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Abstract: Metastasis is the process whereby cancer cells migrate from the primary tumour site
to colonise the surrounding or distant tissue or organ. Metastasis is the primary cause of cancer-
related mortality and approximately half of all cancer patients present at diagnosis with some
form of metastasis. Consequently, there is a clear need to better understand metastasis in order
to develop new tools to combat this process. MicroRNAs (miRNAs) regulate gene expression
and play an important role in cancer development and progression including in the metastatic
process. Particularly important are the roles that miRNAs play in the interaction between tumour
cells and non-tumoral cells of the tumour microenvironment (TME), a process mediated largely by
circulating miRNAs contained primarily in extracellular vesicles (EVs). In this review, we outline the
accumulating evidence for the importance of miRNAs in the communication between tumour cells
and the cells of the TME in the context of the pre-metastatic and metastatic niche.
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1. Introduction

Cancer metastasis, the spread of tumour cells from the primary tumour site, has been
reported to account for approximately 67–90% of cancer-related deaths. Approximately
half of all cancer patients present with metastasis at the time of diagnosis [1–3]. Metastasis
is a multistep process, which starts when tumour cells detach from the primary tumour
mass, intravasate into lymphatic and circulatory systems to become circulating tumour
cells (CTCs), extravasate to leave the circulation, invade and proliferate in a new niche of a
distant tissue/organ to form a new tumour [4]. The metastatic process is very inefficient
since from the 0.2% of CTCs that survive their time in circulation, only those cells that are
the first to reach permissive target organs and are then able to colonize those tissues can
initiate metastatic tumour growth [5].

It is well-known that cancer initiation and progression, as well as metastasis, not only
depends on tumour cells themselves, but also on the cells of the tumour microenvironment
(TME) [6–8]. The major components of the TME apart from tumour cells include cancer-
associated fibroblasts (CAFs), endothelial cells and immune cells, in addition to other
components such as the extracellular matrix [9–11]. Hypoxia, cellular oxygen deprivation,
is an important factor that drives many aspects of metastasis [12,13], including the initiation
of the epithelial–mesenchymal transition (EMT) process that changes the phenotype of
tumour cells allowing them to escape from the matrix of the primary tumour [14]. In
addition to hypoxia, the interaction between tumour cells and the TME induces a wide
range of biological events that are necessary for metastasis including proliferation, im-
munosuppression and angiogenesis [15–17]. Many of these processes are regulated by
microRNAs (miRNAs) and are the subject of this review. In addition to the direct control
of metastasis by miRNAs, it has been recently shown that they can regulate the metastatic
process by acting as mediators of intercellular communication between tumour cells and
cells of the TME [18,19].
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MiRNAs are a class of small (19–25 nucleotides) non-coding single-strand RNAs. Since
their initial discovery in Caenorhabditis elegans [20], miRNAs have been demonstrated to
play key roles in many, if not all, physiological cellular functions by regulating target genes
through primarily negative post-transcriptional regulation of gene expression [21–23]. A
single miRNA is capable of targeting many genes and, conversely, a single gene can be tar-
geted by many miRNAs leading to a complex regulatory network that encompasses more
than 60% of human genes [24]. In addition to their importance under physiological condi-
tions, miRNAs are ubiquitously deregulated in cancer and can act as tumour-promoting
miRNAs (oncomiRNAs and metastamiRNAs) targeting messenger RNAs (mRNAs) coding
for proteins that act as tumour suppressors or as tumour suppressor miRNAs targeting
mRNAs coding for proteins with oncogenic properties [25].

In 2007, two separate reports released in parallel first described the association between
miRNAs and metastasis. Ma et al. demonstrated that miR-10b could promote breast
cancer metastasis in vitro and in vivo through targeting of the HOXD10 (Homeobox D10)
gene [26], whilst Yu et al. demonstrated that let-7 can act as a metastasis suppressor miRNA
through targeting of H-RAS and HMGA2 (High Mobility Group AT-Hook 2), leading to a
reduction in proliferation, mammosphere formation and metastatic potential, including in
breast cancer [27]. Subsequently, many miRNAs have been identified that are associated
with metastasis or with associated pathways, such as migration and invasion [28].

In this review, we considered the role of miRNAs in the cross-talk between tumour and
non-tumoral TME cells to promote metastasis. Further understanding of these processes
could be useful to develop new treatments for metastatic cancer patients and identify
new biomarkers with the ability to improve the management and follow-up strategies for
cancer patients.

2. Biogenesis and Delivery of miRNAs

MiRNA biogenesis starts with the transcription of pri-miRNA sequences from the
DNA, with approximately half of miRNAs encoded within intragenic sequences, mainly
from introns with the remainder transcribed from intergenic regions and regulated by
specific promoter regions [29]. Approximately half of pri-miRNAs encode for multiple
miRNAs in a cluster. MiRNA biogenesis can follow either canonical or non-canonical
pathways [30]. The canonical miRNA biosynthetic pathway starts with transcription of the
pri-miRNA sequence by RNA polymerase II/III; then, RNase-III endonucleases Drosha in
concert with the DGCR8 (DiGeorge syndrome critical region 8) cofactor cleave pri-miRNA
to form a hairpin pre-miRNA structure [31]. DGCR8 acts to recognize motifs within the
pri-miRNA, such as N6-methyladenylated GGAC, while Drosha cleaves pri-miRNA at
the base of the structure [31,32]. The resultant pri-miRNA hairpin structure is exported
to the cytoplasm by the exportin-5 (XPO5)/RanGTP complex [33], where it is processed
by the RNAse III endonuclease Dicer, which removes the terminal loop of the pre-miRNA
structure, resulting in a mature miRNA duplex (Figure 1) [34]. The duplex separates into
single-strand effector miRNAs which are loaded into the Argonaute (AGO) protein to
form the RNA-induced silencing complex (RISC) that regulates expression of target genes
through binding of the miRNA to (primarily) the 3′UTR region of mRNA [35,36], although
instances exist whereby miRNAs can bind to the 5’UTR region, promoter regions and
even the coding sequence [37–39]. Gene regulation by miRNAs primarily occurs at the
post-transcriptional stage and many mechanisms have been described, the majority of
which act negatively although positive regulation has also been described [40].
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Figure 1. MiRNA biogenesis and its localization. MiRNAs are processed by polymerase II/III to form a pri-miRNA, which 
is processed by DGCR8 and Drosha in the nucleus. MiRNAs leave the nucleus through interaction with XPO5; in the 
cytoplasm, miRNAs are processed by a group of proteins, the most important being the RNAse III endonuclease Dicer, 
resulting in mature miRNAs. These miRNAs can be added to the RISC complex to regulate mRNA expression or can be 
incorporated into extracellular vesicles (exosomes and microvesicles) to reach other cells in the tumour microenviron-
ment or cells in the premetastatic niche. Pol II / Pol III, polymerase II and III; DGCR8, DiGeorge syndrome critical region 
8; XPO5, exportin-5; TRBP, HIV TAR RNA-binding protein; PACT, protein activator of PKR; RISC complex, 
RNA-induced silencing complex; Ago2, Argonaute 2; miRNA, microRNA; mRNA, messenger RNA. 

In addition to their role within the cells, miRNAs can act extracellularly leading to 
great interest in their role as cellular messengers [41]. The most intensely studied form of 
extracellular miRNAs involved in cell-to-cell communication is extracellular vesicles 
(EVs), although it should be noted that some controversy remains as to the relative im-
portance of this format with some authors suggesting that most extracellular miRNAs 
exist in the free form bound to proteins or lipids [42,43]. EVs consist in a lipid bilayer 
membrane containing lipids, proteins and nucleic acids (including miRNAs) derived 
from the original cell, which protected their content from enzymatic degradation during 
transit through the extracellular microenvironment [44]. EVs can be classified mainly into 
microvesicles (100–1000 nm) and exosomes (50–100 nm) [45]; during the metastatic pro-
cess, it has been described that they participate in communication between cells and in 
the preparation of the premetastatic niche [46–48]. Extracellular miRNAs are taken up by 
receptor cells; this internalization can occur by different mechanisms, such as direct 
membrane fusion, endocytosis and receptor binding, which could trigger a downstream 
cascade or produce internalization of the vesicle (Figure 2) [49,50]. Several miRNAs have 
been described to participate in the communication between tumour cells and between 
tumour cells and tumour stromal cells and regulate metastasis (Table 1). 

Figure 1. MiRNA biogenesis and its localization. MiRNAs are processed by polymerase II/III to form a pri-miRNA, which
is processed by DGCR8 and Drosha in the nucleus. MiRNAs leave the nucleus through interaction with XPO5; in the
cytoplasm, miRNAs are processed by a group of proteins, the most important being the RNAse III endonuclease Dicer,
resulting in mature miRNAs. These miRNAs can be added to the RISC complex to regulate mRNA expression or can be
incorporated into extracellular vesicles (exosomes and microvesicles) to reach other cells in the tumour microenvironment
or cells in the premetastatic niche. Pol II / Pol III, polymerase II and III; DGCR8, DiGeorge syndrome critical region 8; XPO5,
exportin-5; TRBP, HIV TAR RNA-binding protein; PACT, protein activator of PKR; RISC complex, RNA-induced silencing
complex; Ago2, Argonaute 2; miRNA, microRNA; mRNA, messenger RNA.

In addition to their role within the cells, miRNAs can act extracellularly leading to
great interest in their role as cellular messengers [41]. The most intensely studied form of
extracellular miRNAs involved in cell-to-cell communication is extracellular vesicles (EVs),
although it should be noted that some controversy remains as to the relative importance
of this format with some authors suggesting that most extracellular miRNAs exist in the
free form bound to proteins or lipids [42,43]. EVs consist in a lipid bilayer membrane
containing lipids, proteins and nucleic acids (including miRNAs) derived from the original
cell, which protected their content from enzymatic degradation during transit through
the extracellular microenvironment [44]. EVs can be classified mainly into microvesicles
(100–1000 nm) and exosomes (50–100 nm) [45]; during the metastatic process, it has been
described that they participate in communication between cells and in the preparation
of the premetastatic niche [46–48]. Extracellular miRNAs are taken up by receptor cells;
this internalization can occur by different mechanisms, such as direct membrane fusion,
endocytosis and receptor binding, which could trigger a downstream cascade or produce
internalization of the vesicle (Figure 2) [49,50]. Several miRNAs have been described to
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participate in the communication between tumour cells and between tumour cells and
tumour stromal cells and regulate metastasis (Table 1).
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Figure 2. Cross-talk pathways between cells in the tumour microenvironment. It has been described that donor cells secrete
miRNAs mainly inside exosomes and microvesicles; these could reach and enter the receptor cell through three different
mechanisms: direct fusion, endocytosis and receptor binding. In the recipient cells, these miRNAs perform their function in
the case of cancer favouring tumour growth and/or metastasis.

3. MiRNAs in Intercellular Communication in the TME

Several miRNAs have been described to participate in the communication between
tumour cells and cells of the TME, such as fibroblasts, endothelial cells or immune cells,
among others; and several of them regulate expression of genes that are involved in the
metastasis process (Figure 3).
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which are considered to be M2-like, support different aspects of tumour development, 
including tumour formation, growth and metastasis [88,89]. 

Figure 3. Diagram of the metastasis miRNAs involved in communication between cells in the tumour microenvironment.
Tumour cells and cells from the tumour microenvironment, such as fibroblasts, astrocytes, endothelial cells, macrophages, T
cells, osteoclasts and osteoblasts, communicate via miRNAs, mainly incorporated into EVs. Tumour cells communicate with
each other in the tumour microenvironment to increase its malignancy. Moreover, communication between tumour cells
and fibroblasts is mainly related with the switch to the CAF phenotype, while communication between CAFs and tumour
cells increase tumour cell mobility and metastasis, similar to what occurs in macrophages where transformation to TAMs is
promoted. Cross-talk with astrocytes is related to preparing a metastatic niche in the brain as osteoclasts and osteoblasts
which are related with bone metastasis. Finally, communication with endothelial cells is more related with angiogenesis and
inflammation, which at the end promote metastasis. EVs, extracellular vesicles; CAFs, cancer-associated fibroblasts; TAMs,
tumour-associated macrophages.

3.1. Surrounding Tumour Cells and Premetastasis Niche Formation

The acidic microenvironment of the TME has been shown to promote the release of
EVs and has been associated with tumour progression and metastasis. In glioblastoma,
glioma stem cells in acidic microenvironment secrete EVs with MAPK/ERK (mitogen-
activated protein kinase/Ras-dependent extracellular signal-regulated kinase)-targeting
miRNAs that produce oncogenic reprogramming of the microenvironment, promoting
local tumour infiltration [51]. In hepatocellular carcinoma (HCC), exosomal secretion of
miR-21-5p and miR-10b-5p induced by acidic microenvironment promote proliferation,
migration and invasion of recipient HCC cells [52].

In the TME, cancer stem cells (CSCs) have been found to be important in tumour
maintenance and metastasis [53]. It is generally believed that only a subpopulation of
tumour cells are able to initiate metastasis, defined as CSCs [54,55]. Moreover, CSCs also
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exhibit other traits that drive metastasis, including mobility, invasiveness and apoptotic
resistance [56–58]. In particular, cross-talk between CSCs and tumour cells via miRNAs
has been described in clear cell renal cell carcinoma (ccRCC) where exosomal miR-19b-
3p secreted by CSCs were demonstrated to be effectively transferred to tumour cells
and to induce EMT in those cells via the targeting of PTEN (phosphatase and tensin
homolog) [59]. In addition, highly metastatic cells from oral squamous cell carcinoma
(OSCC) were observed to secrete miR-342-3p and miR-1246 packaged in exosomes, which
were transferred to poorly metastatic cells and shown to promote cell motility and invasive
ability of these cells [60].

In distant metastasis, bone is a preferred site for many types of cancer, such as breast
and prostate cancer. Metastatic bone lesions are classified as osteoblastic or osteolytic
lesions; these are induced by an imbalance between bone formation (osteoblasts) and
resorption (osteoclasts) which can be produced by cancer-secreted miRNA in bone mi-
croenvironment [61]. Breast cancer is related with osteolytic bone metastasis and some
of the secreted miRNAs described with this phenomenon are miR-20a-5p, miR-218 and
miR-21 [62–64]. High expression of miR-20a-5p has been found in breast tumour cells
and also in their exosomes; overexpression in breast tumour cells promotes migration and
invasion, while exosomal miR-20a-5p is transferred to bone marrow macrophages and
facilitates osteoclastogenesis [62]. Furthermore, in breast cancer, miR-218-5p has been de-
scribed upregulated in blood samples from patients with bone metastasis; further analysis
of this miRNA showed that EV-associated miR-218-5p can downregulate type I collagen
expression and deposition by osteoclasts thereby decreasing bone formation and mediating
bone niche adaptation, promoting bone metastasis [63]. MiR-21 has also been described
to promote differentiation and activation of osteoclasts in breast cancer and lung cancer,
reducing both bone density and promoting bone metastasis [64,65]. On the other hand,
prostate cancer is related with osteoblastic bone metastasis. Hashimoto et al. described
eight highly expressed exosomal miRNAs in prostate cells that correlated with the os-
teoblastic phenotype including EV-associated miR-940 that was demonstrated to promote
osteogenic differentiation of mesenchymal stem cells (MSCs) in bone microenvironment
through targeting of ARHGAP1 (Rho GTPase-activating protein 1) and FAM134A (family
with sequence similarity 134, member A) [66].

Finally, in the metastatic niche, glucose availability plays an important role in cellular
colonization and metastatic formation. In breast cancer, the EV-mediated transfer of miR-
122 from tumour cells was shown to reduce glucose uptake by recipient lung fibroblasts and
brain astrocytes both in vitro and in vivo via targeting of PKM2 (pyruvate kinase M2) and
GLUT1 (glucose transporter 1) resulting in promotion of colonization and metastasis [67].

3.2. Cancer-Associated Fibroblasts (CAFs)

Cancer-associated fibroblasts (CAFs) are a group of activated fibroblasts in the TME
with high heterogeneity and plasticity that represent a major component of the tumour
stroma through production of many of the molecules that make up the extracellular matrix,
including cytokines, chemokines and growth factors. CAFs play an important role in tu-
mour progression and metastasis in many cancers, including breast and colorectal cancers,
through multiple pathways. CAFs promote survival, growth, invasiveness and angiogene-
sis of cancer cells by secretion of growth factors, transporting molecules through EVs, or
can remodel the extracellular matrix, which is crucial for cancer cell invasiveness [68].

The origin of CAFs is still poorly understood and it has been suggested that tumour
cells can promote the transformation of normal fibroblasts into CAFs through EV-associated
miRNAs [69]. For example, in HCC, high-metastatic cells have been shown to secrete exo-
somal miR-1247-3p, which in turn was demonstrated to be taken up by fibroblasts resulting
in their activation, and the resultant CAFs secreted proinflammatory cytokines and pro-
moted tumour stemness, EMT, chemoresistance and lung metastasis [70]. In breast cancer,
tumour-secreted EV-associated miR-9 was demonstrated to be taken up by normal recipient
fibroblasts enhancing the switch to CAF phenotype and increasing cell motility [71]. In
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melanoma in situ, specific pigment vesicles (melanosomes) were demonstrated to transport
miRNAs to fibroblasts resulting in changes to receptor fibroblasts, including increased pro-
liferation, invasion, migration and proinflammatory gene expression, thereby enhancing
invasion and formation of the dermal tumour niche [72].

The contrary situation has also been described with CAFs also able to secrete EV-
associated miRNAs to recipient tumour cells [73,74]. For example, in breast cancer, CAF
exosomes contained high levels of miR-21-5p, miR-378e and miR-143-3p, which could be
transferred to recipient tumour cells, which exhibited increased mammosphere formation
capacity, EMT marker production and anchorage-independent cell growth [73]. In colorec-
tal cancer (CRC), miR-17-5p was shown to be highly expressed in CAF exosomes that were
transferred to tumour cells leading to targeting of RUNX3 (RUNX family transcription
factor 3) which was demonstrated to effect the interaction with MYC and subsequent
binding to the TGF-β1 (transforming growth factor beta 1) promoter leading to pathway
activation and tumour progression [74].

In addition to intercellular communication by miRNAs between tumour cells and
fibroblasts, miRNA expression itself within tumour fibroblasts can be affected by their
interaction with tumour cells. Mitra et al. found three differentially expressed miRNAs in
ovarian CAFs, two of them downregulated (miR-31 and miR-214) and one upregulated
(miR-155), compared with normal fibroblasts which were demonstrated to induce the
conversion of normal fibroblasts into CAFs [75]. In breast cancer, miR-200s and miR-205
have been described to mediate reprogramming of normal fibroblasts into CAFs and trigger
invasion and angiogenesis, respectively [76,77].

3.3. Endothelial Cells

During metastasis, the disruption of the endothelial cell tight junctions and recruit-
ment of new blood vessels called angiogenesis is essential for tumour progression [78,79].
Exosomal miR-939-5p in breast cancer and exosomal miR-103a-3p in HCC have been de-
scribed to be transferred from tumour cells to endothelial cells and directly target vascular
endothelial (VE)-cadherin, leading to the destruction of tight junctions thereby facilitat-
ing the transendothelial migration of tumour cells by disruption of endothelial junction
integrity [80,81]. Moreover, expression of serum miR-103a-3p in HCC patients has been
associated with higher metastasis potential [81].

The protein ZO-1 (zonula occludens-1) is a component of the tight junction, which
can also be targeted by exosomal miRNAs. For example, miR-25-3p in CRC and miR-105
in breast cancer both target ZO-1 leading to the promotion of vascular permeability and
metastasis [82,83]. Exosomal-associated miR-105 in breast cancer targets directly ZO-1 in
endothelial cells [83], while regulation of ZO-1 by exosomal miR-25-3p occurs indirectly,
as miR-25-3p targets KLF2 and KLF4 (Krüppel-like factors 2 and 4) in endothelial cells,
regulating expression of ZO-1, VEGFR2 (vascular endothelial growth factor), occludin
and claudin-5 [82]. Moreover, circulating expression of miR-25-3p is significantly higher
in CRC patients with metastasis [82], while miR-105 can be detected in circulation at the
premetastatic stage [83].

Increased levels of extracellular miR-210, an important regulator of angiogenesis, was
secreted by breast cancer metastatic cells and transferred to endothelial cells, which resulted
in enhanced angiogenesis due to increased levels of nSMase2 (neutral sphingomyelinase 2)
expression [84]. This miRNA was also secreted by hypoxic breast tumour cells to the
neighbouring TME, including endothelial cells, where it targeted vascular remodelling
target genes, such as ephrin A3 and PTP1B (protein tyrosine phosphatase non-receptor
type 1), resulting in promoted angiogenesis [85]. Exosomal miR-210-3p secreted by HCC
tumour cells and delivered also in endothelial cells targeting SMAD4 (SMAD family
member 4) and STAT6 (signal transducer and activator of transcription 6) resulted in
enhanced angiogenesis [86].
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3.4. Immune System Modulation by miRNAs

Macrophages are the most abundant infiltrative immune cells present in and around
tumours and play a critical role in inflammation [87]. Macrophages are known to polarize,
depending on different stimuli, to the M1 phenotype with anti-tumour activity or to the
M2 phenotype with pro-tumoral activity. Tumour-associated macrophages (TAMs), which
are considered to be M2-like, support different aspects of tumour development, including
tumour formation, growth and metastasis [88,89].

The premetastatic inflammatory response generated by TAMs leads to tumour growth
and metastasis. MiR-21 and miR-29 secreted by lung tumour cells target TLR8 (toll-like
receptor 8) within intracellular endosomes leading to induction of NF-κB (nuclear factor
kappa-light-chain-enhancer of activated B cells) and NF-κB-mediated secretion of the proin-
flammatory cytokines TNF-α (tumour necrosis factor alpha) and IL-6 (interleukin-6) [90].
In bladder cancer, macrophages take up exosomal miR-21-5p from tumour cells lead-
ing to promotion of M2 polarization and enhanced migration and invasion of tumour
cells [91]. Both CRC cell-derived exosomal miR-934 and hypoxic pancreatic cell-derived
exosomal miR-301a-3p were demonstrated to activate PI3K/AKT (phosphatidylinositol
3-kinase/protein kinase B) signalling pathway and enhance metastatic capacity of tumour
cells through PTEN targeting [92,93]. PTEN also plays an important role in the regulation
of T cells, and it has been demonstrated that EV-associated miR-214 from a range of tumour
cells including breast cancer, hepatocellular carcinoma, non-small-cell lung cancer (NSCLC)
or pancreatic cancer could transfer to T cells leading to downregulation of PTEN and
promoting T-reg (regulatory T cells) expansion and IL-10 (interleukin-10) secretion, which
in turn promotes tumour growth and enhanced immune suppression in vivo [94].

MicroRNAs have also been shown to be involved in the recruitment of immune cells
to the TME, but rather than through the transfer of miRNAs from tumour cells to immune
cells, this occurs through the secretion of attractant molecules. For example, both miR-149
in triple-negative breast cancer (TNBC) and miR-148b in HCC have been demonstrated
to target colony-stimulating factor-1 (CSF-1) miRNAs [95,96]. In TNBC, downregulation
of miR-149 promoted lung metastasis by enhancing CSF1-dependent recruitment and
M2 polarization of macrophages, which also correlated with macrophage infiltration and
reduced survival in patient samples [95]. Downregulation of miR-148b in HCC patients
correlated positively with recurrence, metastasis and poor prognosis. Moreover, in vitro
and in vivo metastatic HCC cells showed decreased levels of miR-148b that correlated
with increased CSF1, which promoted HCC growth and metastasis through CSF1/CSF1R
(colony-stimulating factor-1 receptor)-mediated TAM infiltration [96]. Similarly, miR-561-
5p, which directly target chemokine (C–X3–C motif) ligand 1 (CX3CL1), in metastatic HCC
downregulated CX3CL1 leading to low infiltration of CX3CR1 (CX3C chemokine receptor
1)-positive NK cells and resulting in promoted tumorigenesis and metastasis [97].

Moreover, it has been described that TAMs in the TME can release extracellular
vesicles with miRNAs, and these can be transferred to tumour cells, generally promoting
migration, invasion and metastasis. In CRC, exosomal miR-21-5p and miR-155-5p from
macrophages directly target the BRG1 coding gene in tumour cells; this gene is a key
factor promoting metastasis [98]. Another example is macrophage-derived EVs in gastric
cancer (GC), which contain high levels of miR-130b-3p and promote survival, migration,
invasion and angiogenesis in GC cells through the modulation of MLL3 (mixed-lineage
leukemia protein 3) and GRHL2 (grainyhead-like protein 2 homolog) [99]. MiR-501-3p has
been found to be highly expressed in pancreatic ductal adenocarcinoma (PDAC) tissues
and TAM-derived exosomes. Exosomal miR-501-3p promotes cancer cell migration and
invasion, as well as tumour formation and metastasis in vivo through regulation of TGFBR3
(transforming growth factor beta receptor 3) [100]. Finally, a study detected miR-223-3p in
exosomes released by IL-4 (interleukin-4)-activated macrophages; this miRNA has been
shown to transfer to breast tumour cells where it regulates invasion through the Mef2c
(myocyte enhancer factor 2C)-β-catenin pathway [101].
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4. Conclusions and Perspectives

The present review summarizes the role of miRNAs in metastasis with a focus on their
role in the communication between tumour cells and TME cells. Deregulated miRNAs have
been observed in both tumour and TME cells, highlighting the crucial role of miRNAs and
tumour microenvironment in cancer progression and metastasis. Many of these miRNAs
are secreted through EVs, mostly contained inside exosomes, and target many important
cancer-related genes in recipient cells, many of which are related with the metastatic process
(Table 1).

Table 1. List of miRNAs associated with metastasis and TME.

miRNA Cancer Donor Cells Receptor Cells Target Ref.

miR-9 Breast Tumour cells Fibroblasts E-cadherin [71]
miR-10b-5p HCC Tumour cells Tumour cells - [52]
miR-15b-5p GBM Tumour cells Non-tumour brain cells MAPK/ERK [51]
miR-17-5p CRC CAFs Tumour cells RUNX3 [74]

miR-19b-3p ccRCC CSCs Tumour cells PTEN [59]
miR-20a-5p Breast Tumour cells BMMs SRCIN1 [62]

miR-21
Lung Tumour cells Pre-osteoclasts PTEN [65]
Lung Tumour cells Macrophages TLR8 [90]

miR-21-5p

GBM Tumour cells Non-tumour brain cells MAPK/ERK [51]
HCC Tumour cells Tumour cells - [52]
Breast Tumour cells Osteoclasts PDCD4 [64]
Breast CAFs Tumour cells - [73]

Bladder Tumour cells Macrophages PTEN [91]
Colon TAMs Tumour cells BRG1 [98]

miR-25-3p CRC Tumour cells Endothelial cells KLF2/KLF4 [82]
miR-29a Lung Tumour cells Macrophages TLR8 [90]

miR-30c-5p GBM Tumour cells Non-tumour brain cells MAPK/ERK [51]
miR-30d-5p GBM Tumour cells Non-tumour brain cells MAPK/ERK [51]
miR-103a-3p HCC Tumour cells Endothelial cells VE-Cadherin [81]

miR-105 Breast Tumour cells Endothelial cells ZO-1 [83]
miR-122 Breast Tumour cells Fibroblasts/astrocytes PKM2/GLUT1 [67]

miR-130b-3p Gastric TAMs Tumour cells MLL3/GRHL2 [99]
miR-143-3p Breast CAFs Tumour cells - [73]
miR-155-5p Colon TAMs Tumour cells BRG1 [98]

miR-210
Breast Tumour cells Endothelial cells Ephrin A3 [84]
Breast Tumour cells Endothelial cells Ephrin A3/PTP1B [85]

miR-210-3p HCC Tumour cells Endothelial cells SMAD4/STAT6 [86]
miR-211 Melanoma Tumour cells Fibroblasts IGF2R [72]
miR-214 Lung Tumour cells Treg PTEN [94]

miR-218-5p Breast Tumour cells Pre-osteoblasts Col1a1 [63]
miR-223-3p Breast TAMs Tumour cells Mef2c [101]

miR-301a-3p Pancreatic Tumour cells Macrophages PTEN [93]
miR-342-3p OSCC High-metastatic cells Low-metastatic cells - [60]
miR-378e Breast CAFs Tumour cells - [73]

miR-501-3p PDAC TAMs Tumour cells TGDBR3 [100]
miR-934 CRC Tumour cells Macrophages PTEN [92]

miR-939-5p Breast Tumour cells Endothelial cells VE-cadherin [80]

miR-940 Prostate Tumour cells MSCs ARHGAP1
FAM134A [66]

miR-1246 OSCC High-metastatic cells Low-metastatic cells DENND2D [60]
miR-1247-3p HCC High-metastatic cells Fibroblasts B4GALT3 [70]

ccRCC, clear cell renal cell carcinoma; OSCC, oral squamous cell carcinoma; GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma;
CRC, colorectal cancer; PDAC, pancreatic ductal adenocarcinoma; CSC, cancer stem cells; BMM, bone marrow macrophages; MSCs,
mesenchymal stem cells; CAF, cancer-associated fibroblasts; TAM, tumour-associated macrophages; Ref, reference.

MicroRNAs regulate expression of several genes related with metastasis, but at the
same time miRNAs could be regulated by competing endogenous RNAs (ceRNAs). Com-
peting endogenous RNAs contain sequences recognized by miRNAs and act as sponges
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of them, thus modulating gene expression. Competing endogenous RNAs include long
non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) [102]. In nasopharyngeal
carcinoma, it has been described that overexpression of lncRNA FAM225A which regu-
lates miR-590-3p and miR-1275 [103] and circRNA CRIM1 which regulates miR-422a [104]
promote invasion and metastasis, respectively. Gastric cancer patients showed two differen-
tially expressed circRNAs and both act as ceRNAs [105,106]. One of them, circNRIP1, was
upregulated and was demonstrated to target the miR-149-5p/AKT1-mTOR axis promoting
migration and invasion [105]. In contrast, circCCDC9 was downregulated and was shown
to regulate migration and invasion through sponging of the miR-6792-3p/CAV1 axis [106].
Additionally the lncRNA linc00968 was found to be downregulated in lung adenocar-
cinoma acting as a sponge for miR-9-5p and miR-21-5p, thereby promoting metastasis
through regulation of CPEB3 and SMAD7, respectively [107,108].

The discovery of metastasis-related miRNAs secreted by tumour cells or stromal cells
in the TME allows us to use them as prognostic biomarkers in different types of cancer. In
breast cancer, a 4-miRNA signature in tissue that could predict high or low risk of lymph
node metastasis with an area under the curve (AUC) of 0.841 has been described, with
poorer overall survival and disease-free survival in the high-risk group [109]. Another
example is in prostate cancer, where tissue expression of miR-346 correlated with the
Gleason grade, biochemical relapse and higher recurrence risk [110]. Moreover, metastasis-
related miRNAs were also found and detected in bodily fluids, such as serum, plasma and
urine, among others, which allows the development of non-invasive metastasis biomarkers
facilitating patient management [2]. Serum levels of miR-103a-3p and miR-1247-3p in
HCC correlated with higher metastatic potential and lung metastasis, respectively [70,81].
Another example of non-invasive biomarkers is serum exosomal miR-301a-3p levels in
pancreatic cancer, which correlated with tumour invasion, lymph node metastasis and
poorer overall survival of patients [93]. These are just some examples of studies where
the role of metastasis-related miRNAs as prognostic cancer biomarkers has been seen, but
the field of study of miRNAs as biomarkers has grown in recent years. However, current
studies evaluate their biomarker potential using different conservation, extraction and
detection protocols, leading to inconsistent results that make difficult their application to
clinical practice [111].

On the other hand, deregulated miRNAs in metastasis could be used as a therapeutic
approach. There are two main strategies to modulate miRNAs, restoration of downregu-
lated tumour suppressor miRNA (mimics) or inhibition of overexpressed onco-miRNA
(antagomiRs) [112,113]. However, efficient delivery of miRNAs / miRNA inhibitors to
target tissues is a major challenge in the transition of miRNA therapy to the clinical practice.
Several companies are working on miRNA-based therapies and some of them have entered
clinical trials, but only a small proportion of them are directed against cancer (Table 2) [114],
so more efforts are needed to bring miRNA therapies from the bench to the clinic. The
two main delivery approaches used in miRNA modulation are viral- and non-viral-based
systems. Viral vectors, such as lentivirus, adenovirus or adeno-associated viruses are effi-
cient delivery methods, but their systemic toxicity and immunogenicity limit their clinical
use [115,116]. For this reason, several researchers focused on non-viral delivery systems,
such as nanoparticles or exosomes, to deliver miRNAs / miRNA inhibitors; however, these
approaches still present a lower efficiency than viral systems [117,118].
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Table 2. Clinical trials of miRNA-based therapeutics to treat cancer.

miRNA Cancer Product Type Phase Company Clinical Trial
ID Ref.

miR-10b GBM RGLS5579 AntagomiR Not iniciated Regulus
Therapeutics - -

miR-16 Mesothelioma and
NSCLC MesomiR-1 TargomiR Phase 2 ENGeneIC NCT02369198 [119]

miR-34
Liver, lymphoma,
melanoma, SCLC,

MM, RCC, NSCLC
MRX34 Mimic Withdrawn Mirna

Therapeutics
NCT01829971
NCT02862145 [120]

miR-155 T cell lymphoma MRG-106 AntagomiR Phase 2 MiRagen
Therapeutics NCT03713320 [121]

GBM, glioblastoma multiforme; NSCLC, non-small-cell lung cancer; SCLC, small-cell lung cancer; MM, multiple myeloma; RCC, renal cell
carcinoma; Ref, reference.

As mentioned above, EVs secreted by tumour cells play an important role in pro-
moting metastasis, so it would be tempting to infer that inhibiting EV biogenesis and
secretion could be another promising strategy for cancer therapy. It has been shown that
sulfisoxazole, an FDA-approved antibiotic, inhibits secretion of small EVs from breast
cancer through interference with ETA (endothelin receptor A) and inhibits cancer pro-
gression and metastasis as demonstrated in mouse models [122]. Another study screened
more than 4000 compounds to target exosomes from cancer cells. These authors found
that manumycin A, a natural microbial metabolite, could inhibit exosome biogenesis and
secretion in castration-resistant prostate cancer through inhibition of the Ras/Raf/ERK
signalling pathway [123]. In addition to targeting EV biogenesis and secretion, EVs could
be prevented from reaching their target cells. For example, it has been reported that
treatment with EV-specific anti-CD9 or anti-CD63 significantly decreased breast cancer
metastasis to the lungs, lymph nodes and thoracic cavity [124]. Ortiz et al. demonstrated
that melanoma EVs could downregulate IFNAR1 (type I interferon receptor) and CH25H
(cholesterol 25-hydroxylase) in normal cells to facilitate EV uptake and premetastatic niche
formation. Upregulation of IFNAR1–CH25H or treatment with reserpine, an antihyperten-
sive drug, limited melanoma EV uptake by normal cells and inhibited tumour progression
and reduced lung metastasis [125].

In summary, metastasis-related miRNA plays an important role in cell-to-cell com-
munication, which helps tumour cells to survive, grow and spread to other organs. Its
presence in tumour tissue and body fluids gives us the opportunity to use them to our
benefit, either as prognostic biomarkers to improve patient management or by developing
new therapies to reverse the effect of these miRNAs. Nevertheless, for these applications, it
is necessary to develop and establish standardized approaches, conduct more multicentre
studies and improve approaches to EV disruption and miRNA-based therapies.
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