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Beta-lactam antibiotics remain one of the most commonly prescribed drug classes, but
they are limited by their propensity to cause hypersensitivity reactions (e.g., from allergy
to anaphylaxis) as well as by the emergence of bacteria with a myriad of resistance
mechanisms such as β-lactamases. While development efforts continue to focus on
overcoming resistance, there are ongoing concerns regarding cross-contamination of
β-lactams during manufacturing and compounding of these drugs. Additionally, there
is a need to reduce levels of drugs such as β-lactam antibiotics in waste-water to
mitigate the risk of environmental exposure. To help address future development of
effective remediation chemistries and processes, it is desired to better understand the
structural relationship among the most common β-lactams. This study includes the
creation of a class-wide structural ordering of the entire β-lactam series, including both
United States Food and Drug Association (US-FDA)-approved drugs and experimental
therapies. The result is a structural relational map: the “Lactamome,” which positions
each substance according to architecture and chemical end-group. We utilized a novel
method to compare the structural relationships of β-lactam antibiotics among the radial
cladogram and describe the positioning with respect to efficacy, resistance to hydrolysis,
reported hypersensitivity, and Woodward height. The resulting classification scheme
may help with the development of broad-spectrum treatments that reduce the risk of
occupational exposure and negative environmental impacts, assist practitioners with
avoiding adverse patient reactions, and help direct future drug research.

Keywords: hydrolysis, decomposition, chemical informatics, lactam antibiotics, antibiotic allergy (including
penicillin and cephalosporin β-lactams), antimicrobial activity, deactivation

HISTORICAL OVERVIEW

Since the first clinical uses of penicillin G in the 1930s and 1940s, β-lactam antimicrobials have
enjoyed marked success in the treatment of bacterial infections. By 1944 penicillin was being
manufactured at the rate of over a billion doses a year (Aldridge et al., 1999). Shortly after
the introduction of the penam penicillin, the first chemical compounds of the cephem group
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were isolated from the fungus Cephalosporium acremonium by
Giuseppe Brotzu in 1948, when crude filtrates of a culture
were found to inhibit the growth of Staphylococcus aureus
(Singh and Arrieta, 1999; Foye et al., 2008). The first cephem,
cephalothin, became available for patients in the United States
as a parenteral drug in 1964 (Greenwood, 2008). Interest in
β-lactam antibiotics spurred scientists to explore a breadth of
structural derivatives and platforms well beyond the above-
mentioned natural substances in efforts to expand the spectrum.
Those synthetic efforts have resulted in four major β-lactam
classes: monobactam, penams, penems, and cephems (Figure 1).

STRUCTURAL PLATFORMS AND
β-LACTAM CLASSES

The historical development process as well as structural and
functional (e.g., spectra of activity) differences among the various
classes of β-lactams are described in detail in several excellent
reviews (Bush and Bradford, 2016; Ochoa-Aguilar et al., 2016;
Lima et al., 2020). Aside from the impacts resulting from electron
withdrawing substituents by different R groups, the key structural
features of all β-lactam antibiotics include (1) the 2-azetidinone, a
4-membered cyclic amide required for their characteristic target
acylation, (2) the level of cyclic amide ring strain imposed by
bicyclic structural designs, and (3) an acidic moiety critical to
their recognition by the transpeptidase active site (Figure 2).

While many previous studies have investigated the intricacies
of drug binding and the impacts on efficacy and resistance,
the relationship of molecular structure on the ability of
chemical compounds and processes to decontaminate β-lactam
residues from manufacturing and compounding facilities as
well as terrestrial and aquatic environments has received
less attention. Because of their perceived or actual potential
to cause allergic responses in a substantial portion of the
host population, governmental guidelines and regulations
involve special precautions to reduce the risk of cross-
contamination from β-lactams (Food and Drug Administration
[FDA], 2013). The chemicals that might be candidates for
decontamination of surfaces in facilities or for waste-water
treatment should be effective against a broad range of drugs at
levels that are already employed for disinfection and be readily
biodegradable themselves.

As such, it was desired to assess the structural relationships
among β-lactams to understand if a subset of drugs can serve
as a proxy for others during development and testing. As
a first step toward this attempt of a “read-across,” the most
widely used β-lactam antibiotics have been reviewed, molecularly
modeled, and structurally organized into relational maps termed
a “Lactamome.”

β-Lactam Classes
The monocyclic β-lactams (or monobactam) class represents
the simplest structural platform among these antibiotics. The
monocyclic platform of this b-lactam was first isolated from
Chromobacterium violaceum (Asai et al., 1981; Imada et al., 1981;
Sykes et al., 1981; Decuyper et al., 2018; Goldberg et al., 2021).

There are three major monocyclic β-lactams: aztreonam,
tigemonam, nocardicin A, and two minor monocyclic β-lactams:
carumonam (only approved in Japan) and tabtoxin. Tabtoxin,
the only member retaining a nitrogen-hydrogen bond, is
uniquely a glutamine synthetase inhibitor with lower activity
against penicillin-binding proteins (PBPs). The others possess
an N-sulfonic acid moiety or N-acetic acid moiety. Aztreonam
(Figure 1), currently the only monocyclic β-lactams clinically
used in the United States, exhibits potent inhibition of Gram-
negative PBPs (Georgopapadakou et al., 1982; Sykes et al.,
1982; Rittenbury, 1990; Cunha, 1993) but finds limited clinical
utility owing to its lack of activity against Gram-positive or
anaerobic bacteria. Because of its unique monocyclic β-lactam
structure, aztreonam is thought to have no cross-sensitivity
to patients allergic to penicillin (Gaeta et al., 2015). Currently
there is pre-clinical research in aztreonam combination
with other β-lactams and diazabicyclooctane monocyclic
β-lactams against MDR/XDR Gram-negative bacteria (Bassetti
et al., 2021; Bhatnagar et al., 2021). A second generation
of monocyclic β-lactams is also under late stage clinical
development (Osborn et al., 2019).

Penams are a class of β-lactams possessing an
azabicyclo[3.2.0]heptane ring system, a carboxylic acid moiety
at C3, and a sulfur atom at position one (Figure 1). The
prototypic and most well-known penam is penicillin G (PNG
or benzylpenicillin), isolated from Penicillium chrysogenum
(Fleming, 2001). The other commonly used natural product
penam is penicillin V, or phenoxymethylpenicillin. In the absence
of β-lactamases, the natural penicillins show good Gram-positive
activity but fail to inhibit the growth of many Gram-negative
organisms (Libby and Holmberg, 1945; Eagle, 1946; Eagle
and Technical Assistance of Arlyne D. Musselman, 1947; Nell
and Hill, 1947; Thomsen and Larsen, 1962). A great deal of
creative synthetic chemistry has been directed to the penam
platform to modulate the spectrum of this class, predominantly
via modifications at the C6 acylamino group (R1 side chain).
Clinically useful penam derivatives have geminal dimethyl
groups at C2, except tazobactam which is used in combination
therapies as a β-lactamase inhibitor. The penam amoxicillin is
one of the most often prescribed antibiotics in the United States,
many other countries, and in veterinary medicine (Tao et al.,
2019).

Penems are direct analogs of penams but with 2,3-
unsaturation within the fused five-membered ring (Figure 1).
The thiapenems, which contain a sulfur atom in the fused ring
at position one, do not exist naturally but were synthesized
in 1978 by chemists including R.B. Woodward (Ernest et al.,
1978). The penem class is one of a few β-lactam antibiotics
still being researched, and includes faropenem, ritipenem, and
sulopenem (Batchelder et al., 2020; Butler et al., 2022; Sato
et al., 2022). While no members of the thiapenem class are
currently used in United States clinical settings, safety and efficacy
data required for FDA approval are forthcoming. However,
there are several FDA-approved members of a subclass of
penems called carbapenems, which possess a carbon atom in
place of the sulfur “X” atom. The structure of ertapenem
is shown in Figure 1 as an example of this class. The C6
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FIGURE 1 | The chemical graphs and scaffold of primary examples of major β-lactam antibiotic classes. Common atom numbering scheme of the chemotype is
depicted and oriented above the example β-lactam ring. The X may be a carbon, an oxygen atom, or a sulfur atom. For example, penem structures with X=C are
“carbapenems”; penem structures with X=O are “oxapenems”; and penem structures with X=S are “thiapenems,” or more commonly, simply “penems.”

hydroxyethyl substituent possessed by members of the penem
class represents a significant departure from penams and
cephems, which generally exhibit large and variable aminoacyl
substituents at C6. Differences in activity and spectrum among
compounds of this class are influenced by cis alignment of
the vicinal R1 hydroxyl and C6 hydrogen and dictated by
the C2 substituent. Given their broad spectrum, as well as
the β-lactamase stability afforded by their C6 R-hydroxyethyl
side chain and trans C5-C6 hydrogen geometry (Basker
et al., 1980), the carbapenems have found most of their
clinical utility as antimicrobials for infections with multidrug-
resistant organisms.

Cephems, also known as cephalosporins, differ from penems
by having a dihydrothiazine ring fused to the β-lactam ring
(Hughes, 2017a,b). First generation cephems generally possess an
aromatic acylamino side chain at C7 and exhibit potent Gram-
positive activity (Godzeski et al., 1963; Spencer et al., 1966a,b;
Ryan et al., 1969; Hsieh and Ho, 1975).

As cephems entered a second generation, drug developers
explored other substituents at C7, such as the replacement of
the acetoxy group with various nucleophiles (i.e., carbamates,

heterocyclic mercaptans, and pyridines). These cephems exhibit
broader spectrum than their earlier counterparts, with some
showing potent inhibition of Gram-negatives (Eykyn et al., 1973;
Kosmidis et al., 1973; Hamilton-Miller et al., 1974; Neu, 1974a,b;
Nomura et al., 1974; Wallick and Hendlin, 1974; Tsuchiya et al.,
1978). The broad cephem class also contains the cephamycin
(and cephalosporin) class which also has the cephem nucleus and
includes the second generation cefoxitin and cefotetan (Kosmidis
et al., 1973; Neu, 1974b; Wallick and Hendlin, 1974).

In third generation designs, the aryl group was modified
to an aminothiazole, a change found to enhance Gram-
negative activity. One notable outlier is cefoperazone, which
borrows its C7 acylamino group from the ureidopenicillin
piperacillin. This group exhibits not only further expanded
spectrum compared to previous generations, but maintains
stability to serine β-lactamases (Sosna et al., 1978; Kojo
et al., 1979; Matsubara et al., 1979; O’Callaghan et al.,
1980; Reiner et al., 1980; Shannon et al., 1980; Verbist and
Verhaegen, 1980; Wise et al., 1980; Neu et al., 1981, 1984,
1989; Kamimura et al., 1984; Inamoto et al., 1988, 1990a,b;
Yokoo et al., 1991).
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With fourth generation cephems, quaternary nitrogen
substituents were incorporated at C3 to enhance passive
transport through the Gram-negative outer membrane, decrease
affinity for β-lactamases, and promote departure of the leaving
group (Machka and Braveny, 1983; Seibert et al., 1983; Khan
et al., 1984; Kessler et al., 1985; Limbert et al., 1991; Chin et al.,
1992; Hancock and Bellido, 1992).

The fifth generation of cephems was specifically engineered to
combat various resistance problems while attempting to maintain
a broad spectrum of activity (Entenza et al., 2002; Wootton
et al., 2002; Zbinden et al., 2002; Ishikawa et al., 2003; Iizawa
et al., 2004; Issa et al., 2004; Sader et al., 2005; Takeda et al.,
2007a,b; Toda et al., 2008; Ito et al., 2016; Kohira et al., 2016;
Dobias et al., 2017; Aoki et al., 2018). In general, these cephems
maintain the alkoxyimino group, exchange the aminothiazole for
an aminothiadiazole, and install conjugation or extended ring
systems in their C3 substituents.

A unique and small modification to the cephem class is
the oxacephem, which possesses an azabicyclo[4.2.0]oct-2-ene
ring system, a carboxylic acid moiety at C4, and, as the name
suggests, an oxygen at position one in place of sulfur. The
major oxacephems are moxalactam (latamoxef) and flomoxef.
These compounds were developed to reduce blood coagulation
defects and, more specifically, target the bacterial genus Nocardia
(Yazawa et al., 1989; Cazzola et al., 1993).

b-lactamase inhibitors include subclasses of penam β-lactams
resistant to hydrolysis by β-lactamases. While the success of
β-lactam antibiotics has been extraordinary, their long-term
usage has collided with the evolution of resistant microbial
strains. Myriad resistance determinants can contribute to
such resistance, but β-lactamases are of particular concern
due to their high catalytic efficiency and their potential
for rapid dissemination by horizontal transfer on plasmids.
Major β-lactam-based β-lactamase inhibitors include sulbactam,
clavulanate, and tazobactam. These β-lactam molecules exhibit
little direct antibacterial properties by themselves but serve a
sacrificial role by tenaciously binding to β-lactamases to thereby
enable the unimpeded performance of a partner β-lactam such as
amoxicillin (Pechere and Kohler, 1999; Shapiro et al., 2021).

Mechanism of Activity
β-lactam antibiotics act through structural mimicry of the
D-alanine-D-alanine motif in peptidoglycans of the bacterial
cell wall (Figure 2). They inhibit bacterial transpeptidases
which catalyze the cross-linkage of peptidoglycan through the
formation of isopeptide bonds (Goffin and Ghuysen, 1998;
Macheboeuf et al., 2006; Sauvage et al., 2008). Peptidoglycan
is an essential component of the bacterial cell wall and plays
major roles in protecting bacteria from environmental stress,
ensuring osmotic stability. Cell wall degradation and resynthesis
are critical to bacterial cell growth and division. The major target
of β-lactams are PBPs, which are essential peptide cross-linking
enzymes and are essential for peptidoglycan synthesis. In the
presence of a β-lactam, the serine nucleophile attacks the lactam
carbonyl, resulting in a stable acyl-enzyme complex (Yocum et al.,
1979; Waxman et al., 1980). This action interrupts the integrity
of the bacterial cell wall, diminishing the capacity for growth and

FIGURE 2 | Structural basis of lactam activity. (A) The D-Ala-D-Ala amino acid
is depicted in red. (B) The 1st generation penam ampicillin is depicted in
black. (C) D-Ala-D-Ala dipeptide overlay with the β-lactam ampicillin antibiotic.

division and removing protection from osmotic or tensile stress.
A second major mechanism of action, specific to carbapenem
β-lactams are the L,D-transpeptidases. For example, faropenem
efficacy against mycobacteria is due to L,D transpeptidase
covalent adduct formation (Lohans et al., 2019; Lu et al., 2020).

While target affinity and site accumulation are important
factors, the efficacy of β-lactams has canonically been dominated
by their propensity for chemical acylation, and therefore, a
consequence of their ease of entry into the PBP site (i.e., a
diffusion-limited kinetic process). This chemical reactivity is
strongly related to the geometry at the β-lactam nitrogen and
the degree of ring strain. In monocyclic structures, such as
monobactams, the amide bond is stabilized by conjugation
between the nitrogen lone pair and the carbonyl group. In
bicyclic structures, the amide stabilization is attenuated by a
third bonding partner, which creates a trigonal pyramidal (sp3)
nitrogen geometry. The reduced amide resonance conferred by
these bicyclic systems affords increased carbonyl electrophilicity
and higher intrinsic reactivity to nucleophiles and nucleophile-
containing enzymes such as transpeptidases, β-lactamases, and
metallo-β-lactamases (Green et al., 1965; Morin et al., 1969;
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Sweet and Dahl, 1970; Glover and Rosser, 2012; Szostak et al.,
2015; Ismalaj, 2022).

Considering the trigonal pyramid, defined by the nitrogen
(i.e., the apex) and its three bond-pair substituents (i.e., the
base) (Figure 3), the distortion from a planar (sp2) amide
can be defined by a parameter known as the Woodward
height (h-Woodward) (Ernest et al., 1978; Lang et al., 1978;
Woodward, 1980; Meng et al., 2021; Ismalaj, 2022). Monocyclic
monobactams, having an essentially planar geometry at nitrogen,
tend to be the least reactive of the β-lactams with negligible
h-Woodward values (Diaz et al., 2002).

Cephems are sterically predisposed toward Woodward heights
of about 0.2–0.3 Å, due to conformational flexibility afforded
by their six-membered ring fusion. However, cephalosporins
have unique features that contribute to their chemical reactivities
beyond h-Woodward. A competitive enamine resonance
resulting from the delocalization of the nitrogen’s lone electron
pair into the π electron system of the dihydrothiazine ring
contributes to attenuated amide resonance (Morin et al.,
1969; Sweet and Dahl, 1970). In the setting of this resonance,
heteroatomic moieties at the C3 position can act as leaving
groups upon ring opening. Whether or not it is a leaving group,
the C3 substituent can participate in long range inductive effects
with the β-lactam amide moiety–strongly electron-withdrawing
groups are postulated to enhance the electrophilicity of the
carbonyl (Morin et al., 1969; Boyd et al., 1975; Boyd, 1984).

Penams exhibit still larger h-Woodward (∼0.4 Å) values than
cephams due to the additional strain imposed by five-membered
ring fusion, and as such exhibit higher intrinsic reactivity to
nucleophiles. Interestingly, molecules of the penam class can
exist in two distinct conformational states, one in which the C3
carboxylate is in an equatorial position in relation to the ring
system and one in which it is axial (Abrahamsson et al., 1963;
James et al., 1968; Dexter and van der Veen, 1978).

Structural analysis reveals carbapenems and thiapenems as
having h-Woodward values of 0.50–0.60 Å; these drugs are
recognized as among the most reactive β-lactams. Such higher
values may be attributed to the additional geometric constraints
introduced by the unsaturation between C2 and C3 of the
pyrrolidine ring, as well as replacement of the position one sulfur
atom with a carbon atom in carbapenems. Their rapid acylation
of PBPs have been ascribed to this highly activated β-lactam
ring system. Such ring opening propensity has been shown by
examining the kinetics of base hydrolysis (Woodward, 1980).
Results indicate the penems are the most readily hydrolyzed
of known β-lactams (Knox, 1961; Frere et al., 1975; Graves-
Woodward and Pratt, 1998; Hujer et al., 2005; Silvaggi et al., 2005;
Jeong et al., 2018).

RESULTS AND DISCUSSION

Chemical Similarity Among β-Lactams
Considering the evolution and history of β-lactams, this study
utilized a novel method to examine the chemical similarity and
interrelatedness of β-lactam antibiotics. To perform this analysis,
the complete pairwise chemical similarity was calculated among

β-lactam drugs approved by the FDA or compounds in late-
stage clinical trials, to create a radial cladogram analogous to the
common method of how genes, strains or species are compared
in a phylogeny. The analysis was performed using the industry
standard Tanimoto coefficient similarity score calculated from
keyed organic chemical groups using ChemMine and visualized
using Dendroscope (Huson et al., 2007; Backman et al., 2011;
Peterson et al., 2013). The resulting “Lactamome” (Figure 4)
was depicted with benzylpenicillin (penicillin G) as the top-most
molecule, owing to its place as a foundational member. The
resulting circular chemogram (dendrogram of chemicals) was
color-coded according to known β-lactam chemical classes. The
utility of chemical clustering is that relationships are unbiased
and based solely on organic chemistry. Broadly speaking, the
Lactamome shows the major penam and cephem clusters in
relation to the minor monobactam, β-lactam-based β-lactamase
inhibitor, oxacephem, carbapenem and penem classes. The
positioning reflects the similarity of the atomic arrangements
in fused or unfused ring systems in relation to the β-lactam
foundation, coupled with the electronic effects of substituent end
groups. Beginning with benzylpenicillin, penems cluster in four
distinct subclasses. This is followed by two major branches and
five subgroups of the cephem class.

Monobactams fit in their own small cluster that branches
from the cephem class. However, nocardicin has substituents
with structural similarity to moxalactam and was positioned
apart from other monobactams despite its single ring platform.
β-lactamase inhibitors based on the core β-lactam structure
(sulbactam, clavulanate, and tazobactam) make up their own
cluster. Interestingly along with the penam mecillinam, members
of this branch are highly related via their core chemistry (3,3-
dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic
acid, Figure 1 penam). Oxacephems (moxalactam and flomoxef)
are uniquely located as branching off the cephem class.

While generational labeling is a common method for
describing β-lactams, particularly cephems (cephalosporins),
this convention is not always consistent among researchers
or pharmaceutical companies. Using consensus information
from multiple literature sources, the relevant drugs in the
Lactamome were assigned colors according to a generational
scheme (Figure 5B). However, the generational Lactamome did
not reveal any apparent trends or relationships that signaled
generation. In most cases, terminal clusters are the same
generation or differ by only one generation. In the case of
cephems, later generations exhibit a broader spectrum of activity
and less cross-reactivity with penicillin (Trubiano et al., 2017).
The carbapenem class, while important for multidrug resistant
infections, does not readily conform to chemical generation
labeling. Similarly, β-lactamase inhibitors, mecillinam, and
monobactams do not conform to multigenerational binning.

Susceptibility to Hydrolysis
While factors like affinity, site accumulation, and
pharmacokinetics affect in vivo efficacy, the minimum inhibitory
concentrations (MICs) of antibiotics correlate with those
having higher h-Woodward values. Correspondingly, higher
h-Woodward value drugs are more prone to hydrolysis,
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FIGURE 3 | Structural flexibility of β-lactams and the h-Woodward coefficient. (A) General bicyclic β-lactam structure rendered to show pyramidal nitrogen.
(B) Depiction of h-Woodward, defined by height of nitrogen to trigonal pyramid ligand base. (C) Faropenem depicted in stick form. (D) Faropenem energy minimized
(using MOE with the Amber10:ETH forcefield) and angle of the bent nitrogen bonds showing the h-Woodward of 0.5 Å.

exhibiting shorter aqueous and biological half-lives. For each
compound examined, a self-consistent field calculation with
geometry optimization was carried out using the modified
neglect of diatomic overlap (MNDO) algorithm. The height
of the trigonal pyramid with the lactam nitrogen at its apex
and the nitrogen’s three bonded substituents at its base (i.e.,
h-Woodward) was measured for the optimized structure.
However, the trend is not perfect, for example, clavulanate,
while among the most reactive of the β–lactams, exhibits poor
antibacterial activity against many organisms.

When the Lactamome was colored according to h-Woodward,
an interesting pattern emerged (Figure 5C). Monobactams,
except for tigemonam, exhibited the lowest h values, most of
the cephems exhibited relatively low h values, and the first-
through-third generation penams occupied the middle range of
Woodward height. Carbapenems and the oxapenem, clavulanate,
with its additional ring strain from the unsaturation at C2,
demonstrated the highest h-Woodward values of all of the
β-lactams analyzed herein. Using the Woodward parameter as
a measure of reactivity may therefore serve as a guide to the
relative ease of hydrolytic decomposition of β-lactams, with
monobactams representing the least susceptible.

Because the β-lactams are minimally metabolized in vivo, their
serum half-lives are largely determined through primary renal
clearance. As exceptions, the ureido class (e.g., cefoperazone,
piperacillin) undergo significant biliary clearance. Lactams that
are more susceptible to hydrolysis tend to have greater activity,
but also exhibit shorter biological half-lives. For example,
carbapenems and penams tend toward lower plasma stability
than cephems. Hydrolytic instability is one of the main reasons
that many β-lactam antimicrobials need to be administered
parenterally, reconstituted at the bedside or refrigerated, and
dosed on a strict and frequent schedule. Compounds possessing
unique pharmacokinetic properties not representative of their
class may have markedly divergent half-lives. For example,
ceftriaxone, ertapenem, and temocillin exhibit extensive protein

binding (t1/2 > 6 h), and both cephalothin and cefotaxime are
rapidly converted to their desacetyl metabolites (t1/2 < 1 h).
An interesting recent development involving the fermentation
isolation of clavulanate focused heavily on the minimization
of its hydrolysis to improve its yield during manufacturing
(Veeraraghavan et al., 2021).

While short serum half-lives may present challenges during
administration of β-lactams, the increased rate of degradation
in vivo may reduce the risk of occupational and environmental
exposure after excretion. Such susceptibility to hydrolysis ex vivo
can be exploited by chemical processes to decontaminate residues
during manufacturing, compounding, and administration, as
well as by waste-water treatment facilities to further reduce
environmental hazards.

Antibacterial Efficacy
While the optimal antibiotic strategy for patient care requires
consideration of many factors, a primary criterion is the
susceptibility of the infectious bacterial strain. Using The Sanford
Guide to Antimicrobial Therapy (Gilbert et al., 2020), a “heat
map” of susceptibility trends for β-lactam coverage by organism
ultrastructure and metabolism was generated (Figure 6). When
looking at the fractional activity against general classes of
pathogenic bacteria, several specific patterns emerge. None
of the β-lactams are particularly effective against cell wall-
deficient microbes, which mostly include intracellular pathogens
like mycoplasma and Chlamydia trachomatis. However, for
infections typically caused by Gram-negative and Gram-positive
bacteria, β-lactams present a myriad of options for good
empiric or specific coverage. When comparing spectrum of
activity versus h-Woodward values, a weak but correlative
relationship is apparent. Beta-lactams with higher values
generally exhibit broader spectrum of activity within and across
groups of microbes than β-lactams with lower h-Woodward
values. Notably, the monobactam aztreonam has the lowest
h-Woodward value and a very narrow spectrum of activity.
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FIGURE 4 | The Lactamome: Radial chemogram of major β-lactams by chemical similarity. Clustering used hierarchical complete linkage MAACS-keyed Tanimoto
coefficient. Clustering was performed using ChemMine and visualized using Dendroscope (Huson et al., 2007; Backman et al., 2011). Colors indicate major
chemotypes. Note that the oxacephems: moxalactam and flomoxef, are colored purple. Bolded lactams marked with an asterisk indicate drugs with high allergy
potential (>10%) relating to the R1 benzyl groups.

However, there are several exceptions, notably the relatively
narrow spectrum of activity with nafcillin and oxacillin. As
mentioned previously, this is due to the many factors affecting
microbial killing, including site accumulation (particularly
relevant in Gram-negative pathogens) and target affinity.

Good antimicrobial stewardship requires the use of an
antimicrobial with the narrowest possible spectrum, but which
still provides a high likelihood of infection clearance. For this
reason, clinicians need to think about the most likely pathogens
involved in specific infectious processes to guide an appropriately
targeted empiric therapy. Targeted therapy also highlights the
sustained need for rapid, cost-effective, and accurate diagnostics.
As an example, absent other risk factors, cellulitis is generally
caused by S. pyogenes or methicillin-susceptible S. aureus
(MSSA). This condition can be treated effectively with nafcillin,
any of the oxacillin subclass, or a first-generation cephalosporin
like cefazolin. Cefazolin is also a safe alternative for patients with

nafcillin hypersensitivity (Gandhi et al., 2021). Coverage should
be expanded only with good reason, including colonization
with methicillin-resistant S. aureus (MRSA), open wounds, or
specific exposures (e.g., Vibrio vulnificus with saltwater exposure
or Aeromonas hydrophila with freshwater exposure). One of
the key deficiencies of the β-lactam class is its minimal activity
against atypical and intracellular pathogens, as they are more
resistant to alterations in peptidoglycan synthases. Non-lactam
drugs–tetracyclines, macrolides, and fluoroquinolones–are likely
more appropriate treatments for these microorganisms due to the
variety of anti-infective mechanisms.

Special consideration should be given to infections with
highly resistant organisms that have been verified with
culture-based methods or nucleic acid amplification testing
(NAAT). Conditions in which Pseudomonas aeruginosa is
commonly implicated include burn wounds, healthcare-
associated pneumonia, diabetic ulcers, and cystic fibrosis. For
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FIGURE 5 | Lactamomes depicting (A) chemotype, (B) compound
generation, and (C) h-Woodward values. (A) The chemotype is a reproduction
of Figure 4 to aid comparisons to the other figures. (B) The generational
lactamome assigns generation levels (1st–5th) to individual drugs based on
how they most currently referenced in literature. Individual drugs that do not
conform to generational naming are colored in black. (C) h-Woodward
lactamome is colored using a heatmap with higher h-Woodward values in
green and lower h-Woodward values in red. Bolded lactams marked with an
asterisk indicate drugs with high allergy (>10%) relating to the R1 benzyl
groups.

patients with these conditions, only a handful of β-lactam
options exist, including ceftolozane-tazobactam, piperacillin-
tazobactam, ceftazidime, cefepime, and carbapenems (except
for ertapenem). Until the approval of ceftaroline, β-lactams

were largely ineffective against MRSA; and were less commonly
used than glycopeptide macrocyclic agents like vancomycin
and daptomycin. Guidelines stipulate ceftaroline as a last-resort
option for treatment of microbiologically proven cases of
vancomycin-intermediate S. aureus (VISA, generally defined as
vancomycin MIC ≥ 2 µg/mL) for which daptomycin cannot
be used (e.g., lung infections). Ceftobiprole, though not yet
approved in the United States, will likely occupy a similar niche.

Extended-spectrum β-lactamase (ESBL) producing strains
of E. coli and Klebsiella spp. have become increasingly
common in intra-abdominal infections as well as urinary
tract infections. Carbapenems retain activity against these
strains due to their remarkable β-lactamase stability, and
newer agents employing diazabicyclooctane (DBO) β-lactamase
inhibitors (e.g., ceftazidime-avibactam, imipenem-relebactam,
and aztreonam-avibactam, which is still in development) also
are effective. Carbapenemase-producing Gram-negative enterics
also have emerged, for which combinations of carbapenems
with DBOs and boronic acids (e.g., imipenem-relebactam
and meropenem-vaborbactam) remain clinically efficacious. As
with all infectious treatments the spectrum, dose, route of
administration, and drug allergy should be carefully considered.

Streptococcus pyogenes (also known as or Group A
Streptococcus or GAS) is the causative pathogen in several human
diseases, including pharyngitis, scarlet fever, and necrotizing
fasciitis. The susceptibility of this organism to β-lactams has
remained remarkably consistent over many decades although
there are recent indications that mutations in the gene encoding
a PBP are widespread and can result in reduced susceptibility
(Macris et al., 1998; Musser et al., 2020). However, given the
historically consistent susceptibility, it was selected as a model
organism to examine further the potential relationship between
h-Woodward values and susceptibility to β-lactam antibiotics.
The data were extracted from 95 different studies involving
10 strains of S. pyogenes (Wallmark, 1962; Adams, 1963; Sidell
et al., 1963; Gravenkemper et al., 1965; Thornhill et al., 1969;
Bergeron et al., 1973; Eykyn et al., 1973, 1976; Neu, 1974b, 1976;
Shibata et al., 1975; Ernst et al., 1976; Goto, 1977; Stewart and
Bodey, 1977; Bodey and Le Blanc, 1978; Chabbert and Lutz, 1978;
Verbist, 1978; Wise et al., 1978, 1980, 1988, 1991; Fass, 1979,
1990; Kamimura et al., 1979, 1984; Neu et al., 1979, 1981, 1984,
1989; Watanakunakorn and Glotzbecker, 1979; Weaver et al.,
1979; Angehrn et al., 1980; Fu and Neu, 1980; Greenwood et al.,
1980; Hinkle et al., 1980; Baker et al., 1981; Bodey et al., 1981,
1985; Cherubin et al., 1981; Eickhoff and Ehret, 1981; Istre et al.,
1981; Jones et al., 1981, 1984; Stamm et al., 1981; Tsuchiya et al.,
1981; Ahonkhai et al., 1982; Fainstein et al., 1982; Scully et al.,
1983; Kessler et al., 1985; Toda et al., 1985; Une et al., 1985; Vuye
and Pijck, 1985; Neu and Chin, 1986; Okamoto et al., 1987; Mine
et al., 1988; Shelton and Nelson, 1988; Kayser et al., 1989; Yu and
Neu, 1989; Arisawa et al., 1991; Chin et al., 1991, 1992; Emberton
and Finlay, 1991; Limbert et al., 1991; Poch et al., 1992; Yan et al.,
1993; Coonan and Kaplan, 1994; Tsuji et al., 1995, 1998; Suzuki
et al., 1996; Cocuzza et al., 1997; Woodcock et al., 1997; Fontana
et al., 1998; Kriebernegg et al., 1998; Sakagawa et al., 1998;
Yamaguchi et al., 1998; Fuchs et al., 2001; Livermore et al., 2001;
Pendland et al., 2002; Iizawa et al., 2004; Marchese et al., 2004;

Frontiers in Microbiology | www.frontiersin.org 8 March 2022 | Volume 13 | Article 807955

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-807955 March 18, 2022 Time: 17:11 # 9

Turner et al. The Lactamome

Lev et al., 2005; Stefani et al., 2008; Tempera et al., 2010; Camara
et al., 2013; Fujimoto et al., 2013; Sakata, 2013; Yang et al., 2015;
Yanik et al., 2015; Cotroneo et al., 2020; Jean et al., 2020; Musser
et al., 2020; Ubukata et al., 2020; Yanagihara et al., 2020).

As seen in the upper portion of Figure 7, β-lactams
with higher h-Woodward values are the most potent options
against S. pyogenes. Drugs with the lowest minimum inhibitory
concentration values against 50% of the population (MIC50)
also exhibit the lowest variation among different strains. Median
susceptibility decreases (increased MIC50) at intermediate
and higher h-Woodward values, although the overall trend
suggests a parabolic relationship where drugs with intermediate
h-Woodward values exhibit the lowest potency. Taken by class,
penems are generally more biologically active than penams
(0.007 vs. 0.024 µg/mL), and both exhibit greater efficacy than
cephems (0.074 µg/ml). Aztreonam, the lone monobactam in
use, was found to exhibit the lowest efficacy against S. pyogenes
with a mean MIC50 of 16.5 µg/ml. The results of this analysis
align with the previous observations related to the heat map,
previously presented as Figure 6, that h-Woodward values
impact antibacterial activity both within strains of S. pyogenes and
across different groups of bacteria.

Allergy and Other Immune Reactions
Hypersensitivity to β-lactams is among the most commonly
reported drug allergies, representing 42.6% of all drug-
induced anaphylaxis (Zagursky and Pichichero, 2018). However,
prevalence is likely over-reported due to misinterpretation of
mild drug reactions (e.g., diarrhea, mild drug rash, attribution
of illness symptoms to drug). In fact, many individuals with
reported β-lactam allergy can tolerate β-lactams due to this
misattribution, and many of those with remote history of true
allergic reaction are sometimes able to tolerate the drugs years
later due to waning sensitivity (Romano et al., 2014). Even so,
β-lactam allergy remains a clinically relevant problem, with skin
testing generally yielding confirmed rates around 8% (3–10%) for
penicillins and 1% (1–2%) for cephalosporins. Hypersensitivity to
carbapenems and monobactams is rarer.

Allergy is a result of immune activation in response to
specific β-lactam substituents (Figure 1 and Supplementary
Spreadsheet). The 2-azetidinone ring acts as a hapten, covalently
modifying nucleophilic residues on host proteins to elicit an
IgE response in individuals with specific human leukocyte
antigen allotypes (Figure 8). While this covalently bound
β-lactamoyl protein adduct is the major determinant of
hypersensitivity, hydrolyzed small molecule products also can
elicit some response.

Beta-lactam allergy is an immunologic type I hypersensitivity
reaction, meaning that it occurs through mast cell degranulation
in response to preformed IgE binding antigen recognition
receptors (FcRε) on the mast cell surface. Subsequent release of
histamine results in symptoms related to vasodilation (warmth
and erythema), increased capillary permeability (edema),
bronchoconstriction (dyspnea), and nociceptive stimulation
(pain and pruritus). These symptoms are potentiated by the
release of inflammatory eicosanoid derivatives, including
prostaglandin D2, leukotriene B4, and leukotriene C4. In mild

cases, this manifests as hives or wheezing, but in patients with
high IgE titers, the reaction may proceed to anaphylaxis or
anaphylactic shock. Because of the potential severity of the
reaction, in addition to the poor accuracy of self-reporting
mentioned above, identification of patients with true allergy
through skin testing or measuring IgE against β-lactam products
is critical to avoiding significant morbidity and mortality.

While not part of the group of IgE-mediated allergic
syndrome, other significant immune reactions to the β-lactam
class exist as well that are thought to occur through parallel
mechanisms. Drug-induced immune hemolytic anemia (DIIHA)
is a type II hypersensitivity reaction mediated by direct
binding of IgG to erythrocytes, seen with relatively high
frequency in β-lactam-treated subjects. One longitudinal study,
documenting causes of DIIHA in Southern California over
30 years estimates that over 80% of cases are due to β-lactams
(Garratty, 2009). Eosinophilic reactions are common as well,
including drug-induced hypersensitivity syndrome (DiHS) with
multiorgan involvement (previously known as drug reaction
with eosinophilia and systemic symptoms or DRESS) caused by
covalent modification of host proteins. Mucocutaneous eruption
syndromes with epidermal detachment are also possible, arising
from the activation of cytotoxic T-cells against keratinocytes.

There is a growing body of evidence suggesting the substituent
adjacent to the lactam carbonyl (Figure 1), referred to as R1,
is the primary driver of immunogenicity. Indeed, immunologic
cross-reactivity is most often seen against structurally similar R1
groups of penams and cephems (i.e., ampicillin and cephalexin).
One of the most prominent β-lactams associated with allergy
is cefamandole, whose R1 is a hydroxybenzyl with a terminal
aromatic. This structural relationship is not only common to such
compounds as cephalexin (possessing an aminobenzyl moiety)
but also to cephalothin, whose R1 aromatic is a thiophene, and
cefuroxime whose R1 aromatic is a furan. These compounds,
therefore, possess similar electronic and steric properties, or
bioisosteric profiles. Such end group topology and electronic
properties may play determinative roles in allergen character,
possibly due to three-dimensional shape (“lock and key”) factors.

Compounds with 10% allergy response and containing similar
aromatic R1 end groups have been bolded and tagged with
asterisks in Figure 4. One careful study recommends skin
reactivity testing for both penicillin and cephalosporin as 11%
displayed positive skin test responses to the cephalosporin class,
and 64% of cross-reactive patients responded negatively to
cefamandole (Romano et al., 2004). In another study of 252
penicillin-allergic patients, ∼39% of patients treated with the
cephalosporins cefaclor, cephalexin, cefadroxil, or cefamandole
had an allergic response (Romano et al., 2018). Both studies show
low cross-reactivity between penicillins and later-generation
cephalosporins, such as ceftriaxone (∼3%). R1 groups containing
phenyloxazole and piperazine also account for ∼3% of allergies.
In cases where a patient may react in tests to dissimilar
β-lactams, it is likely not due to true cross-reactivity, but rather
to independent sensitivity to each drug. The low rate of cross-
reactivity seen between penicillin and carbapenems (<1%),
which possess a unique hydroxyethyl side chain, further supports
the hypothesis that not only does the R1 bioisosterism play
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FIGURE 6 | Antimicrobial spectra of β-lactams. Clinical activity data were taken from The Stanford Guide to Antimicrobial Therapy. A fractional coverage index was
calculated using a weighted average of categorical coverage values reported. Heatmap color range is from green indicating high coverage and red indicating low
coverage. Beta-lactams are ordered from highest h-Woodward value (ertapenem) to lowest (aztreonam).

a dominant role, but aromatic end group chemistry appears
causative (Romano et al., 2006, 2007; Atanaskovic-Markovic
et al., 2008; Gaeta et al., 2015; Buonomo et al., 2016). Although
not utilized on their own as an antibacterial therapy, β-lactam
based β-lactam inhibitors also have been implicated in allergic
reactions (Stover et al., 2019). The authors concluded that
cross-allergenicity with β-lactams is likely with sulbactam and
tazobactam. Cross-allergenicity is less likely with clavulanate,
but still possible.

The involvement of the R2 side group in allergic response is the
subject of greater uncertainty. While structural similarity of R2
has been considered as a possible factor, this group is frequently
lost during ring opening, and any role it plays is generally quite
small in comparison to the R1 side group. In the context of a
β-lactam allergy, clinicians often look to different antimicrobial
classes as alternatives. However, if the agent to which the patient
has had an immune reaction is known, they may be able to use
β-lactams of similar spectrum but differing chemical structures,
both with regard to class and R1. For example, if a patient has had
a severe reaction to amoxicillin in the past, cefpodoxime proxetil
(a prodrug formulation) may be a suitable oral alternative due to
its differently structured R1.

Similarly, clinicians often cite an allergy to penicillin G
or amoxicillin as reason to avoid other penams, occasionally
utilizing drugs of last defense when they might not be needed. As
a clinical example, piperacillin-tazobactam is frequently avoided
in the setting of a penicillin G allergy in favor of cefepime
for similar Gram-negative enteric and pseudomonads coverage.
Many clinicians, wary of cross-reactivity, will even avoid the
cephalosporin class and prescribe a carbapenem. However,
penicillin allergy may not preclude the use of piperacillin-
tazobactam, as the benzyl functionality of penicillin G, to which
the reaction likely occurred, is structurally very different from the
R1 groups of cefepime or nitrogen-substituted R1 of piperacillin.
For this reason, it is critical to keep accurate record of the
β-lactam-based drugs to which the patient has reacted, as well as

the type and severity of said reaction, so as to determine which
other agents they are not likely to tolerate.

Exposure and Environmental Concerns
Although β-lactam antibiotics do not meet the criteria for
hazardous drugs established by the National Institute of
Occupational Safety and Health (NIOSH), manufacturing
and compounding of these drugs requires attention to reduce
the risk of cross-contamination or occupational exposure to
sensitive individuals. Current good manufacturing practice
(cGMP) regulations require the use of methods to address
cross-contamination [e.g., Title 21, Sections 211.42(d), 211.46(d),
and 211.176 of the Code of Federal Regulations]. To further
assist manufacturers, the FDA issued a draft guideline in
2013 entitled “Non-Penicillin Beta-Lactam Drugs: A cGMP
Framework for Preventing Cross-Contamination” (Food
and Drug Administration [FDA], 2013). Although most
compounding pharmacies are 503a-type facilities and not
required to operate under cGMP, the FDA often applies
the described guidelines to pharmacy compounders. The
guidelines are quite restrictive, including requiring segregation
of “facilities” for “operations relating to the manufacture,
processing, and packing” of β-lactam antibiotics. Additionally,
an updated guidance document regarding insanitary conditions
at compounding facilities was issued in November 2020 (Food
and Drug Administration [FDA], 2020). It lists several examples
of insanitary conditions applicable to the production of sterile
and non-sterile drug, including: “Processing of β-lactams without
complete and comprehensive separation from non-β-lactam
products.” While segregation may not be absolutely required
(or feasible) for all compounding activities, it is important
to reduce the risk of cross-contamination through effective
decontamination of surfaces and equipment after manipulations
involving β-lactam antibiotics.

Another concern involves the environmental persistence of
antibiotics, including β-lactams, in the environment. Antibiotics
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FIGURE 7 | In vitro antimicrobial activity of lactams against S. pyogenes.
A review of the literature on Gram-positive β-lactam activity was conducted in
which susceptibility data were gleaned from 95 studies reporting data for at
least 10 strains. MIC50 (presented as log values) were amassed, and
geometric mean and geometric standard deviation were calculated.
Geometric means for entire classes (e.g., penems) are shown in gray.
Beta-lactams are ordered from highest h-Woodward value (ertapenem) to
lowest (aztreonam).

used to treat humans and livestock can escape into the
environment by several routes, including improper disposal and
excretion through urine and feces (Kivits et al., 2018; Szekeres
et al., 2018). Conventional waste-water treatment processes
are not effective at removing or destroying these drugs (Song
et al., 2019). Persistence of these drugs in the environment can
therefore result in selective pressures on environmental bacteria,
leading to development of resistance genes which then may be
transferred to human or animal pathogens (Bengtsson-Palme
et al., 2018). β-lactams with intermediate or high h-Woodward
values are more susceptible to decontamination via alkaline or
acid hydrolysis at the 2-azetidinone ring (Lang et al., 1978). The
kinetics of inactivation by such processes are related to the extent
of ring activation. Thus, cephems tend to be more resistant to
degradation, followed by penams, while carbapenems are the
most susceptible.

FIGURE 8 | Structural representation of R1 and R2 chemical groups in
cephem backbone.

While further studies are needed, there is evidence that
oxidizing agents may decontaminate β-lactam antibiotics
(Lorcheim, 2011; He et al., 2014; Zhang et al., 2017). These
chemicals commonly are used for disinfection of surfaces
contaminated with β-lactam antibiotics as well as in waste-
water treatment systems. Additional research should establish
how oxidizers such as peracetic acid, hydrogen peroxide, and
hypochlorous acid would perform as decontamination strategies
within the four major classes of β-lactam antibiotics, and whether
such oxidants would differ in efficacy by pH and h-Woodward.

CONCLUSION

β-lactams remain an important and highly utilized class of
antibiotics. In the outpatient setting, amoxicillin and cephalexin
are consistently among the most prescribed drugs in the
United States, and ceftriaxone and piperacillin-tazobactam are
staples of empiric inpatient treatment. Over their decades of
prominence, however, concerns have arisen among clinicians
and laboratories regarding their efficacy and environmental
persistence. Among these concerns are serious allergic responses
and acquisition of drug resistance by environmental bacteria.

While non-β-lactam antibiotics have gained increased
attention, the utility of β-lactam antibiotics remains
important, not only in the human clinical situation but
also in a wide array of veterinary uses. The current 5th
generation β-lactam are undergoing clinical trials and new
β-lactams are expected to see less development, as non-
β-lactam antibiotics, and combinations of β-lactams with
lactamase inhibitors take center stage (Figure 5B). The
current work structurally classified the β-lactam class of
antimicrobials to aid clinical decision making, as well as
inform patient, worker, and environmental safety. We have
organized our structural analysis into an easily visualized
tool, the Lactamome (Figure 4), which can be colorized
according to several chemical properties, including overall
molecular shape (Figures 3, 5A) and propensity for

Frontiers in Microbiology | www.frontiersin.org 11 March 2022 | Volume 13 | Article 807955

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-807955 March 18, 2022 Time: 17:11 # 12

Turner et al. The Lactamome

reaction with nucleophiles, i.e., h-Woodward (Figure 3). It
should also be noted that when colored by allergic potential,
one would obtain a chemogram strongly resembling Figure 5C,
depicting h-Woodward.

The h-Woodward colored Lactamome (Figure 5C) indicates
that higher values for penems and penams (Figures 2, 5) would
be the most susceptible to chemically catalyzed degradation.
This greater propensity for hydrolysis is important in reducing
occupational exposures, especially given that the highest rate
of reported β-lactam hypersensitivity is to the penam class.
Logically, more stringent cleaning is needed if a more
allergy-prone lactam is used, but fortunately, the penams’
high h-Woodward values indicate decontamination protocols
involving hydrolysis should be efficient. In the case of cephems,
while their overall rate of allergenicity is somewhat lower than
that of penams, many first-generation agents from this subclass
have high structural similarity to the first-generation penams
(e.g., penicillin and cephalexin) and are, therefore, more likely to
be allergens (Figure 5B). Therefore, care should be taken in the
decontamination of surfaces or areas exposed to those cephems
with a higher possibility for cross-reactivity.

Antibacterial efficacy also appears to trend with h-Woodward
values. Drugs with higher h-Woodward values tend to have
lower MICs against S. pyogenes and activity against a broader
spectrum of bacteria (Figure 7). However, given the multitude of
mechanisms involved with susceptibility across different species
and types of bacteria, it is not clear if h-Woodward values would
be a reliable criterion for matching β-lactams with particular
pathogens (Figure 6). It is apparent that the “generational”
nomenclature is a function of product development over
time and generally is not well correlated with molecular
structure or activity.

Unlike the correlation of h-Woodward values with both high
intrinsic potency and high hydrolysis potential, allergenicity is
impacted by additional factors, including the position of the
R1 group (Figure 8). In terms of selecting alternate β-lactams
due to allergy, the Lactamome, when used in combination
with the spectrum data (Figure 6) provides information for
treatment options. These analyses also may guide future studies
of efficacy to broaden recommended uses of known β-lactams.
For example, if a patient with spontaneous bacterial peritonitis

has a documented anaphylactic response to empiric cefotaxime,
they are likely to have an adverse reaction to structurally similar
ceftriaxone as well. In these situations, guidelines suggest a
fluoroquinolone as the next suitable option. Using the structure
and spectrum data presented, however, one might consider
ampicillin-sulbactam, a decision for which positive data exists
but a full-scale prospective non-inferiority trial has not been
conducted (Guo et al., 2019).

The structural characterization presented in this study may
provide a helpful guide to selecting antibiotic agents, especially
for persons having certain allergic response histories, as well as
to inform proper decontamination methods. The Lactamome
may assist clinicians in assessing structural similarity and
therefore help recognize, relatively speaking, which drug would
be most effective, but exhibit lower risks of clinical cross-
sensitivity. By first grouping the β-lactam antibiotics and
then using coloring schemes, it is possible to quickly probe
the entire genus. The Lactamome should also be useful in
alerting practitioners to potential workplace hazards and assist
in the development of decontamination strategies to reduce
the risk of cross-contamination, occupational exposure, and
environmental persistence.
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