), and relative
humidity (RH) (r = 0.106,

p = 0.001).

Mehmood et al. (2021)

Using geospatial approaches to
examine the connection between
COVID-19 instances, air pollution,

meteorological, and
socioeconomic characteristics.

Three out of four provinces of
Pakistan (Punjab, Sindh,
Khyber Pakhtunkhwa)

The findings reveal that daily
COVID-19 is positively linked

with PM2.5 and other
meteorological variables,

implying that climate has a
significant role in determining the

COVID-19 incidence rate
in Pakistan.

Hoang and Tran

The generalized additive model
was used to evaluate the temporal
connection between ambient air

pollution, weather, and
COVID-19 infection.

Seven metropolitan cities and
nine provinces across Korea

Daily temperature had a
substantial nonlinear relationship

with verified COVID-19 cases.

Travaglio et al. (2021)

Evaluated recent SARS-CoV-2
cases and fatalities from public

databases to regional and
subregional air pollution data
collected at several locations.

England

There is a positive correlation
between COVID-19 mortality and

infectivity and air pollution
concentrations, notably

nitrogen oxides.

Lorenzo et al. (2021)

Determine the relationship
between core air pollutant

concentrations, climatic factors,
and daily verified
COVID-19 cases.

Singapore

There is a statistically significant
positive correlation between NO2,
PSI, PM2.5, and temperature and

COVID-19 case numbers.
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Table 1. Cont.

Author (Year) Objective Location Finding

Mandalapu et al.
(2022)

The link between air pollution and
COVID-19 severity has been
studied at the regional and
metropolitan levels, but it is

uncertain if this link holds true at
the neighborhood level.

Los Angeles County,
California

Eighteen of the twenty-three significant
comparisons for the COVID-19 weekly
death rate confirmed that NO2 levels
were higher in neighborhoods with

higher COVID-19 weekly death rates.
Similarly, 12 of the 19 comparisons

confirmed the same relationship with CO
levels, as 14 of the 23 comparisons

confirmed the same relationship with
ozone levels, and 6 of the 6 comparisons

confirmed the same relationship
with PM10.

Sidell et al. (2022)

To examine at both long-term and
short-term air pollution exposure,
as well as COVID-19 occurrence,

from 1 March 2020 to
28 February 2021.

Southern California

In all case peaks before February 2021,
long-term PM2.5 and NO2 exposures

were linked to an elevated probability of
COVID-19 occurrence. Short-term

exposures to PM2.5 and NO2 were also
linked. Air pollution may have a role in

raising the likelihood of
COVID-19 infection.

Luo et al. (2022)

This study assessed the relationship
between population movement and

air quality in 332 Chinese cities
from January to March (2019–2021),

and the influence of three city
factors (pollution level, city scale,

and lockdown status) in
this impact.

Three-hundred and
thirty-two Chinese cities

Lower migration was linked to lower
pollution levels (other than O3).

Susceptibility to pollution changes is
more probable as NO2 decreases and O3

increases, whereas insusceptibility to
pollution is more likely for CO and SO2,
and in cities with low migration. Cities

with less air pollution and dense
populations may benefit the most from
lowering PM10 and PM2.5. Those with
rigorous traffic limits have higher links

with population movement and air
pollution than cities without limitations.
The impacts of inter-city migration (ICM)
and within city migration (WCM) on air
pollution were found to be minor when

city characteristics were considered.

Abdullah et al.
(2022)

The connection between the Air
Pollution Index (API) and

COVID-19 infections is the objective
of this research.

Malaysia

Each area has a positive connection
between API and COVID-19: North 0.4%

(R2 = 0.004), Central 2.1% (R2 = 0.021),
South 0.04% (R2 = 0.0004), East 1.6%

(R2 = 0.016), Sarawak 0.2% (R2 = 0.002),
whereas Sabah has a negative correlation

of 4.3% (R2 = 0.043).

Huang et al. (2022)

Data on air pollution and verified
COVID-19 cases were collected

from five severely affected cities in
three South American nations.

COVID-19’s spread was measured
using daily real-time population

regeneration (Rt). The influence of
environmental contaminants on the
pandemic was investigated using

two commonly used models:
generalized additive models (GAM)

and multiple linear regression.

South America

(1) In all five locations, Rt, which
potentially represents COVID-19

dissemination, exhibited a progressive
drop. (2) Rt had a substantial effect on

PM10 and SO2 in all of the locations
studied. These two contaminants should
be better monitored by regulators. (3) In
cities with varying levels of air pollution,

the link between air pollution and the
spread of COVID-19 varied. The results

indicate that there is a significant
relationship between air pollution and

COVID-19 infection.
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Recent important research findings in 2022 also indicated that there is a correlation
between air pollutants and COVID-19 cases [22–26].

2.2. Research on Prediction of Air Pollutant and COVID-19 Using Deep Learning

Aragão et al. [27] examined climate factors as extra features in a data-driven multi-
variate prediction model to predict the number of COVID-19 deaths in Brazilian states and
significant cities in the short future. The basic premise is that by including these climatic
characteristics as inputs to data-driven model training, the prediction performance in-
creases when compared with single-input models. For both the multivariate and univariate
models, the training adopted a Stacked LSTM as the network architecture. Using the mean
fitting error, average forecast error, and the profile of the cumulative deaths for the forecast
as evaluation criteria, the tests revealed that the best multivariate model is more skillful
than the best standard data-driven univariate model we found. These findings suggest that
by using additional important variables as input for a multivariate method, the quality of
prediction models may be improved even more.

Al-Qaness et al. [28] presented an upgraded version of the adaptive neuro-fuzzy
inference system (ANFIS) for forecasting the air quality index in Wuhan City, China. The
PSOSMA is a hybrid optimization approach that uses a novel modified meta-heuristics
(MH) algorithm, and a slime mold algorithm (SMA), which is enhanced by employing the
particle swarm optimizer to increase ANFIS performance (PSO). The proposed PSOSMA-
ANFIS was trained using three years of air quality index time series data and then used to
forecast fine particulate matter (PM2.5), sulfur dioxide (SO2), carbon dioxide (CO2), and
nitrogen dioxide (NO2) for a year. The suggested PSOSMA was also compared with various
MH algorithms used to train ANFIS. The results discovered that the improved ANFIS
incorporating PSOSMA outperformed the other methods.

Zhou et al. [29] discussed the COVID-19 forecasting, using the relevance of govern-
ment initiatives in their suggested model, the Interpretable Temporal Attention Network
(ITANet). Long short-term memory (LSTM) for temporal feature extraction and multi-head
attention for the long-term dependency caption are used in the proposed model, which has
an encoder–decoder architecture. The ITANet outperforms other models when it comes to
anticipating COVID-19 new confirmed cases.

Saravanan et al. [30] described the impact of lockdown measures on air quality and
rainwater accumulation in major cities. With respect to varying time length and climatic
variables, the effects of COVID-19 on the environment during lockdown conditions were
compared with those without lockdown conditions. During the lockdown, the concentra-
tions of particulate pollution in Chennai, Bangalore, Delhi, and Melbourne were measured.
The findings of this research indicate the effects of government actions and give a detailed
perspective of the death rate in relation to air quality decrease.

Xu, et al. [31] created three deep learning models in their study to forecast the number
of COVID-19 cases for Brazil, India, and Russia, including CNN, LSTM, and CNN-LSTM.
The LSTM model, among the models constructed in this study, has the best forecast-
ing performance, which indicates an improvement in prediction accuracy over certain
current models.

Fu, et al. [32] used experimental public data sets from the Johns Hopkins University
Center for Systems Science and Engineering (JHU CSSE), the Air Quality Open Data Plat-
form, the China Meteorological Data Network, and the WorldPop website. The Dual-link
Bi-GRU Network predicts the epidemic scenario, and the Gauss–Newton iteration method
quantifies the relationship between epidemic spread and other feature parameters. Among
the selected characteristic elements, the study discovered that population density had the
most positive link with pandemic spread, followed by the number of landing planes.

Mumtaz, et al. [33] suggested an indoor air quality monitoring and prediction system
based on the newest Internet of Things (IoT) sensors and machine learning capabilities,
which can assess a variety of indoor pollutants. An IoT node including numerous sensors
for eight pollutants, including NH3, CO, NO2, CH4, CO2, PM2.5, as well as the ambient
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temperature and air humidity, has been designed for this purpose. With an accuracy of
99.37%, precision of 99%, recall of 98%, and F1-score of 99%, this model has showed promise
in forecasting air pollutants’ concentrations as well as overall air quality.

2.3. LSTM Network

In nonlinear sequence prediction issues, the LSTM network is a recurrent neural
network (RNN) design that can learn order dependence. They have a habit of memorizing
things for a long period. The memory cell, which substitutes classic neurons’ hidden layers,
is at the foundation of the LSTM network [34]. The LSTM networks, similarly to other
RNNs, feature recurrent cells, but instead of a single NN gate, the recurring cell has an
interactive input gate, output gate, and forget gate [35]. The cell remembers values for
arbitrary time intervals, and these three gates control the flow of information into and out
of the cell. Based on the past state, accessible memory, and current input, this structure
guarantees that the LSTM can recognize which cells are stimulated and compressed. The
LSTM networks were created to solve the problem of disappearing gradients that might
occur when training traditional RNNs. As there may be unexpected delays between
critical occurrences in a time series, LSTM networks are ideally suited for categorizing,
processing, and generating predictions based on time series data. In many cases, LSTM has
an advantage over RNNs, hidden Markov models, and other sequence learning approaches
due to its relative insensitivity to gap length; therefore, we selected LSTM as the model to
predict the integration of COVID-19 and air pollutant data.

3. Materials and Methods

In this section, we presented the materials and methods, including the dataset used in
this paper, the research workflows, and the LSTM training method.

3.1. Dataset

The dataset was extracted from different resources, as follows.

• India’s COVID-19 dataset per state.
• AQI in India per State.
• These two datasets were then integrated based on Delhi as the case study.
• From the data integration of AQI and COVID-19, we obtained 609 records from the

period of 2 March 2020 to 31 October 2021.

Based on these resources, we obtained the parameters, as described in Table 2.

Table 2. Dataset parameters.

No. Parameter Unit Name

1 COVID-19 Confirmed Daily cases The number of persons infected
by COVID-19 in Delhi, India

2 PM2.5 µg/m3 Fine aerosol

3 PM10 µg/m3 Aerosol

4 WIND_SPEED m/s Wind speed

5 WIND_GUST Knots A sudden burst in wind speed

6 O3 Part per billion (ppb) Ozone

7 CO Part per million (ppm) Carbon monoxide

8 Humidity (g/kg) Water vapor per kilogram of air

9 Pressure Atmosphere (atm) Air pressure

10 Dew Celsius Temperature
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Table 2. Cont.

No. Parameter Unit Name

11 NO2 Part per billion (ppb) Nitrogen dioxide

12 Precipitation Millimeter (mm) Water vapor

13 WIND_DIREC Degree Wind direction hourly

3.2. Research Workflows

First, we collected the dataset from two resources. The first resource is from the Indian
government’s COVID-19 dataset per state, from which, Delhi was selected. The second
resource was the AQI parameters based on city/state (again, we selected Delhi). Then,
we integrated these two resources based on per day values. After that, we separated the
lag time between air pollution and COVID-19 confirmed cases for 1, 3, 7, and 14 day lag
times. In this case, the majority approach of lag time selections rely on trials to determine
the best time-lags, which may not always be sufficient in real-world circumstances [36–39].
These approaches, on the other hand, are mostly based on trial-and-error scenarios, which
necessitates the training of various models multiple times in order to identify the best
among them. Next, we train the dataset using LSTM and use the models [40–42]. Figure 1
shows the workflows of this research.
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3.3. Data Preprocessing

In machine learning, data preparation is a critical step that helps improve data quality
and facilitates the extraction of relevant insights from the data [43,44]. After we integrated
COVID-19 confirmed cases and air pollutants, we completed the data preprocessing. The
data preprocessing was conducted as follows.

1. For handling the missing values, we marked all NA values with 0.
2. To make sure that the calculations are fine, we ensured that all data were floats.
3. To complete the standardization of all values, we normalized all features.
4. Then, we converted our time-series data to a supervised learning problem.
5. For the model’s training requirements, we split the dataset into training and test sets.
6. Next, we paired the input and outputs from the data sequence.
7. For LSTM model, we needed to reshape the input into 3D (samples, timesteps, features).

3.4. LSTM Training Modelling

The design network for the training model is illustrated in Figures 2 and 3, as follows.



Int. J. Environ. Res. Public Health 2022, 19, 6373 9 of 19

Int. J. Environ. Res. Public Health 2022, 19, x 9 of 20 
 

 

3.3. Data Preprocessing 

In machine learning, data preparation is a critical step that helps improve data qual-

ity and facilitates the extraction of relevant insights from the data [43,44]. After we inte-

grated COVID-19 confirmed cases and air pollutants, we completed the data prepro-

cessing. The data preprocessing was conducted as follows. 

1. For handling the missing values, we marked all NA values with 0. 

2. To make sure that the calculations are fine, we ensured that all data were floats. 

3. To complete the standardization of all values, we normalized all features. 

4. Then, we converted our time-series data to a supervised learning problem. 

5. For the model’s training requirements, we split the dataset into training and test sets. 

6. Next, we paired the input and outputs from the data sequence. 

7. For LSTM model, we needed to reshape the input into 3D (samples, timesteps, fea-

tures). 

3.4. LSTM Training Modelling 

The design network for the training model is illustrated in Figures 2 and 3, as follows. 

 

Figure 2. LSTM layers model. 

 

Figure 3. LSTM model plot. 

Figure 2. LSTM layers model.

Int. J. Environ. Res. Public Health 2022, 19, x 9 of 20 
 

 

3.3. Data Preprocessing 

In machine learning, data preparation is a critical step that helps improve data qual-

ity and facilitates the extraction of relevant insights from the data [43,44]. After we inte-

grated COVID-19 confirmed cases and air pollutants, we completed the data prepro-

cessing. The data preprocessing was conducted as follows. 

1. For handling the missing values, we marked all NA values with 0. 

2. To make sure that the calculations are fine, we ensured that all data were floats. 

3. To complete the standardization of all values, we normalized all features. 

4. Then, we converted our time-series data to a supervised learning problem. 

5. For the model’s training requirements, we split the dataset into training and test sets. 

6. Next, we paired the input and outputs from the data sequence. 

7. For LSTM model, we needed to reshape the input into 3D (samples, timesteps, fea-

tures). 

3.4. LSTM Training Modelling 

The design network for the training model is illustrated in Figures 2 and 3, as follows. 

 

Figure 2. LSTM layers model. 

 

Figure 3. LSTM model plot. Figure 3. LSTM model plot.

The model was compiled with the setting:

• model.compile(loss = ‘mae’, optimizer = ‘adam’)
• EarlyStopping(monitor = “val_loss”, patience = 20, verbose = 1, mode = “auto”)
• history = model.fit(train_X, train_y, epochs = 200, batch_size = 72, validation_data =

(test_X, test_y), validation_split = 0.33, verbose = 1, shuffle = False, callbacks = [callback])

The training was based on MAE Loss, with an Adam Optimizer. We implemented the
EarlyStopping method to avoid overfitting. The fit network was set in 200 epochs, and a
72 batch size.

To make a prediction, the process is as follows.

• Feed the model into test data.
• Invert scaling for forecast data.
• Invert scaling for actual data.
• Calculate RMSE.

4. Results

Based on the designed experiments, we have 28 models for comparison. The results
are as follows.
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4.1. Matrix Correlations

Based on the matrix correlation in Figure 4, it can be seen that there are 3 parameters
that have a strong positive correlation, which are pressure, NO2, and PM2.5 at 0.53, 0.45,
and 0.42, respectively.
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4.2. Model Training Results

The purpose of the learning algorithm is to find a decent match between an overfit and
an underfit model. A good fit is defined as a training and validation loss that declines to the
point of stability with a slight difference between the two final loss values. The model’s loss
is usually always smaller than the validation dataset on the training dataset. It implies that
a divergence between the training and validation loss learning curves should be expected.
If the training loss plot drops to the point of stability, the plot of learning curves reveals
a satisfactory match. The validation loss plot reaches a point of stability, with a tiny gap
between it and the training loss, as shown in Figures 5–18. Figures 5, 7, 9, 11, 13, 15 and 17
illustrate that all the learning curves were a good fit; therefore, when plotted, the prediction
looks to be substantially closer to the test set, as shown in Figures 6, 8, 10, 12, 14, 16 and 18.

• COVID-19 Confirmed Cases and all AQI Parameters



Int. J. Environ. Res. Public Health 2022, 19, 6373 11 of 19

Int. J. Environ. Res. Public Health 2022, 19, x 11 of 20 
 

 

4.2. Model Training Results 

The purpose of the learning algorithm is to find a decent match between an overfit 

and an underfit model. A good fit is defined as a training and validation loss that declines 

to the point of stability with a slight difference between the two final loss values. The 

model’s loss is usually always smaller than the validation dataset on the training dataset. 

It implies that a divergence between the training and validation loss learning curves 

should be expected. If the training loss plot drops to the point of stability, the plot of learn-

ing curves reveals a satisfactory match. The validation loss plot reaches a point of stability, 

with a tiny gap between it and the training loss, as shown in Figures 5–18. Figures 5, 7, 9, 

11, 13, 15 and 17 illustrate that all the learning curves were a good fit; therefore, when 

plotted, the prediction looks to be substantially closer to the test set, as shown in Figures 

6, 8, 10, 12, 14, 16 and 18. 

• COVID-19 Confirmed Cases and all AQI Parameters 

 

Figure 5. Training and test of all AQI parameters during the 1, 3, 7, and 14 day lag times. 

 

Figure 6. Prediction vs. actual results of AQI parameters during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and PM2.5 Parameters 

Figure 5. Training and test of all AQI parameters during the 1, 3, 7, and 14 day lag times.

Int. J. Environ. Res. Public Health 2022, 19, x 11 of 20 
 

 

4.2. Model Training Results 

The purpose of the learning algorithm is to find a decent match between an overfit 

and an underfit model. A good fit is defined as a training and validation loss that declines 

to the point of stability with a slight difference between the two final loss values. The 

model’s loss is usually always smaller than the validation dataset on the training dataset. 

It implies that a divergence between the training and validation loss learning curves 

should be expected. If the training loss plot drops to the point of stability, the plot of learn-

ing curves reveals a satisfactory match. The validation loss plot reaches a point of stability, 

with a tiny gap between it and the training loss, as shown in Figures 5–18. Figures 5, 7, 9, 

11, 13, 15 and 17 illustrate that all the learning curves were a good fit; therefore, when 

plotted, the prediction looks to be substantially closer to the test set, as shown in Figures 

6, 8, 10, 12, 14, 16 and 18. 

• COVID-19 Confirmed Cases and all AQI Parameters 

 

Figure 5. Training and test of all AQI parameters during the 1, 3, 7, and 14 day lag times. 

 

Figure 6. Prediction vs. actual results of AQI parameters during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and PM2.5 Parameters 

Figure 6. Prediction vs. actual results of AQI parameters during the 1, 3, 7, and 14 day lag times.

• COVID-19 Confirmed Cases and PM2.5 Parameters

Int. J. Environ. Res. Public Health 2022, 19, x 12 of 20 
 

 

 

Figure 7. Training and test for PM2.5 during the 1, 3, 7, and 14 day lag times. 

 

Figure 8. Prediction vs. actual results of PM2.5 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and NO2 Parameters 

 

Figure 9. Training and test for NO2 during the 1, 3, 7, and 14 day lag times. 

Figure 7. Training and test for PM2.5 during the 1, 3, 7, and 14 day lag times.



Int. J. Environ. Res. Public Health 2022, 19, 6373 12 of 19

Int. J. Environ. Res. Public Health 2022, 19, x 12 of 20 
 

 

 

Figure 7. Training and test for PM2.5 during the 1, 3, 7, and 14 day lag times. 

 

Figure 8. Prediction vs. actual results of PM2.5 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and NO2 Parameters 

 

Figure 9. Training and test for NO2 during the 1, 3, 7, and 14 day lag times. 

Figure 8. Prediction vs. actual results of PM2.5 during the 1, 3, 7, and 14 day lag times.

• COVID-19 Confirmed Cases and NO2 Parameters

Int. J. Environ. Res. Public Health 2022, 19, x 12 of 20 
 

 

 

Figure 7. Training and test for PM2.5 during the 1, 3, 7, and 14 day lag times. 

 

Figure 8. Prediction vs. actual results of PM2.5 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and NO2 Parameters 

 

Figure 9. Training and test for NO2 during the 1, 3, 7, and 14 day lag times. Figure 9. Training and test for NO2 during the 1, 3, 7, and 14 day lag times.

Int. J. Environ. Res. Public Health 2022, 19, x 13 of 20 
 

 

 

Figure 10. Prediction vs. actual results of NO2 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and Pressure Parameters 

 

Figure 11. Training and test for pressure during the 1, 3, 7, and 14 day lag times. 

 

Figure 10. Prediction vs. actual results of NO2 during the 1, 3, 7, and 14 day lag times.



Int. J. Environ. Res. Public Health 2022, 19, 6373 13 of 19

• COVID-19 Confirmed Cases and Pressure Parameters

Int. J. Environ. Res. Public Health 2022, 19, x 13 of 20 
 

 

 

Figure 10. Prediction vs. actual results of NO2 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and Pressure Parameters 

 

Figure 11. Training and test for pressure during the 1, 3, 7, and 14 day lag times. 

 

Figure 11. Training and test for pressure during the 1, 3, 7, and 14 day lag times.

Int. J. Environ. Res. Public Health 2022, 19, x 13 of 20 
 

 

 

Figure 10. Prediction vs. actual results of NO2 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and Pressure Parameters 

 

Figure 11. Training and test for pressure during the 1, 3, 7, and 14 day lag times. 

 

Figure 12. Prediction vs. actual results of pressure during the 1, 3, 7, and 14 day lag times.

• COVID-19 Confirmed Cases and O3 Parameters

Int. J. Environ. Res. Public Health 2022, 19, x 14 of 20 
 

 

Figure 12. Prediction vs. actual results of pressure during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and O3 Parameters 

 

Figure 13. Training and test for O3 during the 1, 3, 7, and 14 day lag times. 

 

Figure 14. Prediction vs. actual results of O3 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and CO Parameters 

 

Figure 15. Training and test for CO during the 1, 3, 7, and 14 day lag times. 

Figure 13. Training and test for O3 during the 1, 3, 7, and 14 day lag times.



Int. J. Environ. Res. Public Health 2022, 19, 6373 14 of 19

Int. J. Environ. Res. Public Health 2022, 19, x 14 of 20 
 

 

Figure 12. Prediction vs. actual results of pressure during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and O3 Parameters 

 

Figure 13. Training and test for O3 during the 1, 3, 7, and 14 day lag times. 

 

Figure 14. Prediction vs. actual results of O3 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and CO Parameters 

 

Figure 15. Training and test for CO during the 1, 3, 7, and 14 day lag times. 

Figure 14. Prediction vs. actual results of O3 during the 1, 3, 7, and 14 day lag times.

• COVID-19 Confirmed Cases and CO Parameters

Int. J. Environ. Res. Public Health 2022, 19, x 14 of 20 
 

 

Figure 12. Prediction vs. actual results of pressure during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and O3 Parameters 

 

Figure 13. Training and test for O3 during the 1, 3, 7, and 14 day lag times. 

 

Figure 14. Prediction vs. actual results of O3 during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and CO Parameters 

 

Figure 15. Training and test for CO during the 1, 3, 7, and 14 day lag times. Figure 15. Training and test for CO during the 1, 3, 7, and 14 day lag times.

Int. J. Environ. Res. Public Health 2022, 19, x 15 of 20 
 

 

 

Figure 16. Prediction vs. actual results for CO during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and Humidity Parameters 

 

Figure 17. Training and test for humidity during the 1, 3, 7, and 14 day lag times. 

 

Figure 18. Prediction vs. actual results for Humidity during the 1, 3, 7, and 14 day lag times. 

Figure 16. Prediction vs. actual results for CO during the 1, 3, 7, and 14 day lag times.



Int. J. Environ. Res. Public Health 2022, 19, 6373 15 of 19

• COVID-19 Confirmed Cases and Humidity Parameters

Int. J. Environ. Res. Public Health 2022, 19, x 15 of 20 
 

 

 

Figure 16. Prediction vs. actual results for CO during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and Humidity Parameters 

 

Figure 17. Training and test for humidity during the 1, 3, 7, and 14 day lag times. 

 

Figure 18. Prediction vs. actual results for Humidity during the 1, 3, 7, and 14 day lag times. 

Figure 17. Training and test for humidity during the 1, 3, 7, and 14 day lag times.

Int. J. Environ. Res. Public Health 2022, 19, x 15 of 20 
 

 

 

Figure 16. Prediction vs. actual results for CO during the 1, 3, 7, and 14 day lag times. 

• COVID-19 Confirmed Cases and Humidity Parameters 

 

Figure 17. Training and test for humidity during the 1, 3, 7, and 14 day lag times. 

 

Figure 18. Prediction vs. actual results for Humidity during the 1, 3, 7, and 14 day lag times. Figure 18. Prediction vs. actual results for Humidity during the 1, 3, 7, and 14 day lag times.

4.3. RMSE and Variance Model Comparison

The RMSE comparison graph in Figure 19 illustrates the comparison of LSTM models
of COVID-19 confirmed cases and air pollutant parameters. The dataset was divided into
four lag times: 1, 3, 7, and 14 days.

1. The first model contains all air pollutant parameter training, which uses 12 parameters,
PM2.5, PM10, WIND_SPEED, WIND_GUST, O3, CO, Humidity, Pressure, Dew, NO2,
Precipitation, and WIND_DIREC. The results show that the RMSE values are the
highest compared with the other models, at 66.6967 for the 1 day lag time, 80.6172
for the 3 day lag time, 80.6172 for the 7 day lag time, and 75.9652 for the 14 day lag
time, respectively.

2. The second model uses PM2.5 parameter training. It can be seen from the results that
the RMSE values reach 20.2212 for the 1 day lag time, 20.1812 for the 3 day lag time,
20.1812 for the 7 day lag time, and 20.2813 for the 14 day lag time, respectively.

3. The third model uses NO2 parameter training. It can be seen from the results that
the RMSE values reach 19.7336 for the 1 day lag time, 19.8656 for the 3 day lag time,
19.8656 for the 7 day lag time, and 19.6443 for the 14 day lag time, respectively.

4. The fourth model uses pressure parameter training. It can be seen from the results
that the RMSE values reach 15.0469 for the 1 day lag time, 15.5343 for the 3 day lag
time, 15.5343 for the 7 day lag time, and 14.382 for the 14 day lag time, respectively.

5. The fifth model uses O3 parameter training. It can be seen from the results that the
RMSE values reach 21.9336 for the 1 day lag time, 22.2551 for the 3 day lag time,
22.2551 for the 7 day lag time, and 21.9604 for the 14 day lag time, respectively.
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6. The sixth model is the most excellent model compared to the others, it uses CO
parameter training. It can be seen from the results that the RMSE values reach 12.931
for the 1 day lag time, 13.1081 for the 3 day lag time, 13.1081 for the 7 day lag time,
and 12.8699 for the 14 day lag time, respectively.

7. Finally, the seventh model uses humidity parameter training. It can be seen from
the results that the RMSE values reach 37.9753 for the 1 day lag time, 36.4467 for
the 3 day lag time, 36.4467 for the 7 day lag time, and 35.4713 for the 14 day lag
time, respectively.
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The explained variance is a metric for determining how much variability exists in a
machine learning model’s predictions. To put it another way, it is the difference between
the expected and forecasted values. Understanding how much information we can lose
by reconciling the dataset is a crucial subject. At least 60% of the variation in a machine
learning model must be explained. The goal is to have a value that is low. From the Graph
Variance Score Comparison in Figure 20, it can be seen that the fourth model (pressure
parameter training) has excellent variance scores at more than 0.9, whereas the first model
has the worst variance scores. NO2, PM2.5, CO, and humidity models have a score of more
than 0.8, which is also acceptable.
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5. Conclusions and Future Work

This study investigates the correlation of COVID-19 confirmed cases with AQI pa-
rameters using deep learning. The dataset was divided into four lag times, 1, 3, 7, and
14 days. From the lag times experiments, it can be found that one day lag time has an
excellent RMSE. The deep learning models were good using the association of COVID-19
and air pollutants in the 1 day lag time scenario. We also performed the correlation in the
matrix correlation coefficient, and the results show that the orders are pressure, NO2, PM2.5,
PM10, CO, and O3, followed by humidity; however, these orders were different when we
trained using deep learning. Seven models have experimented with deep learning LSTM,
and COVID-19 confirmed cases with all air pollutant parameters, PM2.5, NO2, pressure,
O3, CO, and humidity. From the training models, we found that CO is the most excellent
model compared with the others, having on average, 13 RMSE values. CO is followed by
pressure at 15, PM2.5 at 20, NO2 at 20, O3 at 22, humidity at 37, and finally, all air pollutant
parameters at 76. As a result of the finding, we assume that CO, Pressure, NO2, and PM2.5
have a significant role in COVID-19 confirmed rates. In the future, more machine learning
algorithms can be conducted to compare these results. Moreover, other data resources,
such as people mobility, social media, and other countries’ data, might be analyzed in
deep experiments.

Author Contributions: Conceptualization, Y.-T.T. and P.-Y.L.; methodology, C.-T.Y. and W.-M.C.;
software, E.K.; validation, Y.-T.T., P.-Y.L. and C.-T.Y.; formal analysis, E.K. and C.-T.Y.; investigation,
C.-T.Y.; resources, Y.-T.T. and P.-Y.L.; data curation, E.K.; writing—original draft preparation, E.K.;
writing—review and editing, Y.-T.T., P.-Y.L., W.-M.C. and C.-T.Y.; supervision, C.-T.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was sponsored by the Ministry of Science and Technology (MOST), Taiwan,
under Grant No. MOST 110-2221-E-029-020-MY3, MOST 110-2621-M-029-003, MOST 110-2811-E-029-
003, and MOST 111-2622-E-029-003. This work also supported by grants from Taichung Veterans
General Hospital (TCVGH), Taiwan under Grant No. TCVGH-T1087804, TCVGH-T1097801, TCVGH-
T1107803, TCVGH-1107201C, TCVGH-T1117803, TCVGH-NK1099003, and TCVGH-1103602D.

Institutional Review Board Statement: Not applicable.



Int. J. Environ. Res. Public Health 2022, 19, 6373 18 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available in a publicly accessible repository that does not
issue DOIs. Publicly available datasets were analyzed in this study. This data can be found here: https:
//api.COVID-19india.org/csv/latest/states.csv and https://aqicn.org/data-platform/COVID-19/
accessed on 1 January 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rossen, L.M.; Branum, A.M.; Ahmad, F.B.; Sutton, P.; Anderson, R.N. Excess Deaths Associated with COVID-19, by Age and

Race and Ethnicity—United States, 26 January–3 October 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1522–1527. [CrossRef]
[PubMed]

2. Pozzer, A.; Dominici, F.; Haines, A.; Witt, C.; Münzel, T.; Lelieveld, J. Regional and global contributions of air pollution to risk of
death from COVID-19. Cardiovasc. Res. 2020, 116, 2247–2253. [CrossRef] [PubMed]

3. Lu, H.; Ma, X.; Ma, M. A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering
COVID-19. Energy 2021, 219, 119568. [CrossRef]

4. Tsan, Y.-T.; Chen, D.-Y.; Liu, P.-Y.; Kristiani, E.; Nguyen, K.L.P.; Yang, C.-T. The Prediction of Influenza-like Illness and Respiratory
Disease Using LSTM and ARIMA. Int. J. Environ. Res. Public Health 2022, 19, 1858. [CrossRef] [PubMed]

5. Rodríguez-Pérez, R.; Bajorath, J. Feature importance correlation from machine learning indicates functional relationships between
proteins and similar compound binding characteristics. Sci. Rep. 2021, 11, 14245. [CrossRef] [PubMed]

6. Malki, Z.; Atlam, E.-S.; Hassanien, A.E.; Dagnew, G.; Elhosseini, M.A.; Gad, I. Association between weather data and COVID-19
pandemic predicting mortality rate: Machine learning approaches. Chaos Solitons Fractals 2020, 138, 110137. [CrossRef] [PubMed]

7. Wan, H.; Guo, S.; Yin, K.; Liang, X.; Lin, Y. CTS-LSTM: LSTM-based neural networks for correlated time series prediction.
Knowl.-Based Syst. 2020, 191, 105239. [CrossRef]

8. Jiao, R.; Zhang, T.; Jiang, Y.; He, H. Short-Term Non-Residential Load Forecasting Based on Multiple Sequences LSTM Recurrent
Neural Network. IEEE Access 2018, 6, 59438–59448. [CrossRef]

9. Cui, Y.; Zhang, Z.F.; Froines, J.; Zhao, J.; Wang, H.; Yu, S.Z.; Detels, R. Air pollution and case fatality of SARS in the People’s
Republic of China: An ecologic study. Environ. Health 2003, 2, 15. [CrossRef]

10. Kan, H.-D.; Chen, B.-H.; Fu, C.-W.; Yu, S.-Z.; Mu, L.-N. Relationship between ambient air pollution and daily mortality of SARS
in Beijing. Biomed. Environ. Sci. 2005, 18, 1–4.

11. Zhao, Y.; Richardson, B.; Takle, E.; Chai, L.; Schmitt, D.; Xin, H. Airborne transmission may have played a role in the spread of
2015 highly pathogenic avian influenza outbreaks in the United States. Sci. Rep. 2019, 9, 11755. [CrossRef] [PubMed]

12. Chen, G.; Zhang, W.; Li, S.; Zhang, Y.; Williams, G.; Huxley, R.; Ren, H.; Cao, W.; Guo, Y. The impact of ambient fine particles on
influenza transmission and the modification effects of temperature in China: A multi-city study. Environ. Int. 2017, 98, 82–88.
[CrossRef] [PubMed]

13. Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence
from China. Sci. Total Environ. 2020, 727, 138704. [CrossRef] [PubMed]

14. Gupta, A.; Bherwani, H.; Gautam, S.; Anjum, S.; Musugu, K.; Kumar, N.; Anshul, A.; Kumar, R. Air pollution aggravating
COVID-19 lethality? Exploration in Asian cities using statistical models. Environ. Dev. Sustain. 2021, 23, 6408–6417. [CrossRef]

15. Lolli, S.; Chen, Y.-C.; Wang, S.-H.; Vivone, G. Impact of meteorological conditions and air pollution on COVID-19 pandemic
transmission in Italy. Sci. Rep. 2020, 10, 16213.

16. Bashir, M.F.; Ma, B.; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic
in New York, USA. Sci. Total Environ. 2020, 728, 138835. [CrossRef] [PubMed]

17. Suhaimi, N.F.; Jalaludin, J.; Latif, M.T. Demystifying a Possible Relationship between COVID-19, Air Quality and Meteorological
Factors: Evidence from Kuala Lumpur, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1520–1529. [CrossRef]

18. Mehmood, K.; Bao, Y.; Abrar, M.M.; Petropoulos, G.P.; Soban, A.; Saud, S.; Khan, Z.A.; Khan, S.M.; Fahad, S. Spatiotemporal
variability of COVID-19 pandemic in relation to air pollution, climate and socioeconomic factors in Pakistan. Chemosphere 2021,
271, 129584. [CrossRef]

19. Hoang, T.; Tran, T.T.A. Ambient air pollution, meteorology, and COVID-19 infection in Korea. J. Med. Virol. 2021, 93, 878–885.
[CrossRef]

20. Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England.
Environ. Pollut. 2021, 268, 115859. [CrossRef]

21. Lorenzo, J.S.L.; Tam, W.W.S.; Seow, W.J. Association between air quality, meteorological factors and COVID-19 infection case
numbers. Environ. Res. 2021, 197, 111024. [CrossRef] [PubMed]

22. Mandalapu, A.; Jiao, J.; Azimian, A. Exploring the Spatial Distribution of Air Pollutants and COVID-19 Death Rate: A Case Study
for Los Angeles County, California. Int. J. Geospat. Environ. Res. 2022, 9, 4.

23. Sidell, M.A.; Chen, Z.; Huang, B.Z.; Chow, T.; Eckel, S.P.; Martinez, M.P.; Lurmann, F.; Thomas, D.C.; Gilliland, F.D.; Xiang, A.H.
Ambient air pollution and COVID-19 incidence during four 2020–2021 case surges. Environ. Res. 2022, 208, 112758. [CrossRef]
[PubMed]

https://api.COVID-19india.org/csv/latest/states.csv
https://api.COVID-19india.org/csv/latest/states.csv
https://aqicn.org/data-platform/COVID-19/
http://doi.org/10.15585/mmwr.mm6942e2
http://www.ncbi.nlm.nih.gov/pubmed/33090978
http://doi.org/10.1093/cvr/cvaa288
http://www.ncbi.nlm.nih.gov/pubmed/33236040
http://doi.org/10.1016/j.energy.2020.119568
http://doi.org/10.3390/ijerph19031858
http://www.ncbi.nlm.nih.gov/pubmed/35162879
http://doi.org/10.1038/s41598-021-93771-y
http://www.ncbi.nlm.nih.gov/pubmed/34244588
http://doi.org/10.1016/j.chaos.2020.110137
http://www.ncbi.nlm.nih.gov/pubmed/32834583
http://doi.org/10.1016/j.knosys.2019.105239
http://doi.org/10.1109/ACCESS.2018.2873712
http://doi.org/10.1186/1476-069X-2-15
http://doi.org/10.1038/s41598-019-47788-z
http://www.ncbi.nlm.nih.gov/pubmed/31409807
http://doi.org/10.1016/j.envint.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27745688
http://doi.org/10.1016/j.scitotenv.2020.138704
http://www.ncbi.nlm.nih.gov/pubmed/32315904
http://doi.org/10.1007/s10668-020-00878-9
http://doi.org/10.1016/j.scitotenv.2020.138835
http://www.ncbi.nlm.nih.gov/pubmed/32334162
http://doi.org/10.4209/aaqr.2020.05.0218
http://doi.org/10.1016/j.chemosphere.2021.129584
http://doi.org/10.1002/jmv.26325
http://doi.org/10.1016/j.envpol.2020.115859
http://doi.org/10.1016/j.envres.2021.111024
http://www.ncbi.nlm.nih.gov/pubmed/33744266
http://doi.org/10.1016/j.envres.2022.112758
http://www.ncbi.nlm.nih.gov/pubmed/35063430


Int. J. Environ. Res. Public Health 2022, 19, 6373 19 of 19

24. Luo, K.; Wang, Z.; Wu, J. Association of population migration with air quality: Role of city attributes in China during COVID-19
pandemic (2019–2021). Atmos. Pollut. Res. 2022, 13, 101419. [CrossRef] [PubMed]

25. Abdullah, S.; Imran, M.A.; Mansor, A.A.; Yusof, K.M.K.K.; Dom, N.C.; Saijan, S.K.; Yatim, S.R.M.; Ahmed, A.N.; Ismail, M.
Association of Air Pollutant Index (API) on SARS-CoV-2 of Coronavirus Disease 2019 (COVID-19) in Malaysia. Asian J. Atmos.
Environ. 2022, 16, 2021094. [CrossRef]

26. Huang, H.; Lin, C.; Liu, X.; Zhu, L.; Avellán-Llaguno, R.D.; Lazo, M.M.L.; Ai, X.; Huang, Q. The impact of air pollution on
COVID-19 pandemic varied within different cities in South America using different models. Environ. Sci. Pollut. Res. 2022, 29,
543–552. [CrossRef]

27. Aragão, D.P.; Oliveira, E.V.; Bezerra, A.A.; dos Santos, D.H.; Da Silva, A.G., Jr.; Pereira, I.G.; Piscitelli, P.; Miani, A.; Distante, C.;
Cuno, J.S.; et al. Multivariate data driven prediction of COVID-19 dynamics: Towards new results with temperature, humidity
and air quality data. Environ. Res. 2022, 204, 112348. [CrossRef]

28. Al-Qaness, M.A.; Fan, H.; Ewees, A.A.; Yousri, D.; Elaziz, M.A. Improved ANFIS model for forecasting Wuhan City Air Quality
and analysis COVID-19 lockdown impacts on air quality. Environ. Res. 2021, 194, 110607. [CrossRef]

29. Zhou, B.; Yang, G.; Shi, Z.; Ma, S. Interpretable Temporal Attention Network for COVID-19 forecasting. Appl. Soft Comput. 2022,
120, 108691. [CrossRef]

30. Saravanan, M.; Velmurugan, S.; Bhanupriya, P.; Booma Devi, P. Exploitation of artificial intelligence for predicting the change in
air quality and rain fall accumulation during COVID-19. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–10. [CrossRef]

31. Xu, L.; Magar, R.; Farimani, A.B. Forecasting COVID-19 new cases using deep learning methods. Comput. Biol. Med. 2022,
144, 105342. [CrossRef] [PubMed]

32. Fu, Y.; Lin, S.; Xu, Z. Research on Quantitative Analysis of Multiple Factors Affecting COVID-19 Spread. Int. J. Environ. Res.
Public Health 2022, 19, 3187. [CrossRef] [PubMed]

33. Mumtaz, R.; Zaidi, S.; Shakir, M.Z.; Shafi, U.; Malik, M.M.; Haque, A.; Mumtaz, S.; Zaidi, S. Internet of Things (IoT) Based Indoor
Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective. Electronics 2021, 10, 184. [CrossRef]

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
35. Altan, A.; Karasu, S.; Bekiros, S. Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing tech-niques.

Chaos Solit. Fractals 2019, 126, 325–336. [CrossRef]
36. Wang, Y.; Lin, K.; Qi, Y.; Lian, Q.; Feng, S.; Wu, Z.; Pan, G. Estimating Brain Connectivity with Varying-Length Time Lags Using a

Recurrent Neural Network. IEEE Trans. Biomed. Eng. 2018, 65, 1953–1963. [CrossRef]
37. Lim, Y.B.; Aliyu, I.; Lim, C.G. Air pollution matter prediction using recurrent neural networks with sequential data. In Proceedings

of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Male, Maldives, 23–24
March 2019; pp. 40–44.

38. Fung, P.L.; Zaidan, M.A.; Surakhi, O.; Tarkoma, S.; Petäjä, T.; Hussein, T. Data imputation in in situ-measured particle size
distributions by means of neural networks. Atmos. Meas. Tech. 2021, 14, 5535–5554. [CrossRef]

39. Surakhi, O.; Zaidan, M.A.; Fung, P.L.; Motlagh, N.H.; Serhan, S.; AlKhanafseh, M.; Ghoniem, R.M.; Hussein, T. Time-Lag Selection
for Time-Series Forecasting Using Neural Network and Heuristic Algorithm. Electronics 2021, 10, 2518. [CrossRef]

40. Kristiani, E.; Kuo, T.-Y.; Yang, C.-T.; Pai, K.-C.; Huang, C.-Y.; Nguyen, K.L.P. PM2.5 Forecasting Model Using a Combination of
Deep Learning and Statistical Feature Selection. IEEE Access 2021, 9, 68573–68582. [CrossRef]

41. Kristiani, E.; Lin, H.; Lin, J.R.; Chuang, Y.H.; Huang, C.Y.; Yang, C.T. Short-term prediction of PM2. 5 using LSTM deep learning
methods. Sustainability 2022, 14, 2068. [CrossRef]

42. Kristiani, E.; Chen, Y.-A.; Yang, C.-T.; Huang, C.-Y.; Tsan, Y.-T.; Chan, W.-C. Using deep ensemble for influenza-like illness
consultation rate prediction. Futur. Gener. Comput. Syst. 2021, 117, 369–386. [CrossRef]

43. Yang, C.-T.; Chen, Y.-A.; Chan, Y.-W.; Lee, C.-L.; Tsan, Y.-T.; Chan, W.-C.; Liu, P.-Y. Influenza-like illness prediction using a long
short-term memory deep learning model with multiple open data sources. J. Supercomput. 2020, 76, 9303–9329. [CrossRef]

44. Liu, P.-Y.; Tsan, Y.-T.; Chan, Y.-W.; Chan, W.-C.; Shi, Z.-Y.; Yang, C.-T.; Lou, B.-S. Associations of PM2.5 and aspergillosis: Ambient
fine particulate air pollution and population-based big data linkage analyses. J. Ambient Intell. Humaniz. Comput. 2018, 1–11.
[CrossRef]

http://doi.org/10.1016/j.apr.2022.101419
http://www.ncbi.nlm.nih.gov/pubmed/35462624
http://doi.org/10.5572/ajae.2021.094
http://doi.org/10.1007/s11356-021-15508-8
http://doi.org/10.1016/j.envres.2021.112348
http://doi.org/10.1016/j.envres.2020.110607
http://doi.org/10.1016/j.asoc.2022.108691
http://doi.org/10.1080/15567036.2020.1834646
http://doi.org/10.1016/j.compbiomed.2022.105342
http://www.ncbi.nlm.nih.gov/pubmed/35247764
http://doi.org/10.3390/ijerph19063187
http://www.ncbi.nlm.nih.gov/pubmed/35328880
http://doi.org/10.3390/electronics10020184
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1016/j.chaos.2019.07.011
http://doi.org/10.1109/TBME.2018.2842769
http://doi.org/10.5194/amt-14-5535-2021
http://doi.org/10.3390/electronics10202518
http://doi.org/10.1109/ACCESS.2021.3077574
http://doi.org/10.3390/su14042068
http://doi.org/10.1016/j.future.2020.12.004
http://doi.org/10.1007/s11227-020-03182-5
http://doi.org/10.1007/s12652-018-0852-x

	Introduction 
	Background Review and Related Work 
	Research on Association of Air Pollutant and COVID-19 
	Research on Prediction of Air Pollutant and COVID-19 Using Deep Learning 
	LSTM Network 

	Materials and Methods 
	Dataset 
	Research Workflows 
	Data Preprocessing 
	LSTM Training Modelling 

	Results 
	Matrix Correlations 
	Model Training Results 
	RMSE and Variance Model Comparison 

	Conclusions and Future Work 
	References

