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The role of human behaviour in the dynamics of infectious diseases cannot be underestimated. A clear understanding of how
human behaviour influences the spread of infectious diseases is critical in establishing and designing control measures. To
study the role that human behaviour plays in Ebola disease dynamics, in this paper, we design an Ebola virus disease model
with disease transmission dynamics based on a new exponential nonlinear incidence function. This new incidence function
that captures the reduction in disease transmission due to human behaviour innovatively considers the efficacy and the speed
of behaviour change. The model’s steady states are determined and suitable Lyapunov functions are built. The proofs of the
global stability of equilibrium points are presented. To demonstrate the utility of the model, we fit the model to Ebola virus
disease data from Liberia and Sierra Leone. The results which are comparable to existing findings from the outbreak of 2014 −
2016 show a better fit when the efficacy and the speed of behaviour change are higher. A rapid and efficacious behaviour
change as a control measure to rapidly control an Ebola virus disease epidemic is advocated. Consequently, this model has
implications for the management and control of future Ebola virus disease outbreaks.

1. Introduction

Population growth and density in health risk areas of our
societies do not facilitate the management of disasters whose
number keeps growing as time evolves [1]. When a catastro-
phe arises, people can exhibit controlled behaviour which
can take the form of intelligent and reasoned reactions [1].
However, panic or lack of knowledge can lead to a less con-
trolled behaviour demonstrated by consideration or auto-
mated behaviour for example [1]. The efficacy of behaviour
change can then be evaluated by the level of control in the
behaviour of the affected population. During EVD outbreak
of 2014 − 2016, the poor economic situation of the affected
countries and some cultural beliefs impacted the level of
control in the populations’ behaviour, especially at the early
stage of the epidemic.

High population mobility across porous borders, cul-
tural beliefs, community resistance, strikes by health per-

sonnel, and messages fuelling despair are all behaviour-
related factors listed by the World Health Organization
(WHO) which contributed to the rapid and invisible
spread of EVD [2]. Culturally meaningful behaviours such
as washing and touching the deceased and bush-meat con-
sumption practised in West Africa, unfortunately, helped
to fuel EVD spread [3]. The disease was new to the unpre-
pared health system of the affected countries which
detected it three months after its onset in Guinea. So, a
faster and more efficient behaviour change of the health
authorities and the population would have greatly limited
EVD spread and burden in West Africa [4, 5]. As a con-
sequence, any EVD modelling framework that aims at
controlling the disease must incorporate the efficacy and
the speed of behaviour change and this is done in this
manuscript. Mathematical models of Ebola virus disease
(EVD) can be divided into two groups: models that do
not account for infection due to EVD deceased and
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models that do. Models ignoring the deceased are classified
as SEIR or SIRmodels; see for instance [6–12]. The incidence
rate of these models is generally bilinear, i.e., of the form βSI.
The formulation of such an incidence function increases the
ease of analysing the models, including the global stability
analysis of the fixed points using LaSalle’s invariance principle
[6, 10, 12]. However, neglecting the contribution of the
deceased in the force of infection of EVD underestimates the
number of Ebola cases [13].

Several models of EVD including a compartment for the
deceased have been formulated and analysed; see for
instance [14–19]. The mathematical analysis of the equilibria
of such models mostly focuses on the determination of the
reproduction number and local stability analysis of equilib-
ria [17, 18]. The proof of the global stability of the equilibria
is often neglected because of the nonlinearity of the inci-
dence rate. Rivers et al. [15] modelled the impact of inter-
ventions on an epidemic of Ebola using a model that
accounts for infection during funerals (F). The total popula-
tion N , in this case, was made up of susceptibles ðSÞ, exposed
ðEÞ, infected ðIÞ, hospitalized ðHÞ, and recovered ðRÞ indi-
viduals. The incidence rate of the model which was given
by ðβSI + βHSH + βFSFÞ/N , accounted for infection during
hospitalisation and burials. A similar structure of the inci-
dence rate was used by Djiomba and Nyabadza [17] to inves-
tigate optimal control of EVD with educational campaigns,
active case finding, and pharmaceutical interventions and
Xia et al. [20] who modelled the transmission dynamics of
Ebola in Liberia.

More complex incidence rates or forces of infection are
found in disease models, especially those that incorporate
behaviour change. Stopping a disease outbreak, in general,
relies on the technical implementation of control strategies
like vaccination, treatment, or educational campaigns. In
the absence of treatment, a change in human behaviour will
be the only hope to stop the disease spread. So, human
behaviour remains the mainstay of any disease eradication,
including EVD [21].

Psychology and anthropology are not the only domains
interested in human behaviour. Mathematical modelling
has also focused on the effects of human behaviour on vari-
ous diseases’ evolution; see for instance [21–25]. However,
the quantification of human behaviour remains a challenge,
and its effects on disease evolution are often represented by
probabilities or by a modified incidence rate of the disease;
see for instance [22]. Del Valle et al. [26] formulated a model
to investigate the effects of behavioural changes in a small-
pox attack. They assumed that individuals within a commu-
nity change their behaviour and move from a normal active
group to a less active group, reducing their average number
of contacts, in response to a high prevalence of smallpox in
the community. The per-capita transfer rate between com-
partments was modelled by the function ϕi = aiðIn + IlÞ/ð1
+ biðIn + IlÞÞ per day with i = S, E, I and where n =
normally active, l = lessa ctive, and ai and bi being positive
constants that modulate the rate of change. Behavioural
change was thus taken to vary with the ϕi values and the
transmission rate of smallpox. The force of infection for
the normally active and less active was given by

λj =
γnIn + γlIl + γcW
γnAc + γlAl + γcAc

, ð1Þ

where Ac and W were, respectively, the confined and quar-
antined individuals, j = ðn, lÞ. They concluded that, besides
the standard intervention procedure that would affect the
extent and duration of a smallpox epidemic, the reduction
in contacts of people in response to information about the
epidemic was another contribution to smallpox control
[26]. Wang X et al. [27] modelled the influence of human
behaviour on cholera dynamics with a disease prevalence
contact rate βi = ai − bi miðIÞ, where ai is the contact rate
without considering the influence of human behaviour, bi
is the maximum reduced contact rate due to human behav-
iour, and miðIÞ = I/I + Ki, i = 1, 2, 3 where Ki is the half-
saturation constant function. The contact rate was driven
by a saturation function of the Michaelis Menten type. They
concluded that human behaviour can reduce the endemic
and epidemic levels, cholera spreading speeds, and the risk
of infection [27]. Fractional derivatives are also recently used
in disease modelling [28, 29]. A fractional model with behav-
iour is presented in [30]. This model uses fractional opera-
tors to investigate the asymptomatic behaviour of
immunogenic tumour dynamics. The predictor-corrector
method is adapted to the tumour-cell population dynamics
and used to develop a tracking control method that helps
to limit the growth of the tumour-cell population [30].

The impact of behaviour change on the spread of EVD
with a linear force of infection has been done in [31]. Most
of the EVD models that have been formulated to date are of
the types SEIR, SIR, SIRF, SEIRF, and SEIHRF: In this paper,
we consider a simple SIRD model, where D is the class of the
deceased with a new nonlinear incidence function. In general,
people abandon good behaviour when the perceived risk of a
disease is reduced or because of limited funds to continue
[32]. In the case of EVD, we assume that when the number
of infected cases is well pronounced, the fear of contracting
the disease obliges people to change their behaviour and a
decline in the number of cases follows. Disease incidence or
prevalence in a population has already been mentioned as a
motivator of behaviour change during an epidemic for the case
of influenza [26, 32]. Exponential functions have been sug-
gested to represent the probability of disease transmission in
the case of alertness to disease by Lio et al. [33]. Fast et al.
[34] used a decreasing exposition probability, due to behav-
iour change between susceptible and infected individuals, to
assess the role of social mobilisation in EVD control in Lofa.

The absence of treatment for EVD is a source of fear
within the affected population and motivates a change in
their behaviour leading to reduced disease transmission,
especially when the number of infected cases reaches unex-
pected high values. In this model, we innovatively introduce
a nonlinear force of infection that considers the efficacy and
human behaviour change which were not considered in pre-
vious models [4, 5, 34]. EVD started in a rural area where it
had been unnoticed for a few months, causing the force of
infection to initially grow exponentially and later declined
as the epidemic progressed [35]. Concave exponential
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functions are thus suitable to represent the force of infection.
Among all the existing exponential functions, we propose a
new Ricker-type function to represent the force of infection
of our model. The function innovatively takes into consider-
ation the efficacy and speed of behaviour change. It models the
infection growth in the presence of behaviour change and the
model fits better to EVD data from the two countries consid-
ered; see also [36]. The effective transmission rate of EVD is
represented by the parameter β and the efficacy of behaviour
change is represented by a parameter p ðp ∈ ½0, 1�Þ such that
p = 0 corresponds to an uncontrolled behaviour that fuels
EVD spread and p = 1 corresponds to a perfectly controlled
behaviour that stops EVD spread. We also introduce a param-
eter K that represents the speed at which individuals change
their behaviour. The parameter K helps to track how fast indi-
viduals change their behaviour in response to EVD. K = 0 cor-
responds to no behaviour change and greater values of K
indicate a positive change in the affected population’s behav-
iour. Total eradication of EVD corresponds to a zero force of
infection for very high values of KðK ⟶∞Þ. We propose a
force of infection given by

λ tð Þ = β 1 − pð Þ I tð Þ + εD tð Þð Þ exp − I tð Þ + εD tð Þð ÞK½ �, ð2Þ

where ε indicates the infectivity of the deceased when com-
pared to that of the infected individuals, with ε > 1 and
limK⟶∞λ = 0.

This paper aims to study the dynamics of an EVD model
with a nonlinear force of infection innovatively described by
a Ricker function. We built the model with the assumption
that behaviour change is motivated by disease incidence.
We present the stability analysis of the model’s steady states,
and numerical simulations are used to confirm the model-
ling assumptions and to quantify the parameters modelling
the efficacy and speed of behaviour change.

The paper is arranged as follows: in Section 2, we formu-
late the model. Section 3 is reserved for the model analysis,
and in Section 4, we focus on the steady states and their
global properties. Section 5 is reserved for the numerical
simulations and the last section contains some concluding
remarks.

2. Model Formulation and Equations

A deterministic model, consisting of individuals with differ-
ent EVD statuses, is formulated to represent the population
dynamics when there is a change of behaviour due to the
high prevalence of the disease. Susceptible individuals (in
compartment S) represent individuals that are at risk of con-
tracting the infection through contact with the infected (in
compartment I) and the deceased (in compartment D). Sus-
ceptible individuals are recruited into a heterogeneous pop-
ulation at a constant rate Λ. Infected individuals may
recover at the rate α or may succumb to the Ebola virus
and die at a rate φ. Individuals in each compartment are
assumed to die naturally at a rate μ, and dead bodies of
EVD-infected individuals deceased are disposed at a rate ρ.
Dead bodies of infected individuals are assumed to be infec-
tious. We thus assume here that infected individuals who do

not die from EVD contribute to EVD spread and we set
δ = φ + μ [37]. The total population size is given by

N tð Þ = S tð Þ + I tð Þ + R tð Þ +D tð Þ: ð3Þ

Figure 1 represents the movements between different
classes, as their infection status with respect to the disease
changes.

The governing equations that describe the dynamics of
EVD as described are as follows:

dS tð Þ
dt =Λ − λ tð Þ + μð Þ S tð Þ, ð4Þ

dI tð Þ
dt = λ tð Þ S tð Þ −Q1 I tð Þ, ð5Þ

dR tð Þ
dt = α I tð Þ − μR tð Þ, ð6Þ

dD tð Þ
dt = δ I tð Þ − ρD tð Þ, ð7Þ

where Q1 = ðα + δÞ, with Sð0Þ > 0, Ið0Þ ≥ 0, Rð0Þ ≥ 0, and D
ð0Þ ≥ 0.

3. Model Properties

3.1. Existence and Uniqueness of Solutions. The right-hand
side of the system of differential equations (4)–(7) is made
of Lipschitz continuous functions. According to Picard’s
existence theorem, with given initial conditions, the solu-
tions of our system exist and they are unique [38].

Theorem 1. The system makes biological sense in the region

Ω = S tð Þ, I tð Þ, R tð Þ,D tð Þð Þ ∈ℝ4
+ : S tð Þ + I tð Þ + R tð Þ⩽Λ

μ
and D tð Þ ≤ δΛ

μ ρ

� �
,

ð8Þ

which is attracting and positively invariant for the flow of sys-
tem (4)–(7).

S
𝜆 S

𝛼

𝜑
𝜇 𝜇

𝜇

𝜌

I

R

D

𝛬

Figure 1: Flow diagram of the model. This four-compartmental
diagram describes the progression of individuals during an EVD
outbreak and also indicates the rates at which people move from
one compartment to another.
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Proof. We set HðtÞ = SðtÞ + IðtÞ + RðtÞ. By adding all the
equations of system (4)–(6) we obtain

dH tð Þ
dt ≤Λ − μH tð Þ: ð9Þ

Using Gronwall inequality [39] and integrating (9), we
obtain the following solution

H tð Þ ≤ H 0ð Þ − Λ

μ

� �
exp −μ t½ � + Λ

μ
,∀t ≥ 0: ð10Þ

If Hð0Þ ≤Λ/μ, then the upper bound of HðtÞ is Λ/μ
when t⟶∞. If Hð0Þ ≥Λ/μ, then HðtÞ decreases to Λ/μ
when t⟶∞ and entersΩ or approachesΩ asymptotically.

Integrating (7) gives DðtÞ ≤ ðDð0Þ −Λδ/ρ μÞ exp ½−ρ t�
+Λδ/ρ μ, ∀t ≥ 0. If Dð0Þ ≤Λδ/ρ μ, then Λδ/ρ μ is the
upper bound of DðtÞ when t⟶∞. If DðtÞ ≥Λδ/ρ μ, then
DðtÞ decreases to DðtÞ ≥Λδ/ρ μ when t⟶∞ and enters
Ω. Besides, any sum or difference of variables in Ω with pos-
itive initial values will remain in Ω or in a neighbourhood of
Ω. Thus, Ω is bounded, positively invariant, and attracting
for the flow of system (4)–(7).

3.2. Positivity of Solutions

Theorem 2. The existing solutions of our system (4)–(7) are
all nonnegative.

Proof. We suppose that there exists t̂ > 0 such that Sð̂tÞ < 0.
From the intermediate value theorem, there exists t1 ∈ ½0, t̂�
such that Sðt1Þ = 0. From equation (4),

SðtÞ ≥ S ðt1Þ exp ½−ðÐ t0 λðuÞ du + μ tÞ� for all t ∈ ½t1, t̂�. S
ðt1Þ = 0 implies that SðtÞ ≥ 0 for t ≥ t1. Since t̂ > t1, Sð̂tÞ ≥ 0
and this contradicts the initial assumption. Thus, SðtÞ ≥ 0
for all t ≥ 0. The same principle is applied to I, R, and D,
and from equation (5), we obtain IðtÞ ≥ Iðt1Þ exp ½−Q1 t�,
from equation (6), we obtain RðtÞ ≥ Rðt1Þ exp ½−μ t�, and
from equation (7), we obtain DðtÞ ≥Dðt1Þ exp ½−ρ t�. We
can then conclude that solutions of the system (4)–(7) are
nonnegative.

4. Steady States and Global Properties

Equation (6) is redundant and the system of differential
equations (4)–(7) can then be rewritten as

dS tð Þ
dt =Λ − λ tð Þ + μð Þ S tð Þ, ð11Þ

dI tð Þ
dt = λ tð Þ S tð Þ −Q1 I tð Þ, ð12Þ

dD tð Þ
dt = δ I tð Þ − ρD tð Þ: ð13Þ

Θ = fðSðtÞ, I ðtÞ,DðtÞÞ ∈ℝ3
+ : SðtÞ + IðtÞ⩽Λ/μ andD ðtÞ

≤ δΛ/μ ρg is positively invariant and attracting since Θ ⊂Ω.
Equations (11)–(13) admit a disease free equilibrium

(DFE) denoted by E0 = ðΛ/μ, 0, 0Þ and the next generation

matrix method (see [40]) yields a reproduction number R0
given by R0 = β ð1 − pÞΛ/μð1/Q1 + ε ðδ/ρQ1ÞÞ. From the
expression of the reproduction number, we can state that a
more effective behaviour change reduces the number of sec-
ondary EVD infections.

The endemic equilibrium E∗ = ðS∗, I∗,D∗Þ is given by

S∗ = Λρ

μρ + β 1 − pð ÞI∗ δ ε + ρð Þ exp −I∗ 1 + εδ/ρð ÞK½ �ð Þ ,

ð14Þ

D∗ = δ

ρ
I∗: ð15Þ

I∗ is solution of the equation

β 1 − pð ÞS∗ I∗ 1 + δ ε

ρ

� �
exp −I∗ 1 + δ ε

ρ

� �
K

� �
−Q1 I

∗ = 0,

ð16Þ

obtained by substituting equations (14) and (15) into equa-
tion (12).

We set MðI∗Þ = β ð1 − pÞ S∗ I∗ ð1 + δ ε/ρÞ exp ½−I∗ ð1 +
δ ε/ρÞK� −Q1 I

∗ and find the roots in Θ of the function
M. However, the exponential function does not facilitate
the algebraic resolution of equation (16). We first rewrite
the function M as MðI∗Þ = ðΓðI∗Þ −Q1Þ I∗ where ΓðI∗Þ =
β ð1 − pÞ S∗ ð1 + ε ðδ/ρÞÞ exp ½−I∗ ð1 + δ ε/ρÞK� and I∗ = 0
is a root of M which corresponds to the DFE. The
endemic equilibrium point (I∗) is the solution of ΓðI∗Þ =
Q1. We have

dΓ I∗ð Þ
dI∗

= −
β 1 − pð ÞΛ δ ε + ρð Þ2 β 1 − pð Þ + μK exp I∗ 1 + δ ε/ρð ÞK½ �ð Þ

I∗ β 1 − pð Þ δ ε + ρð Þ + μ ρ exp I∗ 1 + δ ε/ρð ÞK½ �ð Þ2
< 0,

ð17Þ

and Γð0Þ = R0 Q1 and limI∗⟶∞ΓðI∗Þ = 0.
So ΓðI∗Þ is a monotone decreasing and positive function

which intercepts the line y =Q1 only once when R0 > 1. In
fact, the graph of Γ can intercept the line y =Q1 if Γð0Þ ≥ y
ð0Þ because Γ is a decreasing function. Since Γð0Þ = R0 Q1,
Γð0Þ is above Q1 when R0 > 1. If R0 < 1, Γð0Þ is below Q1,
implying that we have no endemic equilibrium. We can then
conclude that our model has a unique endemic equilibrium
point when R0 > 1.

We use the parameter values obtained by the fitting pro-
cess in Figure 2(a) to illustrate the existence of a unique
endemic equilibrium point in Figure 3.

Note that any I, D ∈Θ, inequality (21) is valid i.e.

exp −ψ½ � ≤ exp − I + εDð ÞK½ � ≤ 1, whereψ = Λ

μ
1+∈ δ

ρ

� �
K:

ð18Þ

4.1. The disease free equilibrium
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Theorem 3. The unique EE exists when R0 > 1, and when
inequality (18) holds, it is globally asymptotically stable.

Proof. To prove the global stability of the EE, we set F as a
candidate Lyapunov function and we give conditions under
which _F is nonpositive.

F = S − S∗ − S∗ ln S
S∗

� �� �
+ A I − I∗ − I∗ ln I

I∗

� �� �

+G D −D∗ −D∗ ln D
D∗

� �� �
,

ð19Þ

where A and G are positive constants to be calculated with
FðE∗Þ = 0.

The right-hand side of system (11)–(13) at equilibrium
yields

Λ = β 1 − pð Þ I∗ + εD∗ð Þ exp − I∗ + εD∗ð ÞK½ � + μð ÞS∗, ð20Þ

Q1 =
S∗

I∗
β 1 − pð Þ I∗ + εD∗ð Þ exp − I∗ + εD∗ð ÞK½ �, ð21Þ

D∗ = g I∗, ð22Þ
where g = δ/ρ.

The derivatives of F with respect to each state variable
are

∂ F
∂S

= 1 − S∗

S

� �
,

∂ F
∂I

= A 1 − I∗

I

� �
,

∂ F
∂D

=G 1 − D∗

D

� �
,

∂2 F
∂S2

= S∗

S2

� �
,

∂2 F
∂I2

= A
I∗

I2

� �
,

∂2 F
∂D2 = G

D∗

D2

� �
:

ð23Þ

E∗ is then the unique critical point of F, and since the
second derivative of F is positive at any point of Θ, the Lya-
punov function F is concave up and the unique endemic
equilibrium point is the global minimum of F.
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Figure 2: Curve fittingwith data collected fromLiberia. The fitting process considers a controlled behaviour in (a) and an uncontrolled behaviour in
(b). Parameters such as the efficacy and speed of behaviour change are increased in (a) to investigate how they affect the quality of the fit.
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Figure 3: Intersection of Q1 and ΓðI∗Þ. The fitting process in
Figure 2(a) yields parameter values used to numerically illustrate
the existence of a unique endemic equilibrium point.
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The derivative of F with respect to time t, denoted by _F,
is

_F = 1 − S∗

S

� �
_S + A 1 − I∗

I

� �
_I +G 1 − D∗

D

� �
_D: ð24Þ

Considering the system of equations (11)–(13) together
with inequality (??) and the fact that E∗ is the global min-
imum of F, we obtain

_F ≤ 1 − S∗

S

� �
Λ − β 1 − pð Þ I + εDð Þ exp −ψ½ � + μð ÞSð Þ

+ A 1 − I∗

I

� �
β 1 − pð Þ I + εDð ÞS −Q1 Ið Þ

+G 1 − D∗

D

� �
δ I − ρDð Þ:

ð25Þ

We set

x = S
S∗

,

y = I
I∗

,

u = D
D∗ ,

ð26Þ

and rewrite (25) as

_F ≤ −μ
S − S∗ð Þ2

S
+ β 1 − pð Þ I∗L x, y, uð Þ, ð27Þ

where

L x, y, uð Þ = 1 − 1
x

� �
S∗ 1 − x y exp −ψ½ �ð Þð

+ g ε 1 − u x exp −ψ½ �ð ÞÞ + A 1 − 1
y

� �
S∗ y x − 1ð Þð

+ εg u x − yð ÞÞ + G δ

β 1 − pð Þ 1 − 1
u

� �
y − uð Þ:

ð28Þ

The expression of L is obtained by replacing Λ, Q1,
and g in equation (25) by their expressions from equa-
tions (21).

Expanding the expression of Lðx, y, uÞ from system (28)
and grouping the coefficients with the same variable give

L x, y, uð Þ = G δ

β 1 − pð Þ + S∗ A + 1ð Þ + S∗ εg A + 1ð Þ

+ y
G δ

β 1 − pð Þ + S∗ exp −ψ½ � − Að Þ − εgA S∗
� �

+ u −
G δ

η 1 − pð Þ + ε g S∗ exp −ψ½ �
� �

+ y
u

−
G δ

β 1 − pð Þ
� �

+ 1
x

−S∗ − εg exp −ψ½ �S∗ð Þ

− x A S∗ + x y −S∗ exp −ψ½ � + AS∗ð Þ
+ u x −εAg S∗ + εAg exp −ψ½ �S∗ð Þ
+ u x

y
−Ag S∗ εð Þ:

ð29Þ

Since we already have −μ ððS − S∗Þ2/SÞ ≤ 0 from the
expression of _F, it remains to prove that L ≤ 0 in order to
get _F ≤ 0.

From the expression of L in (29), we will first set the
terms containing variables and with nonnegative coefficients
to zero in order to get rid of the positive and nonconstant
part of L. The coefficients of y, u, x y, and u x are thus set
to zero and solved for A and G. We obtain

A = exp −ψ½ �,G = εgβ 1 − pð Þ
δ

S∗ exp −ψ½ �,

L x, y, uð Þ = G δ

β 1 − pð Þ 1 − y
u

� 	
+ εg S∗ A 1 − 1

x

� �
+ 1 − u x

y

� �

+ A 1 − xð Þ + 1 − 1
x

� �
S∗:

ð30Þ

So L is negative and will be equal to zero if x = y = u = 1
which is in the set

C = S, I,Dð Þ: S = S∗, I = I∗,D =D∗f g: ð31Þ

LaSalle’s extension implies that each solution which
intersects ℝ3

+ limits to the endemic equilibrium and E∗ is
globally asymptotically stable on Θ (see [41]).

Global stability of the EE indicates that EVD persists as
long as the value of the reproduction number is greater than
one. Programs aiming at eradicating EVD should limit the
disease transmission in such a way that the value of the
reproduction number remains less than one.

5. Numerical Simulations

5.1. Model Validation. We fit the number of new EVD cases
IðtÞ from our model to data from Liberia and Sierra Leone
[42]. Table 1 gives the number of new Ebola cases recorded
in two countries. The values of the parameters estimated
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through the least-squares fitting process are given in Table 2.
A comprehensive description of the least-squares fitting
method is given in [19].

Figures 2(a) and 4(a) show that our model closely fits to
the data and indicate that behaviour change during the EVD
outbreak of 2014 − 2016 was motivated by an increased
number of EVD cases. They also show that an efficacious
behaviour change was necessary to stop EVD spread.
Figures 2(b) and 4(b) show a poor fit of the model to data
from Liberia and Sierra Leone when there is a slow and inef-

ficacious behaviour change, resulting in an uncontrolled
behaviour during EVD epidemic (K = 0:005, p = 0). The
controlled or efficacious behaviour adopted by populations
in order to limit EVD spread consisted of practising careful
hygiene, avoiding contact with infected animals and
humans, collaborating with case tracking, not fleeing from
isolation areas, safely burying those who died from EVD,
etc. [17, 43]. Figures 2(b) and 4(b) predict an increased
number of infected individuals (represented by the continu-
ous line) when compared to Figures 2(a) and 4(a), thus

Table 2: Estimated values of the parameters for each country.

Parameters
Liberia Sierra Leone

Controlled behaviour Uncontrolled behaviour Controlled behaviour Uncontrolled behaviour

Λ 26 150 26 150

δ 0.55 0.7 0.5 0.6

ρ 0.9 0.98 0.99 0.76

μ 0.0205 0.2117 0.0285 0.1523

ε 2.25 2 2 2

β 0.0047 0.0091 0.0047 0.0088

α 0.012 0.012 0.012 0.012

p 0.82 0 0.818 0

K 0.003 0.005 0.003 0.005
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Figure 4: Curve fitting with data collected from Sierra Leone. The fitting process considers a controlled behaviour in (a) and an uncontrolled
behaviour in (b). Parameters such as the efficacy and speed of behaviour change are increased in (a) to investigate how they affect the quality
of the fit.

Table 1: Data from Liberia and Sierra Leone as indicated by the Centers for Disease Control and Prevention website. Each month is labelled
by the first three letters of his name on the Egyptian calendar. Nav stands for not available.

Year 2014 2015
Month Mar Apr May Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sept Oct

Data of Liberia 2 3 5 76 166 1142 1317 477 200 145 30 12 2 0 0 0 0 0 0 0

Data of Sierra Leone Nav Nav 20 205 369 770 1233 1649 2499 1579 864 358 252 49 40 46 26 5 0 0
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overestimating the number of EVD cases. This increase is
due to a slower and nonefficacious behaviour change that
caused the EVD epidemic to last longer and to claim more
human lives. Behaviour change should be advocated at the
beginning of an epidemic, to limit the death toll of the dis-
ease and its spread.

The values of the estimated parameters in Table 2 yield a
reproduction number equal to 1:71 in Liberia and 2 in Sierra
Leone when there is a rapid and controlled change in human
behaviours. These values are comparable to those obtained
by several authors. Rivers et al. [15] found that the value of
the reproduction number for the two countries on an aver-
age is 2:2. Althaus [44] found R0 = 1:59 for Liberia and R0
= 2:53 for Sierra Leone in 2014. Xia et al. [20] found R0 =
2:02 for Liberia when investigating the different transmis-
sion routes of EVD. Chowell and Nishiura [11] estimated
the value of the reproduction number between 1 and 2 in
Liberia and Sierra Leone, from March to August 2014. The
difference between the estimated and cited values of the
reproduction number might come from the fact that they
are calculated during different periods of EVD epidemics
and the models built by the authors have different structures
and integrate different control measures in some instances.

Behaviour change influenced several factors such as the
EVD transmission rate, death rate, recovery rate, and even
the burial rate of the deceased. Avoiding contact between
susceptible and infected individuals, for example, contrib-
uted to a reduction in the transmission rate of EVD. This
explains why the value of β estimated in Table 2 when con-
trolled behaviour is considered is less than the one from the
fitting with slow behaviour change and uncontrolled behav-
iour. Some researchers concluded that the transmission rate
of EVD is higher without behaviour change [15, 20]. The
recovery rate and death rate of EVD are influenced by the
collaboration between populations and authorities through
active case finding or hospitalisation for example. Recover-

ing from EVD without treatment was very rare and can
explain the low values of α estimated in Table 2. The case
fatality rate of the last EVD epidemic was greater than 50%
[15, 20, 37], indicating a high risk of death for EVD patients.
This supports the estimated values of δ in Table 2 for both
countries. In [45], the values of δ are greater without a con-
trolled behaviour, highlighting the importance of adopting
disease reducing behaviours like visiting the appropriate
health centres to receive pharmaceutical interventions that
help to increase the chances of recovering from EVD. Dead
bodies of EVD deceased are twice more infectious than the
living infected individuals according to the estimation of ε.
Some authors found that this infectivity could be even four
times higher for the deceased [20]. Quick and safe burials
of EVD deceased have helped to limit EVD spread, and the
high values of ρ from Table 1 indicate that a high burial rate
helped to limit the disease spread. The estimated values of p
indicate that a highly efficacious behaviour change, adapted
to health authorities’ instructions, for example, was neces-
sary to halt EVD spread. The estimated values of K indicate
how fast a behaviour change occurred during the last EVD
epidemic in Liberia and Sierra Leone. However, these values
are low and this implies that behaviour change was a slow
process during the outbreak. This could explain the long
duration of the outbreak and its extent in terms of the num-
ber of deaths. Cultural beliefs and poor economic conditions
build mistrust between rural populations and authorities in
West Africa [3]. This situation led to a slow application of
instructions from authorities during the outbreak. So, build-
ing confidence and improving people’s living conditions is
essential in motivating people to quickly react in case of an
epidemic of EVD.

5.2. Sensitivity Analysis. The reproduction number R0 is
made of different parameters and their correlations to R0 dif-
fer as well. Sensitivity analysis helps to assess the variability

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
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Figure 5: Tornado plot of the sensitivity analysis of R0. This figure represents the correlation coefficient of each parameter which constitutes
the reproduction number R0. The aim is to compare these correlations and determine the most important.
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in the model predictions introduced by uncertainty in the
parameters value [46]. We use Latin hypercube sampling
(LHS) and partial correlation coefficient (PRCC) to explore
the parameter space of the model with 1000 simulations
[47]. We choose a uniform distribution to implement LHS
sampling scheme. The PRCC value for a specific parameter
is a Pearson correlation coefficient for the residuals from
two regression models [46]. The most important parameters
have a PRCC value greater than 0:5 or less than −0:5.
Figure 5 represents the sensitivity analysis of R0.

We observe in Figure 5 that the parameters with the
most important positive correlations to R0 are δ, Λ, and β
and those with the negative correlations are ρ, μ, and p.
The results show that when the transmission rate and death
rate of EVD increase, the number of new infections increases
since the deceased and infected individuals are both infec-
tious. When the recruitment rate is increased, more individ-
uals are exposed to the Ebola virus and this increases their
chances of contracting the virus and contributes to the dis-
ease’s spread. Natural death reduces the size of the popula-
tion and thus limits the number of people who might be
infected by EVD. Disposing of the corpses of EVD deceased
rapidly and safely stops contamination during funerals and
reduces the potential number of EVD cases. The negative
correlation between R0 and p is certainly because adopting
a controlled behaviour that limits or stops EVD spread
reduces the reproduction number and is represented by an
increase of the value of p.

6. Conclusion

The global stability analysis of the steady states of a model of
EVD with a nonlinear incidence function is presented in this
paper. The global stability of equilibria is presented through
suitably chosen Lyapunov functions. The nonlinear inci-
dence function is chosen to represent the influence of
human behaviour on EVD evolution. Data from Liberia
and Sierra Leone are used in the fitting process whose results
show that the model closely describes the evolution of EVD
with human behaviour. Parameters obtained in the fitting
process support the assumptions made in the development
of the model that behaviour change is motivated by disease
prevalence. As soon as an epidemic starts, individuals
affected should trust the authorities and do as instructed to
avoid deaths and disasters due to a slow reaction.

The work presented in this paper is not without short-
comings. The modelling of human behaviour through any
mathematical function is a challenge as human behaviour
is complex and unpredictable. A stochastic version of the
incidence function may be worth looking at as an alternative
albeit the challenges associated with its formulation and the
mathematical analysis. The use of individual-based models
or network models could potentially solve the inadequacies
of dealing with deterministic models. We still however argue
that this model presents some interesting mathematical
results on the global stability of an EVD model with human
behaviour and a nonlinear incidence rate.

The theory of fractional calculus is often used for model-
ling purposes in general [48–50]. In disease modelling, in

particular, fractional derivatives which are used in modelling
the dynamics of an infectious disease like COVID-19 [51]
could also be applied to Ebola virus disease models in future
works.

Data Availability
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