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The optic disc (OD) is an important anatomical feature in retinal images, and its detection is vital for developing automated
screening programs. Currently, there is no algorithm designed to automatically detect the OD in fundus images captured from
Asians which are larger and have thicker vessels compared to Caucasians. In this paper, we propose such a method to complement
current algorithms using two steps: OD vessel candidate detection and OD vessel candidate matching. The first step is achieved
with multiscale Gaussian filtering, scale production, and double thresholding to initially extract the vessels’ directional map of
various thicknesses. The map is then thinned before another threshold is applied to remove pixels with low intensities. This result
forms the OD vessel candidates. In the second step, a Vessels’ Directional Matched Filter (VDMF) of various dimensions is applied
to the candidates to be matched, and the pixel with the smallest difference designated the OD center. We tested the proposed
method on a new database consisting of 402 images from a diabetic retinopathy (DR) screening programme consisting of Asians.
The OD center was successfully detected with an accuracy of 99.25% (399/402).

1. Introduction

The optic disc is a vertical oval with average dimensions of
1.76 mm (horizontally) × 1.92 mm (vertically), and situated
3-4 mm to the nasal side of the fovea [1]. In fundus
imaging the OD is usually brighter than its surrounding
area and is the convergence of the retinal blood vessel
network. Detection of the OD is useful in the diagnosis
of glaucoma, optic neuropathies, optic neuritis, anterior
ischemic optic neuropathy or papilledema, and optic disc
drusen. It can also be used as a marker to help locate
fovea/macula [2–4], as well as decide if the image is of the left
or right eye. For diabetic retinopathy, detection of the OD
assists physicians identifying neovascularization of the disc
(NVD) in the advanced stage of DR, proliferative diabetic
retinopathy (PDR). This makes the task of automatic OD
detection both relevant and necessary. A distinction needs
to be made between automatic OD detection and automatic
OD boundary detection. The former refers to the location
of the disc center, while the latter aims to segment the OD

by detecting the boundary between the retina and the nerve
head. Our work is detecting the OD center.

In the literature, OD detection can be categorized into
various groups. The first group uses properties of the OD [5–
8] such as high pixel intensity and its oval shape. Morphology
[9] is also used where the OD center is the center of the
brightest connected object found by thresholding an inten-
sity image. References [10–12] applied template matching
to locate the center. Osareh’s et al. [10] template was the
average gray-level of 25 normalized images, Lalonde et al.
[11] used the Hausdorff-based template, and Youssif et al.
[12] employed a Vessels’ Directional Matched Filter. Two
different kinds of transforms, Hough [13–15] and Watershed
[16], have also been applied to locate the edges of the OD
and subsequently its center. Supervised learning is another
group consisting of feature extraction, and classification with
a Bayesian [4] or k-NN [2, 3] classifier. A geometric model
was built in [17] to represent the main retinal vessels which
pass the OD center. Fuzzy convergence developed by Hoover
and Goldbaum [18] determined the originating vessel map
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Figure 1: Comparison of Caucasian retina (a) to Asian (b).
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Figure 2: Thick (a) and (b); thin (c) and (d) vessel cross-sections. The solid line is Asian while the dotted comes from Caucasian.

convergence point near the OD center. Even though the
OD features and characteristics are well defined in fundus
images, the task of automatically detecting its center is still
challenging.

Ethnicity affects the OD shape. A study conducted by
[19] measuring disc area, cup volume, maximal cup depth,
and vertical cup-disc ratio showed that Asians have higher
values in these properties compared to Caucasians. This can
be clearly seen in Figure 1 where (a) [20] is Caucasian while
(b) is Asian, taken from our database. Further studies [21–
24] demonstrated that with an increase in size of the OD,
blood vessels (both arteries and veins) increase in thickness,
where venular widening is linked with progression of DR
[24] and narrowing of the arteriolar is associated with the

risk of diabetes [24]. The increase in vessel thickness caused
by an enlarged OD can be seen in Figure 2, which shows
the cross-sections of both thick ((a)-(b)) and thin ((c)-
(d)) vessels, taken from two individuals. The dotted line is
Caucasian, while the sold line is Asian. Generally speaking
for thick vessels the cross-section of Asians is about 3-4 pixels
wider than Caucasians. On the other hand, for thin vessels
the difference is around 1-2 pixels. In order to achieve a fair
assessment we examined vessels only in the OD, comparing
with the same orientation and grade of DR.

Most of the current algorithms working on OD detection
are from Western countries; therefore, we can safely assume
that the fundus images collected in their database are of
Caucasians. Hence, there is a need to accurately detect
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Figure 3: (a), (c), and (e) Normal fundus image from HIT. (b), (d), and (f) Fundus diagnosed with moderate NPDR from HIT.
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Figure 4: Steps of the proposed method shown in rectangles and its
control flow given by the arrow.

the OD from Asians as state-of-the-art algorithms do not
take into account the increased OD size and its subsequent
consequences. This paper proposes such a method of dealing
with Asian OD using both vessel and intensity information
[25] to complement existing algorithms. In the first step, a
vessels’ directional map representing the OD vessel candi-
dates is calculated using multiscale Gaussian filtering with
scale production and double thresholding. This accounts for
the thicker vessels of Asians. A VDMF template (with bilinear
interpolation) is matched to each OD vessel candidate as part
of the second step [12]. The pixel candidate having the least
difference with the template is assigned the OD center.

The remainder of this paper is organized as follows.
Section 2 describes the material used, Section 3 presents the
proposed method, and experimental results are relayed in
Section 4. These results are discussed in Section 5 and a
conclusion is given in Section 6.

2. Material

We constructed a new database obtained from a DR screen-
ing programme in Harbin, China. The patients’ consent
was obtained according to the Declaration of Helsinki and
that the Ethical Committee of the Institution in which the
work was performed has approved it. This database will
be referred to as the HIT database. HIT consists of 402
images, broken down into 46 normal and 356 pathological
(all with DR). The 356 DR images were further divided into
181 mild nonproliferative diabetic retinopathy (NPDR), and
175 moderate NPDR, classified based on [26]. The images
were captured in digital form using a Canon CR-DGi Non-
Mydriatic Retinal Camera at 45◦ field of view (FOV). The size
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Figure 5: Steps of the proposed method applied to a fundus image (a). (b) is the scale production of (a). The result of double thresholding
on (b) is (c). The thinned vessels of (c) is (d). (e) is the OD vessel candidates after removing pixels with low intensities. The detected OD
center is illustrated in (f) by a cross.
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Figure 6: A vessels’ directional matched filter designed for HIT.

of each image is 1936 × 1288 pixels with 24 bits and in
compressed JPEG format. Figure 3 shows examples of images
from HIT; the ones on the left are healthy retinas while the
others have moderate NPDR. The OD center in each image
of the database was manually segmented by the first author.

3. Method

As mentioned above, the proposed method based on Youssif
et al. [12] consists of two steps (illustrated in Figure 4),
OD vessel candidate detection and matching. The following
section explains each step in more detail.

3.1. OD Vessel Candidate Detection. Multiscale Gaussian
filtering is based on matched filters first proposed in [27] to
detect vessels. It makes use of the prior knowledge that the
cross-section of vessels can be approximated by a Gaussian
function. Therefore, a Gaussian-shaped filter can be used
to “match” the vessels. The idea of multiscale allows more
than one scale to be used which can match vessels of various
widths. The multiscale Gaussian filter is defined as

fi
(
x, y

)= 1√
2πsi

exp

(

− x2

2si2

)

−m, |x| ≤ t · si,
∣
∣y
∣
∣≤ Li

2
,

(1)
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Figure 7: Results of the proposed method where a white cross represents the detected OD center.

where si represents the scale of the filter; m =
(
∫ ts
−ts(1/

√
2πsi) exp(−x2/2si2)dx)/(2tsi) is used to normalize

the mean value of the filter to 0 so that the smooth
background can be removed after filtering; Li is the length
of the neighborhood along the y-axis to smooth noise; t is
a constant and is usually set as 3 because more than 99%
of the area under the Gaussian curve lies within the range
of [−3si, 3si]. The parameter Li is also chosen based on si.

When si is small, Li is set relatively small, and vice versa. In
the actual implementation fi(x, y) will be rotated to detect
the vessels of different orientations.

The response of multiscale Gaussian filtering can be
expressed by

Ri
(
x, y

) = fi
(
x, y

)∗ im
(
x, y

)
, (2)
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61 × 21 template

(a)

121 × 41 template

(b)

Figure 8: A small vessel map is covered with the 61 × 21 template (a). Medium-to-large maps are covered using the 121 × 41 template (b).
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Figure 9: The result of average distance compared with various
scale factors applied to the templates. From right to left, the first
point is +1.5, next is the current template size, and the left point is
−1.5.

where im(x, y) is a normalized green channel image and ∗
denotes convolution. The scale production is defined as the
product of filter responses at two scales i and j:

P
(
x, y

) = Ri
(
x, y

) · Rj
(
x, y

)
. (3)

Double thresholding is then applied to P(x, y) to generate
a binary image where a one-pixel-wide center line of the
vessel is detected using morphological thinning. The vessels’
directional map is calculated by finding the corresponding
orientation that produced the maximum response with
fi(x, y) (use of the vessel feature). This map is thinned by
multiplying with the center-line vessel. Using the notation
that the OD has higher pixel intensities (use of the intensity
feature) than its surrounding retinal background, any pixels
less than 0.9 in im(x, y) are removed. A 51×51 neighborhood
of each remaining pixel is extracted in order to better
represent the OD vessels. This results in the OD vessel
candidates. Figures 5(a)–5(e) illustrates these steps using an
example. In some situations hard exudates may also be part
of the OD vessel candidates since their pixel intensity is also
high. However, these objects are not made of vessels and will
be removed in the following step. In [12] normalization of
luminosity and contrast were applied to the retinal images,

with its vessels extracted using a one scale 2D Gaussian
Matched Filter [27].

3.2. OD Vessel Candidate Matching. We define a 9 × 9
template as the VDMF shown in Figure 6. Each value
in this template represents a different orientation (rad),
1 (π/1), 2 (π/2), . . . , 8 (π/8), where 8 are used instead of 12
[12]. In order to account for the various sizes of vessel maps
in the OD, bilinear interpolation was employed to restructure
the template into 61× 21 and 121× 41. The values and sizes
are specifically tuned for HIT. Reference [12] employed 4
different template dimensions suited for their database. Each
of the two templates is matched to the candidates with an
absolute difference calculated. The candidate pixel with least
accumulated difference is assigned the OD center. Figure 5(f)
shows the final result.

4. Experimental Results

The key parameters in our experiments are set as follows:
s1 = 1.5, s2 = 1.8, s3 = 2.0, and s4 = 2.4, with corresponding
L1 = 9,L2 = 9,L3 = 13, and L4 = 13, and 8 orientations
(refer to (1)). The scale production (see (3)) of s1 and s2

is combined along with the result of s3 and s4 using logical
OR after double thresholding. These parameters were chosen
based on our experimental experience. It took 29 secs to
process each image using a 2.40 GHz Intel Centrino Pro with
2 GB RAM. In order to improve the computation time of the
proposed method every image in HIT was resized by 0.5 to
968 × 644 pixels. In the literature, the detected OD center is
considered correct if it is positioned within 60 pixels of the
manually identified center [12, 17, 18]. However, the images
[12, 17, 18] used were 605× 700 pixels.

In order to compensate for the larger images in HIT, the
distance from the manually identified center to the detected
OD center is increased to 80 pixels. For completeness we have
included results using both 80 and 60 pixels and compared
the proposed method to Youssif et al. [12] as well as single
scale. The original parameters stated in Youssif et al. [12]
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Figure 10: Visual comparison of the OD detection results (proposed method with others).

Table 1: OD detection result on HIT using 80 pixels as standard.

Number of images in each group Total

46 181 175 402

Method Number correctly detected

Proposed method 46 180 173 399

Youssif et al. [12] 44 177 171 392

Single scale 44 178 170 392

were used. Single scale [27], as the name suggests, uses one
si in (1) instead of many (as is the case with multi-scale).
This is combined with VDMF to detect the OD and evaluated
against the proposed method. These can be found in Tables 1
and 2, respectively. Columns 2–5 in Tables 1 and 2 represent
the number of normal, mild NPDR, moderate NPDR, and
the total number of images. With 80 pixels the OD center
in all of normal was detected. Only 1 and 2 were missed in
mild and moderate NPDR which lead to an overall success
rate of 99.25% (399/402). As for Youssif et al. [12], 2 were not
detected in normal, 4 in mild NPDR, and 4 again in moderate
NPDR. The result of single scale can be found in the last
row, where 44, 178, and 170 were detected, respectively, for
each of the three DR classes. Using 60 pixels (see Table 2),

1 was missed in all of normal, 4 from mild NPDR, and 4
in moderate NPDR. The success rate was 97.76% (393/402).
Obviously, by raising the standard from 80 to 60 pixels the
success rate is bound to drop which is the situation here.
In cases where the OD center failed to be detected, one of
the main reasons was low contrast exhibited by the image.
We admit in such cases our method may fail. Youssif et al.
[12] on the other hand failed to detect 9, 13, and 16 from
the three classes, while single scale missed 8 from normal, 12
from mild NPDR, and 18 in moderate NPDR.

Table 3, which has the same format as the previous two,
illustrates the average distance between the estimated and
manually identified OD centers. In this table the average
distance of normal is 27.9 pixels, 28.8 for mild NPDR, 31.1
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Table 2: OD detection result on HIT using 60 pixels as standard.

Number of images in each group Total

46 181 175 402

Method Number correctly detected

Proposed method 45 177 171 393

Youssif et al. [12] 37 168 159 364

Single-scale 38 169 157 364

Table 3: Average distance (in pixels) of detected and actual OD.

Number of images in each group Total

46 181 175 402

Method Average distance between estimated and actual OD center (pixels)

Proposed method 27.9 28.8 31.1 29.3

Youssif et al. [12] 33.5 36.1 37.6 35.7

Single-scale 40.0 36.1 44.3 40.1

in the case of moderate NPDR, and 29.3 for the average of
all three. This compares to averages of 35.7 using Youssif et
al. [12] and 40.1 with single scale. Figure 7 shows the OD
detection results of the proposed method on images from
HIT.

5. Discussion

The variables in (1) were chosen based on extensive experi-
ments. Because there is no ground truth for the vessel maps,
our criteria is judged on the visual result (binary image of
segmented vessel map) of several images. We tested si =
0.5 ∼ 3 and found the current parameters in Section 4
to give the best result. As for the two template sizes in
Section Section 3.2, 61×21 corresponds to covering a smaller
vessel map in the OD, while 121×41 is for maps of medium-
to-large dimensions. These are shown in Figure 8.

Figure 9 depicts the result of increasing/decreasing the
template size by a factor of ±1.5. In total there were 4
templates and 3 pairings, 61 × 21 with 121 × 41 (original),
61×21 with 151×51(+1.5), and 61×21 with 101×33(−1.5).
Each pair corresponds to a point in Figure 9 which plots
the average distance of detected and actual OD. The left
(31.8 pixels) and right (37.7 pixels) points in Figure 9 are
based on a scale factor of −1.5 and +1.5, respectively. This
scale factor was chosen specifically for the HIT database.
As can be seen from Figure 8 anything greater or smaller
would not cover the OD efficiently affecting OD vessel
candidate matching. The smallest distance was achieved with
the current templates discussed above (see Section 3.2) and
shown in Figure 9 as the central point.

The results from Table 1 show that even if the proposed
method, Youssif et al. [12] and single scale achieve similar
accuracy using 80 pixels (7 image difference), their gap is
much wider with 60 pixels (29 image variation). Subse-
quently, the average distance between actual and estimated
OD centers of the proposed method and single scale is close
to 11 pixels, while for Youssif et al. [12] it is slightly less than
6 pixels. This shows the proposed is more accurate at OD

detection compared to the others. Note in Tables 1 and 2
Youssif et al. [12] and single scale detected the same number
of OD. We believe this to be the case because both methods
incorporate single-scale vessel extraction in order to locate
OD vessel candidates.

Figure 10 illustrates a sample of the OD detection results
of the proposed method, single scale, and Youssif et al. [12].
In total three images are used, one from each DR group. The
columns in Figure 10 represent the different OD detection
methods. In this figure you can clearly see that the proposed
method was able to detect the OD (all marked with a white
cross except (a) which used a black cross), while the other
two methods failed. Each of the retinal images in this figure
is composed of a vascular map that consists of both thick
and thin vessels. Hence, multiscale with VDMF was able to
triumph, while single scale and Youssif et al. [12] both failed,
due to its inability to match both thick and thin vessels found
in Asians as well as account for a larger OD. This underlines
the necessity of the proposed method at OD detection on
Asians.

Other advantages of the proposed method include its
capacity to calculate a vessels’ directional map (in OD Vessel
Candidate Detection) implicitly, while extracting the vessels
without any additional algorithms as needed in [28, 29].
Also, our proposed method does not make any assumptions
about the location of the OD in the image. In computer-
aided diagnosis of HIT, vessel extraction is a first step. Hence,
the time needed to extract the vessels can be discounted.

6. Conclusion

This paper presented a method for automatic detection
of Asian OD to complement existing algorithms using
two steps, OD vessel candidate detection, and OD vessel
candidate matching. The study was deemed necessary since
an Asian OD is typically larger than Caucasians and has
thicker vessels. The proposed method makes use of the OD
intensity information by removing low pixel values, and
incorporates the vessel information in the form of a vessel’s
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directional map. The use of multiscale Gaussian filtering
at extracting both thin/thick vessels and the VDMF can be
attributed to the high OD detection results seen in Tables
1–3. These tables along with Figure 10 show that algorithms
developed in the West cannot adequately deal with the added
properties of an Asian OD. Also, the use of single scale and
Youssif et al. [12] are insufficient to match the various widths
of the vessel.

We have carefully examined the cases in which the
proposed method failed to correctly detect the OD center.
In the majority of failed detections, poor contrast, imaging
artifacts, and the presence of pathology, or a combination of
these factors have attributed to the problem. When contrast
over the OD is low, this affects the result of OD vessel
candidate detection. As part of the future work, the aspect
of contrast enhancement will be integrated to deal with such
cases.
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