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Abstract

The ability to grasp and manipulate objects requires controlling both finger movement kinematics and isometric
force in rapid succession. Previous work suggests that these behavioral modes are controlled separately, but it is
unknown whether the cerebral cortex represents them differently. Here, we asked the question of how movement
and force were represented cortically, when executed sequentially with the same finger. We recorded high-density
electrocorticography (ECoG) from the motor and premotor cortices of seven human subjects performing a move-
ment-force motor task. We decoded finger movement [0.7 = 0.3 fractional variance accounted for (FVAF)] and
force (0.7 = 0.2 FVAF) with high accuracy, yet found different spatial representations. In addition, we used a state-
of-the-art deep learning method to uncover smooth, repeatable trajectories through ECoG state space during the
movement-force task. We also summarized ECoG across trials and participants by developing a new metric, the
neural vector angle (NVA). Thus, state-space techniques can help to investigate broad cortical networks. Finally,
we were able to classify the behavioral mode from neural signals with high accuracy (90 * 6%). Thus, finger move-
ment and force appear to have distinct representations in motor/premotor cortices. These results inform our under-
standing of the neural control of movement, as well as the design of grasp brain-machine interfaces (BMls).
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The human ability to manipulate objects is central to our daily lives and requires control of both grasping
movement and force. Here, we explored how these motor activities are represented at the level of the cor-
tex. Understanding these representations will influence the design of brain-machine interfaces (BMils) to re-
store function after paralysis. We recorded electrocorticography (ECoG) from seven human subjects who
performed a sequential movement-force motor task. We found differences between the cortical representa-
tions of movement and force using decoding methods, deep learning, and a new neural ensemble metric.
Thus, ECoG could be used in a BMI to control both movement and force behaviors. These results can po-
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Introduction

The human ability to grasp and manipulate objects is
central to our evolutionary success as tool users. The loss
of this ability has a profound negative impact on overall
quality of life. We rely in particular on our ability to pre-
cisely regulate movement and force, to close our fingers
around an object, then exert isometric force sufficient to
prevent slippage without crushing it. However, the neural
origin of this process is not yet clear. In the current study,
we sought to identify how movement and force are en-
coded at the cortical level when both are performed
sequentially.

There is longstanding evidence for cortical representa-
tions of both movement (Moran and Schwartz, 1999) and
force (Evarts, 1968). There is also indirect evidence that
distinct neural control states are used for kinematics
(movement) and kinetics (force). For example, motor
learning of kinematics and kinetics in reaching occur inde-
pendently of each other (Flanagan et al., 1999). Kinematic
and kinetic control can be disrupted independently (Chib
et al., 2009), and their errors can be separated during ad-
aptation (Danion et al., 2013). Perhaps most relevant,
Venkadesan and Valero-Cuevas (2008) found that electro-
myogram (EMG) activity patterns transitioned between
separate, incompatible states during a one-finger, se-
quential movement-force task. Importantly, these transi-
tions occurred before the fingertip’s contact with a
surface, implying that changing neural states may “pre-
pare” finger muscle activations for their upcoming role in
regulating force. Here, we hypothesized that the transition
between movement and force is encoded in motor and
premotor cortical networks.

The specifics of cortical movement and force encoding
are also relevant to brain-machine interface (BMI) design
(Downey et al., 2018; Branco et al., 2019a; Slutzky, 2019;
Rastogi et al., 2020). Restoration of hand grasp function-
ality is a high priority for individuals with paralysis (Blabe
et al., 2015). Currently, BMIs using motor cortical signals
control robotic or prosthetic hands (Hochberg et al.,
2012; Yanagisawa et al., 2012; Wodlinger et al., 2015;
Hotson et al., 2016) or functional electrical stimulation of
paralyzed limbs (Pfurtscheller et al., 2003; Bouton et al.,
2016; Ajiboye et al., 2017). However, most BMIs that have
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decoded grasp intent have focused on decoding kinemat-
ics of grasp aperture. One exception improved BMI-pros-
thetic hand control by scaling the neuronal firing rates
(Downey et al., 2017) but did not examine the movement-
force transition. Here, we hypothesized that force and ki-
nematics of the hand are governed by different neural
states in cortex.

In the current study, we used a sequential movement-
force task to investigate changes in human cortical activity
during transitions in behavioral mode: from premovement
(preparation) to movement to force. We recorded subdural
surface potentials [electrocorticography (ECoG)], finger ki-
nematics, and applied force. We used ECoG spectral modu-
lations to measure changes in the spatial patterns of
movement-based and force-based decoding and to classify
the behavioral mode of the subject. We found evidence of
distinct movement and force encoding.

Recent work has characterized changes in cortical net-
work activity during kinematic tasks as the temporal evo-
lution of a dynamical system (Churchland et al., 2012;
Pandarinath et al., 2018). Here, we examined whether
neural state space changes accompanied behavioral
mode transitions (from premovement to movement to
force). We used latent factor analysis via dynamical sys-
tems (LFADS), a deep-learning method that uses sequen-
tial autoencoders to uncover trajectories in a low-
dimensional neural state space from high-dimensional
neural data (Pandarinath et al., 2018). We also calculated
changes in a neural vector angle (NVA), obtained by treat-
ing the spectral features as elements of a high-dimension-
al neural vector. Both approaches showed that activity
across a broad area of motor and premotor cortices ex-
hibited tightly clustered trajectories through neural state
space that were time-locked to the behavior. The NVA en-
abled us to average responses across subjects and cre-
ate a generalized temporal profile of neural state space
activity during the movement and force modes of human
grasp. Together, these analyses indicate that distinct
cortical states correspond to the distinct movement and
force modes of grasp.

Materials and Methods

Subjects and recordings

Seven human subjects participated in the study (all
male; ages 26-60, ordered chronologically). Six of the
subjects required awake intraoperative mapping before
resection of low-grade gliomas. Their tumors were lo-
cated remotely to the cortical areas related to hand grasp,
and no upper extremity sensorimotor deficits were ob-
served in neurologic testing. Subject S6 underwent extra-
operative intracranial monitoring before resection surgery
for treatment of medication-refractory epilepsy. All human
subjects were recruited at Northwestern University. The
experiments were performed under protocols approved
by the institutional review board. All subjects gave written
informed consent before participating in the study.
Subjects were recruited for the study if the site of their
craniotomy, or their monitoring array was expected to in-
clude coverage of primary motor cortex.
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Figure 1. ECoG array placement, experimental task, and behavioral data. A, In S1 through S5 and S7, we targeted the primary
motor and premotor cortices. Array placement for S6 was determined by clinical need. For S1 and S2, we recorded ECoG from
the right hemisphere; the other subjects’ ECoG were recorded from the left hemisphere. B, One trial (~2.5 s) of the kinematic-
kinetic task. At the beginning of the trial, the subjects held their index finger in a neutral position (upper left photograph) until
visually cued on a screen. Cyan trace, finger kinematics (amount of flexion; arbitrary units) during the trial. Cyan triangle, time
of flexion movement onset. Upon contact with the force sensor (lower inset photograph), the subjects exerted isometric force
until matching a force target on the screen with a cursor (data not shown). Blue trace, recorded force. Blue circle, time of force
onset. At bottom is a schematic representation of behavioral mode segmentation, premovement (from target presentation until
the start of flexion), movement (start of flexion until start of force), and force (from force onset lasting 500 ms). C, We measured
index finger flexion using a CyberGlove; movement onset was identified using the first PC calculated on the data from the high-

lighted sensors.

In all subjects except S6, we used 64-electrode (8 x 8)
high-density ECoG arrays, with 1.5-mm exposed record-
ing site diameter and 4-mm interelectrode spacing
(Integra). Arrays were placed over hand motor areas,
which we defined by: (1) anatomic landmarks, e.g., “hand
knob” in primary motor cortex; (2) preoperative fMRI or
transcranial magnetic stimulation to identify functional
motor areas; and (3) direct electrocortical stimulation
mapping. Intraoperative recordings took place after direct
stimulation mapping. Intraoperative MRI navigation was
performed with Curve (BrainLab). The recording arrays
covered primary motor cortex, premotor cortex, and
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usually part of primary somatosensory cortex as well (Fig.
1A). In S6, electrode placement was determined by clini-
cal need. For this subject, we used a 32-electrode (8 x 4)
array with the same electrode size and spacing as our 64-
electrode arrays.

We sampled ECoG at 2 kHz using a Neuroport Neural
Signal Processor (Blackrock Microsystems). Signals were
bandpass filtered between 0.3 and 500 Hz before sam-
pling. Finger kinematics were recorded using a 22-sensor
CyberGlove (Immersion). We recorded force with a cus-
tom-built load cell sensor. Kinematic and kinetic data
were both sampled at the same rate as ECoG.
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Experimental protocol

The subjects executed repeated trials of a one-finger
task that required isotonic movement and isometric force
in sequence (Fig. 1B). At the beginning of each trial, the
subjects were instructed to hold their index finger in a
neutral posture (the “premovement” behavioral mode).
After a cue, they executed a self-paced flexion movement,
which brought the palmar surface of the index finger into
contact with the force sensor. Upon contact, subjects
were instructed to apply force to the sensor, thereby con-
trolling a cursor on a monitor. Their task was to match the
cursor’s vertical position to that of a force target pre-
sented on the monitor. Target force levels varied ran-
domly from trial to trial (random-target pursuit task).
Following a successful match (or a timeout of 2 s), the trial
was complete, and the subject extended their finger back
to the baseline (neutral) position. The next trial began after
a delay of 1 s. Target presentation and cursor feedback
were conducted by the open-source BCI2000 software
(Schalk et al., 2004). The time resolution for both kine-
matic data acquisition and force cursor control was
50 ms.

Our task was designed to elicit movement by, and force
using one finger, keeping the other fingers motionless in a
flexed position. Therefore, our kinematic data consisted
of the CyberGlove sensors that measured the motion of
the index finger (Fig. 1C, highlighted). Dominant kinematic
features were extracted via principal component analysis
(PCA). We performed PCA only on data from the high-
lighted sensors in Figure 1C, retaining the first component
to identify movement onset (the cyan trace in Figure 1B
shows an example of the movement signal we used).

Feature extraction

For all analyses, we extracted spectral features from
each ECoG electrode. Here, each feature was the mean
spectral power in a frequency band of interest. The sam-
pling rate was 2000 Hz. To compute spectral power, we
applied a Hanning window function to 256-ms segments
of data, followed by a Fourier transform. We normalized
the log of this power by subtracting the log of the mean
power over the entire file, then extracted spectral features
by averaging within frequency bands of interest (see next
paragraph). The resolution of the frequency axis was
3.9 Hz. Each data segment (or time bin, to borrow nomen-
clature from past single-neuron studies) overlapped the
previous by 231 ms, giving the analysis an effective tem-
poral resolution of 25 ms.

We identified the feature boundaries (frequency bands
of interest) by computing the event-related spectral per-
turbation (ERSP) for each electrode around the time of
force onset. We then averaged the ERSPs for all electro-
des in our dataset, and identified the frequency bands of
interest: broadband low frequency (8-55Hz) and broad-
band high frequency (70-150 Hz). Subsequent analyses
were performed on the feature matrix for each subject.
Each feature matrix was size NxM, where N is the number
of time bins in the record, and M is 2:#(number of electro-
des)+10, where 10 was the number of time bins into the
past (causal bins only).

July/August 2020, 7(4) ENEURO.0063-20.2020

Research Article: New Research 4 of 15
Population decoding of continuous movement and
force

We decoded continuous movement kinematics and
continuous isometric force, using all (non-noisy) electro-
des from PM and M1 in each subject. For continuous de-
coding, the feature matrix served as input to a Wiener
cascade decoder (Hunter and Korenberg, 1986). In the
Wiener cascade, the output of a linear Wiener filter is con-
volved with a static nonlinearity (here, a third-order poly-
nomial). We employed ridge regression to reduce the
likelihood of overfitting because of the large feature
space, as in Suminski et al. (2010). We evaluated decod-
ing accuracy using the fractional variance accounted for
(FVAF). We employed 11-fold cross-validation, using 9-
folds for training, 1-fold for parameter validation (e.g., op-
timizing the free parameter in the ridge regression; Fagg
et al., 2009), and 1-fold for testing. We report the median
*+ interquartile range (IQR) of FVAF across test folds.
Movement and force were treated as separate, inde-
pendent sources of information for continuous decoding.
All sampled times were used to decode movement,
whether the subject was in premovement, movement,
force, or between trials. Likewise, all sampled times were
used to decode force. The purpose of decoding continu-
ous movement and force was to validate the information
content of the ECoG signals. Thus, a high FVAF indi-
cated that the ECoG signals encode information about
times of active behavior (movement or force) as well as
rest periods, and transitions among behavioral modes.

Spatial mapping of decoding performance

We quantified the difference in the spatial representa-
tions of movement and force using two measures: (1)
change in location of the peak single-electrode decoding
performance, and (2) change in the overall spatial distri-
bution of single-electrode decoding performance. For
both analyses, we decoded continuous movement for
each individual ECoG electrode using Wiener cascade
decoders, as in the previous section. As in the previous
paragraph, all data (regardless of behavioral mode) were
used to evaluate decoding accuracy using the cross-va-
lidated FVAF. The spatial distribution of single-electrode
movement decoding performance formed a “map” for
the array. In a similar manner, we constructed a map of
force decoding performance. We then analyzed these
maps to reveal differences between movement and force
spatial representation patterns on the cortical surface.

We compared the location of the overall peak of each
decoding map for movement to that of force within each
cross-validation fold. We report the absolute displace-
ment between the peak performance location from force
decoding versus that from movement decoding. Peak
performance displacement quantifies the shift in location
between movement and force in units of distance (here, in
millimeters).

In addition, we compared the overall decoding map pat-
terns. The map for a single fold can be treated as an image,
with FVAF values corresponding to pixel intensities. We
measured similarity among maps using a differencing met-
ric common to image processing (Euclidean distance). We
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calculated the distance (D) between pairs of maps for indi-
vidual folds. For example, a value of Ditras-agorce) = 0,
where D is the difference metric, would indicate that the
force decoding maps in folds 3 and 4 were identical. We
compared the intermap distances across behavioral
modes (movement vs force, Diter) to find the average de-
coding map difference between movement and force en-
coding on the cortex. We compared these to within-
modality distances (Dintragorce)s Dintrammvy), Which vary only
because of time. That is, Dinya measured map differences
within a behavioral mode, which can be attributed to var-
iance in task performance across trials. Thus, D4 values
served as controls for Djer, Which measured the map dif-
ferences attributable to behavioral mode (movement or
force). When calculating these distance metrics between
performance maps, we scaled by the maximum possible
distance between the maps, so that both Diier and Dingra
ranged from O to 1.

LFADS

We used a deep learning algorithm known as LFADS to
denoise ECoG features (Sussillo et al., 2016; Pandarinath
et al., 2018). LFADS denoises neural activity based on the
assumption that the observed patterns of neural modula-
tion can be described as noisy observations of an under-
lying low-dimensional dynamical system. LFADS aims to
extract a set of low-dimensional latent factors that de-
scribe neural population activity on a single-trial basis.
When previously applied to spiking activity from popula-
tions of neurons, LFADS modeled observed spikes for
each neuron as samples from an inhomogeneous Poisson
process (called the firing rate), and attempted to infer this
underlying firing rate for each neuron. In this study, since
the ECoG features are continuous rather than discrete
variables, the underlying distribution was taken to be
Gaussian instead of Poisson. Specifically, the data were
preprocessed by z-scoring each spectral feature. Then,
the data were modeled following the equations in Sussillo
et al. (2016), with the key modifications that:

Mrt = WfaC1 (ff)a (1)
ore = WEE(f,), @)
Xt ~ N(/'Lr,ta O-E.t)v 3)

where x; represents the vector of z-scored spectral fea-
tures at each timestep, and f; represents the latent factors
output by the LFADS recurrent neural network. For a
given spectral featurer, u, ;, and o+ represent the inferred
time-varying mean and variance, respectively, for the z-
scored spectral feature at each time step. W' and W @2
are matrices that map the latent factors onto w,, and o,
respectively. These matrices have fixed weights across all
time points. For each subject, the number of latent factors
allowed was approximately half the total number of ECoG
channels used. After applying LFADS, we used PCA to
produce low-dimensional visualizations of the denoised
ECoG features.
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NVA

To compactly represent the overall response of a sub-
ject’s feature set, we computed NVAs for each ftrial. This
quantity is similar to the “muscle coordination pattern”
angle of Venkadesan and Valero-Cuevas (2008). We se-
lected features to include in the NVA calculations using
the following method: first, we averaged the ECoG spec-
tral intensity across trials, aligned to force onset. We then
used unsupervised k-means clustering (three clusters) to
partition the trial-averaged spectral power from the com-
plete set of features. All M1/PM features served as inputs
to the clustering algorithm. We evaluated this algorithm
with two to five input clusters in each subject, using sil-
houette values to judge the quality of clustering. Grouping
the features into three clusters produced the best group-
ings (with zero negative silhouette values in most sub-
jects). Of the three output clusters, we selected the two
that were well modulated with movement and/or force: a
cluster of low-frequency features and a cluster of high-fre-
quency features. These groupings for well-modulated fea-
tures (low and high frequency) emerged natively from the
unsupervised procedure, typically leaving one additional
cluster of poorly-modulated features. Clustering was
used only as a means of selecting ECoG features to in-
clude in NVA computations.

We calculated the NVA separately for the low-fre-
quency and high-frequency features, as follows: a clus-
ter of features with n members can be represented at
time t as m(t) = [f4,f5,...,f,], where fis the value of an indi-
vidual feature. We smoothed m(t) over five time bins
(total 125 ms), then calculated the NVA:

8(t) = cos ! (7’“(” em® > @

[[m ()] {[mrer]

where m™ is the average value of m(t) over the 250-ms
period before the time of maximum force exertion in the
trial. We computed the NVA at each time bin over trials in
each of the emergent clusters (low-frequency and high-
frequency modulating), for each subject. Since the NVA
transformed the data from feature values to a common
coordinate system (angle between vectors, in degrees), it
enabled us to average this quantity across subjects. To
quantify differences in NVA values because of behavioral
mode, we used the Kruskal-Wallis test of unequal me-
dians on NVAs during “premovement,” “movement,” and
“force” modes (illustrated in Fig. 1B). See also the follow-
ing section for details of the behavioral mode labeling
procedure.

Discrete classification of behavioral mode

Our classification of behavioral mode used the same
frequency-based features as we used in our continuous
decoding analysis. Here, the data were selected and la-
beled as follows: time bins from target presentation to the
start of finger flexion were labeled as premovement; time
bins from the start of flexion to contact with the force sen-
sor were labeled movement; time bins beginning at con-
tact with the force sensor, continuing for 0.5 s were
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labeled force. An example of this behavioral mode label-
ing for a single trial of data are shown in Figure 1B. We
limited the length of the force window to obtain more bal-
anced class sizes. Data outside of the described time win-
dows were discarded. The data were classified using two
methods: support vector machines (SVMs) and boosted
aggregate (bagged) trees. The classification analyses
used 5-fold cross-validation. Within each fold, we trained
on (or tested) every individual 25-ms time bin. The re-
ported accuracy measures are the median * IQR of cor-
rectly classified time bins across all test folds. Because
the class sizes were not exactly equal, the chance level
performance of the 3-class classifier was not necessarily
1/3. We calculated the true chance level performance
by shuffling the class labels and then repeating the analy-
sis. We repeated this procedure 1000 times for each
recording.

Experimental design and statistical analysis

We conducted the experiments and analyzed the data
using a within-subject design. We used non-parametric
statistics to report continuous kinematics and continuous
force decoding accuracy, as the decoding accuracy val-
ues (FVAF) were distributed non-normally across cross-
validation folds. To compare maps of decoding perform-
ance, we conducted a one-tailed Wilcoxon signed-rank
test, with Bonferroni correction for multiple comparisons.
Differences in NVA during behavioral modes were tested
using a Kruskal-Wallis test. For the discrete decoding of
behavioral mode, we also used a Kruskal-Wallis test to
identify statistical differences between ECoG feature-
based decoding and LFADS-cleaned feature decoding.

Results

We recorded ECoG from seven human subjects with
brain tumors or epilepsy who required intraoperative or ex-
traoperative mapping as part of their clinical treatment. In all
subjects, ECoG coverage included at least part of primary
motor and premotor cortices (Brodmann areas 4 and 6). In
some cases, coverage also included prefrontal and/or post-
central cortices (Fig. 1A). However, we restricted our analy-
ses to electrodes covering primary motor and premotor
cortices. The subjects performed a cued one-finger task re-
quiring an isotonic flexion movement, followed by isometric
flexion to specified force targets. Movement and isometric
flexion were performed sequentially (Fig. 1B). This task was
adapted from Venkadesan and Valero-Cuevas (2008). We
recorded the finger joint kinematics (based on the sensors
highlighted in Fig. 1C) as well as the force generated by iso-
metric flexion.

ECoG feature modulations were time-locked with
movement and force

Following Collard et al. (2016), we used event-aligned
plots to visualize event-related changes in ECoG spectral
features, specifically to understand how tightly these fea-
tures modulated with behavioral events. We examined
modulation with respect to (1) the start of finger flexion
movement and (2) the start of isometric force exertion. For
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each feature, we constructed an “intensity raster” by win-
dowing the feature’s data, then plotting as trial number
versus perievent time. We sorted trials by the elapsed
time between events.

We constructed intensity raster plots for each feature in
our dataset (two features per non-noise electrode, 722 total
features in the dataset). Overall, we found a diverse set of
activity patterns during movement and force production.
Figure 2A shows an example of a high-frequency feature
that appears to encode both movement and force, showing
increased activity at the transition from premovement to
movement (Fig. 2A, left of dashed line) and decreased activ-
ity after force onset (right of blue circles). Some high-fre-
quency feature modulations were time-locked only to force
execution (Fig. 2B,C). Examples of low-frequency features
exhibiting power decreases at movement onset are shown
in Figure 2D,E. Low-frequency power decrease could also
be time-locked to the start of force, instead (Fig. 2F). Note
that Figure 2B,E shows high-frequency and low-frequency
features from the same ECoG electrode, illustrating that two
behavioral modes can be encoded differently by high-fre-
quency and low-frequency information on the same elec-
trode. Overall, the results exemplified in Figure 2 indicate a
heterogeneous set of spectral feature responses to move-
ment and force; in fact, we did not find a simple way to com-
bine feature intensity data that completely summarized the
individual features’ responses across high-frequency or
low-frequency domains. Therefore, we also examined popu-
lation-level measures to obtain a more generalized descrip-
tion of how M1/PM represents kinematic-kinetic behavior.

Continuous movement and force were decoded with
high accuracy using ECoG

We used a Wiener cascade approach to build multi-input,
single-output models for decoding behavior. We built one
such model to decode the continuous time course of finger
movement kinematics using both high and low spectral fea-
tures from all (M1/PM) electrodes. A separate model was
built to decode continuous isometric force from the same
electrodes. Both movement and force were decoded at all
times (not only during active movement or active force)
using a cross-validated design. The resulting decoding ac-
curacy was high for both force and kinematics: the FVAF
ranged from 0.4 = 0.1 (median = IQR) to 0.8 + 0.1 for the in-
dividual subjects. Across subjects, the overall median FVAF
was 0.7 = 0.2 for force decoding and 0.7 = 0.3 for move-
ment decoding. Statistically, the null hypothesis that move-
ment kinematics and force were decoded with equivalent
accuracy could not be rejected (Kruskal-Wallis test, p = 0.6);
thus, any differences between movement and force repre-
sentations were not due simply to decoding one quantity
better than the other.

Spatial mapping of decoding performance shows
different cortical representations of movement and
force

We next quantified the difference in the spatial repre-
sentations of force and movement on the cortical surface,
using two metrics: (1) change in location of the peak
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Figure 2. Spectral power modulation during the movement-force grasp task. Each panel shows data from a high-frequency or low-
frequency spectral feature taken from an individual ECoG electrode. The single-trial frequency band power (grayscale in each plot)
was z-scored and aligned either to movement onset (cyan dashed lines; A-C, F) or to force onset (blue dashed lines; D, E). Blue
circles show force onset times when trials were aligned to movement onset. Cyan triangles show movement onset times when trials
were aligned to force onset. High-frequency features (A-C) exhibited power increases, which could be time locked to both move-
ment and force (A) or force only (B, C). Low-frequency features (D-F) exhibited power decreases just preceding, and aligned to, the

onset of movement (D, E), or aligned to the start of force (F).

decoding performance electrode (Table 1), and (2) change
in overall decoding map pattern (Fig. 3). A previous study
found that decoding maps’ peak performance locations
differed when two different fingers were used for an iso-
metric force task (Flint et al., 2014). Here, we found that
the peak performance location was different for move-
ment and force decoding. The displacement (between
movement and force) of the peak decoding performance
ranged from 3.2 £ 5.4 to 16.5 = 8.8 mm across subjects

July/August 2020, 7(4) ENEURO.0063-20.2020

(mean = SD over folds; Table 1). The mean (+=SE) dis-
placement of peak performance for all subjects was
9.9+2.0mm.

To place these distances in context, a standard ECoG
array for epilepsy use has an interelectrode distance of
10 mm, highlighting the advantages of using high-den-
sity ECoG arrays (the electrode arrays used here had an
interelectrode distance of 4 mm). See also Wang et al.
(2016).
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Table 1: Displacement of peak location (in mm) for move- treated individual ECoG electrodes as independent sour-
ment decoding performance relative to force decoding per- ces of information. Here, we instead sought a low-dimen-
formance in each subject sional representation to clarify and summarize the activity

Mean + SD  of the cortical network during the time course of the be-
S 16.1 + 4.1 havior. We used LFADS (Pandarinath et al., 2018) to gen-
82 16.5 + 8.8 erate low-dimensional representations of single-trial
S3 3.2 * 5.4 activity in the ECoG feature state space (see Materials
S4 10.2 f 84 and Methods). To visually summarize the factors, we
22 g‘é N 22 computed PCs of the LFADS-denoised ECoG features (la-
s7 10:7 + 8:0 beled LFADS-PCs). Figure 4 shows the underlying dy-

namics for S5 and S6 during trials of the kinematic-kinetic
task, color-coded by behavioral mode. At the start of the
task (premovement), the high-frequency and low-fre-
quency latent factors tended to be distributed through a
relatively broad region of the state space (Fig. 4A, red).
Before the start of movement, the latent factors tended to
converge onto a smaller region of state space, and their
trajectories through the movement (cyan) and force (blue)
periods of the task were more tightly grouped. Moreover,
each time period of the task occupied a different part of
state space (note the grouping of colors in Fig. 4). To illus-
trate the impact of LFADS in revealing well-ordered, low-
dimensional state space representations, we also per-
formed PCA directly on the ECoG features (PCA-only; Fig.
4, inset boxes). In some cases, PCA-only resulted in a
rough grouping of behavioral modes (premovement,
movement, and force) in neural state space (Fig. 4A).
However, the individual PCA-only trial trajectories re-
mained highly variable, unlike the highly repeatable
LFADS-PC trajectories. In other cases, PCA-only did not

In addition to changes in peak decoding location, there
were differences between movement and force in their re-
spective overall decoding map patterns (Fig. 3). The be-
tween-mode distance D, Which measured differences
between the movement-force maps (see Materials and
Methods), was significantly greater than the within-mode
distance Dipya in Six of seven subjects (p <3 x 1072 ex-
cept S3, where p =0.19; one-tailed Wilcoxon signed-rank
test with Bonferroni correction for multiple comparisons;
see Fig. 3B). This indicates that the spatial distribution of
decoding as a whole changed significantly between
movement and force and that this change was greater
than what would be expected from behavioral variation.
Taken together, these results indicate that the spatial rep-
resentations of movement and force on the cortical sur-
face are different.

Differences in premovement, movement, and force allow us to resolve a low-dimensional state space repre-
behavioral modes were reflected in a dynamical sentation with identifiable groupings at all (Fig. 4D).
systems model of M1/PM network activity Contrasting the LFADS-PC plots with the PCA-only plots

We next examined the activity of the recorded cortical (i.e., compare Fig. 4, each panel, inset) illustrates the ben-
network as a whole during the movement-force behavior.  efit of LFADS in visualizing this dataset. We quantified this
The preceding spectral/spatial analyses (Figs. 2, 3) benefit in Table 2, which shows the number of
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Figure 3. Decoding maps reveal changes in the cortical representations of movement and force. A, Example decoding maps for S4;
4 folds of data are shown, the actual analysis used 10 folds per recording. Square recording arrays are shown in a rotated perspec-
tive for compact visualization. We compared single-electrode decoding maps for movement (top) and force (bottom) using a dis-
tance metric Djner for every possible combination of fold pairs. As a control, we calculated D;n, between all possible fold pairs, for
within-movement and within-force decoding. B, Boxplot of distance measures for all subjects. The central horizontal line in each
box shows the median, while the notches show 95% confidence intervals. Overall, the median D;,, Was significantly greater than
the median Djn, in six of seven subjects (red stars). Note that the maps in A show 64 channels; for the distance measures in B,
only the PM/M1 electrodes were included.
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PC2

Force

Figure 4. Modeling ECoG features as an underlying dynamical system using LFADS uncovers repeatable trajectories through a low-
dimensional state space during the kinematic-kinetic task. Shown are LFADS-PCs (labeled as PC for simplicity) derived from high-
frequency (A, B) and low-frequency (C, D) ECoG features. Single-trial trajectories are shown for subjects S5 (78 trials; A, C) and S6
(73 trials; B, D). Inset boxes in each panel show the trajectories resulting from PCA performed directly on the ECoG features (without
LFADS). The color code at bottom defines the portion of each trial corresponding to each behavioral mode.

Table 2: Number of PCs required to account for 90% of the
variance in the ECoG features (PCA-only) or the latent fac-
tors (LFADS PCs)

PCA-only LFADS PCs
S1 43/66 2/66
S2 32/48 2/48
S3.1 26/44 2/44
S3.2 24/32 3/32
S4.1 40/74 3/74
S4.2 35/72 2/72
S5.1 19/36 2/36
S5.2 24/40 2/40
S6.1 28/38 4/38
S6.2 27/36 3/36
S6.3 27/36 3/36
S7 32/78 2/78

July/August 2020, 7(4) ENEURO.0063-20.2020

components required to account for 90% of the variance
in the data, with and without LFADS.

An NVA summarizes temporal changes across the
feature space

Visualizing the low-dimensional state space with
LFADS-PCs reinforced the idea that premovement, move-
ment, and force behavioral modes are well-represented in
neural state space. However, those methods did not
allow us to generalize across subjects. Therefore, we
used a second metric for summarizing the modulations of
feature space across trials and subjects: the NVA. The
NVA 6(t) is the angle at time t between a neural vector m(t)
and its reference direction, m™' (see Materials and
Methods). Here, the high-dimensional vector m(t) was
comprised of M1/PM ECoG spectral features. The
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Figure 5. The NVA summarizes the cortical state change associated with the behavioral mode change from movement to force. A,
B, Electrodes selected for S5, using k-means clustering. CS; central sulcus. Anterior-posterior and superior-inferior are indicated on
the rosette; compare to Figure 1A. A, B, Two of the three resulting clusters; the unsupervised cluster analysis natively divided the re-
sponses into low-frequency and high-frequency responses. C, The NVA, 6(t) for the low-frequency features selected in A. The dark
red dashed line shows the average time of target appearance, relative to force onset (time=0). The vertical cyan lines show the
mean (solid line) and standard deviation (dashed lines) of movement onset, relative to force onset. The vertical black lines show the
time of maximum force for each trial (equivalent to the reference period m"™f). D, The NVA for the high-frequency features shown in
B. E, F, NVAs calculated across all trials, all subjects in the study. Labeling conventions are the same as in C, D.

reference vector m™" was calculated during a window be-

fore the moment of peak force in each trial. Therefore, 6(t)
measures the dissimilarity between the ECoG features at
each moment with their values during peak force
generation.

To maximize the signal-to-noise ratio of 6(t), the ele-
ments of m(t) were selected using a cluster analysis (see
Materials and Methods). The resulting clusters were typi-
cally (1) a cluster of well-modulated low-frequency fea-
tures (Fig. 5A), (2) a cluster of well-modulated high-
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frequency features (Fig. 5B), and (3) a cluster of poorly
modulated features (data not shown). We computed 6(t)
separately for clusters (1) and (2) in each subject (Fig. 5C,
D). The NVA recasts feature modulations for each trial into
a common unit (angular difference in degrees). Therefore,
we were able to combine NVA results across all trials in all
subjects, yielding a compact study-wide representation
of the cortical response to the movement-force transition
(Fig. 5E,F).

Across subjects, average low-frequency NVAs began to
decrease immediately after the presentation of the cue to
start the trial (Fig. 5E, red line) and reached their minimum
value approximately at the start of flexion (Fig. 5E, cyan
line). Accordingly, low-frequency NVA during movement
was significantly lower than NVA during the premovement
period (p <1079 Kruskal-Wallis test, Tukey HSD post
hoc for all statistical comparisons in this section). By con-
trast, there was no significant difference between the
movement period and force (t=0 to t=0.75) in the low-
frequency NVAs (p =0.32). High-frequency NVAs did not
deviate from their premovement values at target presen-
tation (Fig. 5F) instead changing just before the start of
movement (Fig. 5F, cyan line). During movement, high-
frequency NVAs were significantly higher than premove-
ment NVA (p <107°), peaking just before the onset of
force (Fig. 5F, approximately t = —130 ms relative to force
onset). During the force behavioral mode, high-frequency
NVA were overall lower than either movement (p <10~°)
or premovement (p < 10°) periods.

Overall, the NVA provided a compact way to summarize
cortical state space changes across subjects during the
sequential movement-force task. Earlier, Figure 2 showed
that responses of individual ECoG features could be quite
heterogeneous in their modulations to behavioral events.
Here, Figures 4, 5 showed that despite that heterogeneity
of individual feature modulations, the information con-
veyed by populations of features exhibited repeatable,
statistically significant patterns during these behaviors.
Like Figure 2, the NVA results suggest the possibility of
different cortical responses by particular parts of the fre-
quency spectrum (low-frequency and high-frequency fea-
tures). However, the NVA suggests that, while there may
be exceptions (as seen in Fig. 2), this distinction may be a
general characteristic of M1/PM cortices during the
movement-force behavior.

ECoG features enabled accurate classification of
behavioral modes

Accurately decoding behavioral modes during grasp
has potential applications for BMI design. For example, in
response to evolving functional goals (e.g., changing from
movement to force behavior when picking up an object), a
BMI could switch control strategies. To estimate the ac-
curacy such control might achieve, we tested whether
the subjects’ behavioral modes could be decoded from
cortical activity. We used the low-frequency and high-fre-
quency ECoG spectral features to classify each time bin as
one of three behavioral modes: premovement, movement,
or force execution. The ground-truth behavior mode distinc-
tions were labeled according to the movement onset and
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force onset events (for an example trial, see Fig. 1B). In
parallel with the ECoG feature-based classification, we
also classified behavioral mode using the LFADS-
denoised features as inputs. This gave us a way to esti-
mate the impact of cortical “noise” on the accuracy of
decoding behavioral mode. We used two widely avail-
able classifiers: SVMs and boosted aggregate (bagged)
decision trees. For each subject, we also calculated a
chance decoding value (see Materials and Methods).
We report classification accuracy for the two types of
classifiers separately, evaluating both the features and
the LFADS-denoised factors. The three behavioral
modes were strongly differentiable in all subjects (Fig.
6). Overall, the tree-based classifier outperformed SVM,
and LFADS-denoised features were decoded more ac-
curately than the features without denoising (p=1.977,
Kruskal-Wallis test). For the tree-based classifier of
LFADS-denoised features, median decoding accura-
cies for the subjects ranged from 87 = 2% to 94 = 1%,
with an overall median value of 90 = 6%, indicating that
these three classes were highly separable. Statistically,
the decoding accuracy for all subjects was significantly
higher than chance. We emphasize here that each 25-
ms time bin was decoded, rather than decoding behav-
ioral modes as blocks of time. Thus, these behavioral
modes have separable cortical representations on a 25-
ms time scale.

Discussion

Manipulating objects dexterously requires controlling
both grasp kinematics and isometric force. Even simple
activities like turning a doorknob, shaking hands, and lift-
ing a cup of liquid could not be accomplished safely and
quickly without both kinds of control. More than two dec-
ades ago, investigators began to appreciate that the cen-
tral nervous system may handle these two vital aspects of
motor behavior separately (Flanagan et al., 1999). Here,
we found quantifiable differences in how the motor and
premotor cortices represented behavioral mode, i.e., pre-
movement, flexion movement, and isometric force. We
found individual feature modulations that were time-
locked to behaviorally relevant events, and could be ob-
served on a single-trial basis (Fig. 2). As ensembles, the
ECoG modulations constituted a neural state change, ac-
companying changes in behavioral mode. We were able
to model this change using a dynamical systems ap-
proach (LFADS), and decode the subjects’ behavioral
modes with high accuracy. Understanding neural state
changes like these in the context of a functional grasp
task will inform the design of dexterous grasp BMls.

Generally, we achieved highly accurate decoding of the
continuous time course of the behavioral variables (move-
ment and force). These results compared favorably with
prior studies decoding finger movement kinematics
(Acharya et al., 2010; Nakanishi et al., 2014; Xie et al.,
2018) and isometric force (Pistohl et al., 2013; Chen et al.,
2014; Flint et al., 2014; Vaidya et al., 2019). Importantly,
there was no significant difference in our ability to decode
force and movement across subjects, implying that any
differences in cortical representations of force and
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Figure 6. Decoding behavioral mode from ECoG features before and after LFADS denoising. The median classification accuracy
was greater than chance for all subjects. Tree; boosted aggregate decision tree classifier.

movement were not simply expressions of a superior de-
coding of one or the other.

Spatially, human cortical encoding of finger movement
takes place over a widespread area (Schieber, 2002), in-
cluding complex and overlapping representations of indi-
vidual finger movements (Dechent and Frahm, 2003).
ECoG recordings make it possible to examine cortical ac-
tivity on these relatively large spatial scales (Slutzky and
Flint, 2017). We found that the maps of decoding perform-
ance altered significantly across movement and force rep-
resentations (across-mode) in six of seven subjects. We
controlled for changes because of time or behavioral vari-
ability (within-mode), by comparing the between-mode
maps to the within-mode maps. One potential explanation
for the spatial map differences could be that the activating
regions of the maps are simply shrinking during isometric
force. Such an explanation is consistent with evidence
pointing to less cortical modulation with isometric force
than with movement (Hendrix et al., 2009). However, in
this case we found that the peaks of the decoding maps
changed location (Table 1), indicating that the maps
shifted rather than merely growing or shrinking. These
spatial decoding results are relevant to the design of
BMls, since any BMI that restores grasp should ideally ex-
ecute both movement and force functions. There is evi-
dence that representations of hand movements are
preserved following amputation (Bruurmijn et al., 2017),
although it remains to be shown whether the movement-
force functional map change will remain in an individual
with paralysis. Downey et al. (2017) found that applying a
scaling factor to neuronal spike rates facilitated the ability
of human BMI users to grasp objects with a prosthetic
hand. The utility of such a scaling factor may be a reflec-
tion of the functional somatotopy of the cortex, although
the current results suggest that amplitude scaling would
not necessarily be the ideal method of accounting for the
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difference in movement and force representations. Here,
we found the mean shift in peak decoding location was
9.9 mm, a sizeable distance in the cerebral cortex. The
overall differences in spatial decoding maps (patterns of
decoding), while significant, were not large. However, this
was not unexpected for two related motor activities
(movement and force, in the context of a grasp-like be-
havior) performed by the same finger.

Increasingly, spiking activity in small areas of motor cor-
tex has been modeled as a dynamical system in an effort
to parsimoniously describe and understand network-level
neuronal activity. In this study, we used LFADS to uncover
low-dimensional neural state spaces for each subject.
LFADS-PCs were tightly grouped over trials and occupied
distinct regions of state space during the premovement,
movement, and force behavioral modes (Fig. 4). Both low-
frequency and high-frequency LFADS-PCs were clearly
separated in different behavioral modes. Some previous
examples of modeling cortical dynamics using latent fac-
tors have analyzed single behavioral modes. For example,
Vaidya et al. (2015) modeled both reach-related and
grasp-related neural ensembles as linear dynamical sys-
tems to study learning. Also, Gallego et al. (2018) also
showed that there were some differences in local M1 neu-
ronal ensemble activity between kinematic and kinetic
cursor control tasks. Our results show that dynamical sys-
tems modeling can elucidate the latent factors underlying
a widespread cortical network in addition to local circuit
networks. It was not surprising that latent factor state
space trajectories evolved with time during each trial; in-
deed, this is a fundamental underlying assumption of the
dynamical systems model. The significance of the
LFADS-derived trajectories was their smooth, repeatable
paths through distinct regions of state space during be-
havioral mode transitions. Compared with PCA-only state
space trajectories, LFADS factors clustered more tightly
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and evolved much more repeatably in premovement,
movement, and force behavioral modes.

We used the NVA to summarize spectro-temporal
changes across electrodes and subjects. The average du-
ration of high-frequency neural vector changes (~300 ms;
Fig. 5F) was substantially shorter than the average dura-
tion of the force-matching part of the behavioral task (~1
s). A phasic rise in high y modulation near the onset of be-
havior has been shown during other grasp force behaviors
(Chen et al., 2014; Branco et al., 2019b), as well as iso-
tonic movement (Flint et al., 2017). Single-neuron studies
in nonhuman primates also support the phasic modula-
tion with force onset (Hendrix et al., 2009), or more often,
phasic-tonic modulation (Maier et al., 1993; Mason et al.,
2002; Intveld et al., 2018). This agreement makes sense
when considering that high-+vy activity is often correlated
with ensemble spiking. It appears that the onset of force
behavior, or perhaps the transition from movement to
force, is especially meaningful to the cortex when encod-
ing grasp.

Our results support and extend the findings of
Venkadesan and Valero-Cuevas (2008), who inferred from
muscle activity that the human motor system uses two
separate control strategies for movement and isometric
force. Importantly, they observed muscle activity chang-
ing ~100 ms before force onset, ruling out the conclusion
that changes in EMG patterns are purely the result of the
mechanical constraints of the behavior. In the current
study, we chose m"™" in part to facilitate comparison with
that study. We found similarities between the cortical low-
frequency NVA and their angular deviation for muscle co-
ordination patterns (Fig. 2A from that study), although our
low-frequency NVAs changed earlier: ~350ms before
force onset, which is compatible with the delay between
cortical and muscular activity. Changes in high y activity
patterns (reflected by the NVA), on the other hand, oc-
curred around 130ms before force onset. This time
course of changing cortical activity is consistent with the
earlier EMG results and with the concept that control
strategies for movement and force are encoded in the
motor and premotor cortices rather than subcortical sys-
tems. This argues against the hypothesis that differences
in cortical activity during movement-force are due mainly
to somatosensory feedback changes in the two states.

We believe the present data indicate that the cortical
state spaces are different among premovement, move-
ment, and force. One possible hypothesis to explain this
difference is that additional muscles (other than index fin-
ger flexors) may have been recruited during force mode
compared with movement mode, for example to addition-
ally stabilize the wrist. While we were not able to include
EMG recordings because of time and access limitations
to our participants, recording EMG simultaneously with
ECoG might allow us to test such a hypothesis. However,
Venkadesan and Valero-Cuevas (2008), who recorded
EMG (but not neural activity) in a similar task, found that
neural control strategies changed within the scope of fin-
ger flexor muscles: that is, the same muscles were used
in different recruitment patterns. Overall, these findings
are also consistent with prior work showing that M1 neu-
rons display muscle-like encoding (Oby et al., 2013).
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We note that our behavioral task was chosen to recre-
ate a naturalistic movement-force model of object grasp,
and was not designed to systematically explore the fin-
ger-movement kinematic-kinetic space. Specifically, we
note the caveat that movement behavior was not required
to be as variable as force, since no explicit movement
“targets” were designated (unlike force targets which var-
ied randomly). Accordingly, we designed the analysis of
spatial decoding map differences (Fig. 3) in such a way as
to control for within-mode variation over time. In addition,
we observed much larger differences between movement
and force behavioral modes than within mode, in both the
latent factor trajectories (Fig. 4) and in our statistical anal-
ysis of the NVA values (Fig. 5). Thus, the data still support
distinct cortical modes that correspond to distinct behav-
ioral modes.

Our decoding of the subjects’ time-varying behavioral
mode has ramifications for BMI design, as demonstrated
by Suminski et al. (2013). Suminski et al. addressed a
longstanding limitation of BMIs: decoders trained on a
given set of motor activities do not predict accurately out-
side those activities. Hierarchical BMIs, which include
multiple decoders operating in parallel with a switching
mechanism, may outperform those with a single decoder.
In the context of hand function, a decoder trained only on
movement data may not provide optimal control of a BMI
for grasping and manipulating objects, either with a pros-
thetic hand or functional electrical stimulation of para-
lyzed fingers. The most important challenge for current
BMI design is to bring this technology more fully into the
clinic. Thus, practical considerations, like understanding
the differences in the neural representations of imagined
and attempted movement (Vargas-Irwin et al., 2018) or
force (Rastogi et al., 2020) by an individual with paralysis,
are high priorities. In a similar vein, our results, suggesting
that decoding the behavioral kinematic/kinetic mode from
cortical activity is feasible, could increase the functionality
of BMIs during object grasp. In addition, the improvement
in behavioral mode decoding by using latent factors indi-
cates that viewing the cortical motor control circuits as a
dynamical system can facilitate the task of identifying
cortical correlates of multiple behavioral modes. LFADS
does not add information to that contained in the ECoG
features, so its application may not always result in a large
increase in decoding accuracy (especially in a discrete
classification task; Fig. 6, S6), despite its effectiveness at
uncovering low-dimensional representations (Fig. 48,D,
also from S6). However, the success of LFADS in improv-
ing decoding in some subjects, especially those with
worse initial performance, suggests a potentially impor-
tant role for denoising procedures such as LFADS in BMI
future BMI applications. Improving decoding accuracy of
behavioral mode from 77% to 91%, as in S4 (Fig. 6),
would likely result in greatly improved overall BMI per-
formance, more positive perceptions by the user, and bet-
ter acceptance of the prosthesis.

The ubiquity of object-manipulation behaviors in human
life underscores the importance of functioning hand
grasp. In this case, however, ubiquity does not mean that
the behavior is simple. The current study allowed us to
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examine the activity in human M1/PM that accompanied
the sequential execution of movement and force. We
found both movement and force to be quite well repre-
sented, allowing us to decode each with high accuracy.
Our data also indicate that the movement and force repre-
sentations are distinct, as we distinguished them in
space, with LFADS, via the NVA, and via behavioral mode
classification. The current results suggest that a BMI con-
trolled using ECoG could restore both movement and iso-
metric aspects of grasp to individuals with paralysis.
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