
Glycerol Hypersensitivity in a Drosophila Model for
Glycerol Kinase Deficiency Is Affected by Mutations in
Eye Pigmentation Genes
Patrick J. Wightman1, George R. Jackson2,3,4¤, Katrina M. Dipple1,5*

1 Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America, 2 Department

of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America, 3 Brain Research Institute, Semel

Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America,

4 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los

Angeles, California, United States of America, 5 Department of Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Mattel Children’s

Hospital at University of California Los Angeles, Los Angeles, California, United States of America

Abstract

Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent
reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe
metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent
phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have
created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As
expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol
levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the
hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation,
suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic
modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a
preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We
demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity.
Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in
eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important
role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive
phenotype identified in our Drosophila model for glycerol kinase deficiency.
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Introduction

In this study, we use Drosophila as a model organism for the study

of glycerol kinase deficiency (GKD [MIM 307030]). The metabolic

role of glycerol kinase is to convert glycerol to glycerol 3-phosphate

in an ATP-dependent reaction and is the rate-limiting step in

glycerol utilization [1]. Glycerol 3-phosphate can be directed

towards gluconeogenesis or lipid metabolism and alteration of GK

activity also has a substantial effect on metabolic flux through other

metabolic pathways such as the pentose phosphate pathway [2]. In

humans, GKD patients can have severe metabolic and CNS

abnormalities, while others possess hyperglycerolemia and glycer-

oluria with no other apparent phenotype [3,4]. Extensive studies

incorporating patient data, mutation analysis and protein tertiary

structure reveal no obvious phenotype-genotype correlations [4–6].

Additionally, analysis of glycerol kinase activity in GKD patients

shows a range of glycerol kinase (GK) activities that do not

correspond to severity of the phenotype [4]. The cause of the

phenotypic variability in GKD is currently unknown.

It has previously been hypothesized that glycerol kinase could

possess alternative functions [4] i.e. protein activities. This is

supported by the identification of rat GK as an ATP stimulated

glucocorticoid-receptor translocation promoter protein [7,8].

Additionally, evidence for an apoptotic function of glycerol kinase

has been identified by weighted gene co-expression network

analysis of liver gene expression in glycerol kinase knockout mice

liver gene expression [9]. In addition to these alternative activities,

it has been proposed that modifier loci could influence the GKD

phenotype severity [4,10–12]. Our aim in this study was to create

a model to study GKD and access the power of Drosophila genetics

to dissect the underlying complex pathogenic mechanism.

Animal models for human diseases can provide insights into

pathogenic mechanisms of disease that cannot be deduced from

patient studies. For example, analysis of adipose tissue from
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glycerol kinase knockout mice revealed altered expression levels of

genes involved in the insulin signaling pathway in addition to lipid

and carbohydrate metabolism [13,14]. However, glycerol kinase

knockout mice die at postnatal day 3 or 4, making this a

challenging animal model to study [15,16]. Drosophila is an

alternative animal model and possesses a wide array of classical

and molecular genetic techniques available for investigating gene

function [17,18]. Analysis of the Drosophila melanogaster genome

sequence reveals the presence of all the genes encoding enzymes

involved in glycerol metabolism in humans [19]. There are five

glycerol kinase-related genes, only two of which are predicted

using in silico analysis to possess phosphorylation activity (dGyk

(CG18374) and dGK (CG7995)). In addition to the ‘‘FGGY’’

carbohydrate kinase domain that both dGyk and dGK possess

[20,21], amino acid sequence analysis reveals several protein

domains with putative roles in protein interaction and mitochon-

drial apoptosis [19]. This suggests the Drosophila glycerol kinase

proteins could possess novel alternative protein functions.

Using the UAS-GAL4 system for RNAi-mediated knockdown of

gene expression in Drosophila [22–24], we have successfully

targeted dGyk and dGK to create a Drosophila model for GKD.

Ubiquitous expression of the RNAi constructs results in decreased

glycerol kinase RNA expression and reduced GK enzymatic

activity. As expected glycerol levels were found to be elevated.

Investigation of knockdown flies identified a glycerol hypersen-

sitive phenotype when fed a glycerol only food source, which we

predict to be due to increased susceptibility to desiccation. The

control of metabolite composition plays an important role in water

balance and is critical for insect survival [25] especially in arid

conditions [26]. Additionally, control of glycerol levels through

aquaporins is known to play an important role in desiccation

tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis [27].

Therefore we suspect glycerol hypersensitivity is due to a

combination of altered glycerol levels in the RNAi knockdown

flies in addition to the hygroscopic nature of glycerol in the fly

food.

We adapted the glycerol hypersensitive phenotype to create a

glycerol hypersensitive survivorship assay to perform a preliminary

screen of lethal transposon insertion mutants with the aim of

identifying enhancers and suppressors the glycerol hypersensitive

phenotype. From this screen, we are able to identify both

enhancers and suppressors of glycerol hypersensitivity including

one synthetic lethal cross. We also found a strong effect on glycerol

hypersensitivity by eye pigmentation null mutations. Therefore

our data reveal a novel link between glycerol kinase and eye

pigmentation genes and suggests a novel role for these proteins in

desiccation resistance.

Results

Creation of a Drosophila model for glycerol kinase
deficiency

In this study, we used the UAS-GAL4 system [23] for RNAi-

mediated knockdown of dGyk and dGK expression. Inverted repeats

(IR) for both dGyk and dGK were cloned into the pUDsGFP plasmid

[28] and the resulting transgenic RNAi Drosophila lines generated

were named dGyk-IR and dGK-IR. For over-expression lines,

complete open reading frames for dGyk and dGK were subcloned

into the pEX-UAS vector and named dGyk-OE and dGK-OE

respectively. All dGyk- and dGK-related fly lines (RNAi, over-

expression, P element insertions) are listed in Table S1.

Initial analysis was performed using a Tubulin-GAL4 (Tub-

GAL4) driver for ubiquitous expression of the inserted construct.

For RNAi fly lines, this involved setting up crosses between each

RNAi fly line with the Tub-GAL4 driver flies (96dGyk-IR and 106
dGK-IR). Similarly, each over-expression fly line was crossed to the

Tub-GAL4 driver flies (76 dGyk-OE and 76 dGK-OE). Progeny

from each cross were examined for physical phenotypes. Analysis

of dGyk-IR6Tub-GAL4 crosses revealed 3 lines that resulted in

viable adults flies and 6 lines that resulted in progeny that died

during larval development. For dGK-IR6Tub-GAL4 crosses, 8

lines resulted in viable adults flies and 2 lines resulted in progeny

that died during larval development.

To determine the basis of lethality, we performed western blot

analysis for GFP in knockdown roaming 3rd instar larvae (the

pUdsGFP RNAi vector co-expresses GFP). This would provide an

indirect measure of the inverse repeat (IR) expression levels, for

example greater GFP levels would indicate greater levels IR

expression and infer greater knockdown of the target gene

expression levels. For dGyk-IR; Tub-GAL4 larvae, western blot

analysis revealed higher GFP levels in knockdown 3rd instar larvae

that died before eclosion than in 3rd instar larvae than developed

into glycerol hypersensitive adult flies (Figure S1 and Methods S1).

A similar trend was observed for dGK-IR; Tub-GAL4 3rd instar

larvae. Therefore larval lethality is likely due to lower levels of

dGyk and dGK due to greater expression of the dGyk-IR and dGK-

IR construct. Unfortunately, we were unable to identify Drosophila

dGyk- and dGK-specific antibodies. Both commercially available

glycerol kinase antibodies as well as ones designed by us were non-

specific for dGyk or dGK.

In this study, we focused on the RNAi lines that produced live

adult flies when crossed to the Tub-GAL4. The analysis of progeny

from dGyk-OE6Tub-GAL4 crosses produced adult progeny with

no physical phenotype. However dGK-OE; Tub-GAL4 progeny

were found to be embryonic lethality. For all subsequent

experiments, 2 fly lines for each RNAi phenotype were chosen

for analysis (results are shown for single fly lines).

Analysis of RNAi progeny from Tub-GAL4 crosses by qRT-

PCR confirmed RNAi had successfully knocked down expression

of dGyk and dGK (Figure 1A). For over-expression analysis of 3rd

instar larvae, a larval fat body GAL4 driver (c564-GAL4, [29])

driver was used as this produced live progeny for both dGyk-OE

and dGK-OE. Additionally, expression of glycerol kinase is highest

in the human liver [13]. Therefore the c564-GAL4 driver is an

appropriate GAL4 driver for the study of glycerol kinase as it has

previously been shown to drive expression of GAL4 in the larval

fat body [29], a tissue that plays an important role in energy

metabolism similar to that of mammalian liver [30]. The c564-

GAL4; dGyk-OE and c564-GAL4; dGK-OE progeny had increased

expression for dGyk and dGK respectively (Figure 1B). In this study,

the use of the dGyk-OE and dGK-OE fly lines was restricted to

rescue of phenotype experiments. There was no significant

statistical difference between control fly lines (GAL4 driver versus

construct-only fly lines) indicating no significant leaky construct

expression in either RNAi or over-expression construct lines

(Figure S2).

Reduced glycerol phosphorylation activity and elevated
glycerol levels by RNAi knockdown of dGyk and dGK
expression

Glycerol kinase phosphorylates glycerol to glycerol 3-phosphate.

Using radiolabelled 14C glycerol to assay for glycerol kinase (GK)

phosphorylation activity, we found reduced GK activity in both

dGyk-IR; Tub-GAL4 and dGK-IR; Tub-GAL4 3rd instar larval

progeny (Figure 2A). With reduced GK activity, we would

anticipate elevated glycerol levels. As expected, we found increased

levels of glycerol in both dGyk-IR; Tub-GAL4 and dGK-IR; Tub-

GAL4 3rd instar larvae (Figure 2B). Triglyceride levels in all RNAi

Drosophila Model of Glycerol Kinase
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progeny were not significantly altered compared to controls (data

not shown).

RNAi targeting of dGyk and dGK results in glycerol
hypersensitive flies

We hypothesized that reduced GK activity caused by

knockdown of dGyk or dGK expression could affect the ability of

Drosophila to metabolize glycerol. Therefore we performed

survivorship assays using male RNAi knockdown flies on defined

food sources: glycerol only, sucrose only, glycerol+sucrose, and

agarose (starvation). Control flies were glycerol tolerant

(Figure 3A), whereas c564-GAL4; dGyk-IR and c564-GAL4; dGK-

IR progeny on a glycerol-only diet died at rates similar to

starvation (Figure 3B and 3C). When placed on a sucrose only

food source, c564-GAL4; dGyk-IR and c564-GAL4; dGK-IR flies

had a lifespan similar to that of control flies. Intriguingly, c564-

GAL4; dGyk-IR and c564-GAL4; dGK-IR flies when placed on

glycerol+sucrose mixed media also died rapidly but at a slower

rate compared to glycerol alone. Due to the hygroscopic nature of

glycerol, we predict hypersensitivity to food supplemented with

glycerol is mainly caused by increased susceptibility to desiccation

but could in part be due to an inability to metabolize glycerol (see

discussion).

To test whether the glycerol hypersensitivity could be due to

defective osmoregulation, we performed survivorship assays on a

high salt diet (Figure S3). Both c564-GAL4; dGyk-IR and c564-

GAL4; dGK-IR adult male flies were found to have a small but

significant decrease in survivorship on a high salt diet (3.5% and

4.0%) compared to controls.

Identification of a glycerol hypersensitive transposon
insertion dGyk hypomorph

To provide additional evidence for a role of dGyk and dGK in

glycerol hypersensitivity, we screened fly stocks with transposon

insertions that mapped to dGyk (e00237, 22516, and 21039) or dGK

(f05001, 15351, c06596) by placing the fly lines on a glycerol-only

diet (Figure 4A). This identified one glycerol hypersensitive

homozygous piggyBac transposable element insertion (dGyke00237).

Further characterization of this fly stock revealed decreased dGyk

expression, decreased GK activity, elevated glycerol levels, and

normal triglyceride levels (Figures 4B–E). Although dGyke00237

homozygous flies were fertile, fly cultures failed to thrive. Flanking

sequence of the P element insertion for dGyke00237 (GenBank id.

CZ478131) reveals the insertion site to be located 50 bp upstream

of the splice acceptor site within intron 1. It is likely that this

insertion disrupts the branch point consensus sequence resulting in

reduced splicing efficiency.

Suppression of glycerol hypersensitivity using dGyk and
dGK transgenes

In order to perform phenotype rescue experiments, we first

created stable and viable RNAi knockdown lines by placing c564-

GAL4 and the RNAi construct on chromosome 2 and 3

respectively, over a chromosome 2+3 translocated balancer,

t(2;3)SM6;TM6B (see methods for chromosome balancing infor-

mation). Therefore, the GAL4 driver and RNAi construct co-

segregate during crosses. The genotypes were: c564-GAL4; dGyk-

IR/t(2;3)SM6;TM6B and c564-GAL4; dGK-IR/t(2;3)SM6;TM6B.

Figure 1. Generation of transgenic flies for RNAi (dGyk-IR, dGK-
IR) and over-expression (dGyk-OE, dGK-OE) analysis. Inverted
repeats (IR) for both dGyk and dGK were subcloned into the pUDsGFP
vector [28]. This vector allows expression of the double-stranded
(dsRNA) transcripts from the RNAi construct under the control of a UAS-
binding site for the yeast GAL4 transcription factor. (A) RNA expression
levels were determined by qRT-PCR for dGyk-IR and dGK-IR 3rd instar
progeny (using a Tubulin-GAL4 driver). dGyk-IR/Tub-GAL4 had reduced
expression of dGyk and dGK-IR/Tub-GAL4 progeny had reduced
expression of dGK. RNA levels for parental construct fly lines were also
determined but were not significantly different to the w1118; Tub-GAL4
control (Figures S2A and S2B). (B) For transcript over-expression (OE)
studies, cDNA fragments covering the entire coding regions for dGyk
and dGK were subcloned into the pEX-UAS vector [54]. Compared to
control 3rd instar larvae, both c564-GAL4; dGyk-OE and c564-GAL4; dGK-
OE 3rd instar larvae had increased expression levels for dGyk and dGK
respectively. RNA levels for parental construct fly lines were also

determined but were not significantly different to the w1118; c564-GAL4
control (Figure S2C and S2D). Statistical analysis using ANOVA was
performed by comparison to GAL4 control fly line. *P,0.05, **P,0.01,
***P,0.001.
doi:10.1371/journal.pone.0031779.g001

Drosophila Model of Glycerol Kinase
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Using a glycerol+sucrose food source we found rate of death

correlated with glycerol concentration i.e. higher glycerol concen-

tration resulted in a faster rate of death (Figure S4). Also, we

observed that male RNAi knockdown flies are more glycerol

hypersensitive than females (Figure S5). Therefore for our

survivorship assays, males were separated from females to avoid

distortion of the survival curves. Glycerol concentrations were

optimized for survivorship assays to be performed over 10 days:

1.5 M and 2 M glycerol for c564-GAL4; dGyk-IR males and

females, respectively; 3.0 M glycerol for c564-GAL4; dGK-IR

males and females.

Using the c564-GAL4; dGyk-IR/t(2;3)SM6;TM6B and c564-

GAL4; dGK-IR/t(2;3)SM6;TM6B stable knockdown fly lines, we

Figure 2. Quantification of glycerol kinase activity and
glycerol. (A) Glycerol kinase activity was reduced in both dGyk-IR;
Tub-GAL4 and dGK-IR; Tub-GAL4 3rd instar larvae compared to both
parental controls w1118; Tub-GAL4 and construct control. (Note: Tub-
GAL4 abbreviated to TG4) (B) Glycerol levels were elevated in both
dGyk-IR; Tub-GAL4 and dGK-IR; Tub-GAL4 3rd instar larvae compared to
parental controls. Error bars represent standard error between
biological replicates. Statistical analysis using ANOVA was performed
by comparison to parental controls. *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0031779.g002

Figure 3. dGyk- and dGK-knockdown flies are hypersensitive to
glycerol. When placed on a glycerol only diet, both dGyk-IR/c564-GAL4
and dGK-IR/c564-GAL4 flies died at a similar rate to starvation (control
flies were relatively glycerol tolerant). RNAi flies had relatively normal
survival on sucrose media compared to controls, but were intolerant to
glycerol+sucrose media indicating hypersensitivity to glycerol. Survival
analysis of 7-day old male RNAi flies was performed on defined media:
glycerol (open circle); starvation (filled circle); sucrose (open square);
glycerol+sucrose (filled square). Genotypes tested were (A) control flies,
w1118; c564-GAL4/+, (B) w1118; dGyk-IR/c564-GAL4, (C) w1118; dGK-IR/c564-
GAL4. Survivorship assays using parental construct control flies were
also performed but were not found to be glycerol hypersensitive. For
each genotype and media type, percentage survivorship 6 standard
error was calculated from 5 vials of 20–25 flies. Survival analysis was
performed using the log-rank test on the Kaplan and Meier data.
doi:10.1371/journal.pone.0031779.g003

Drosophila Model of Glycerol Kinase
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performed rescue of phenotype experiments by crossing to dGyk-

OE or dGK-OE fly lines (Figure 5). Additionally, we investigated

the effect of 2 copies of dGyk-IR or 2 copies of dGK-IR on glycerol

hypersensitivity. Interestingly, c564-GAL4; dGyk-IR glycerol hy-

persensitivity was suppressed using either dGyk-OE or dGK-OE.

For c564-GAL4; dGK-IR flies, glycerol hypersensitivity was

suppressed using dGK-OE but not by dGyk-OE. We also found

c564-GAL4/dGyk-IR; dGyk-IR flies were more glycerol hypersen-

sitive than c564-GAL4; dGyk-IR flies. Glycerol hypersensitivity was

not significantly enhanced in c564-GAL4/dGK-IR; dGK-IR flies

compared to c564-GAL4/dGK-IR flies.

A genetic modifier screen utilizing glycerol
hypersensitivity phenotype

To test whether our glycerol hypersensitive survival assay could

detect genetic modifier loci, we crossed 77 lethal transposon

insertion mutants to the stable c564-GAL4; dGyk-IR and c564-

GAL4; dGK-IR fly lines (as described in methods). All lethal

transposon insertion mutants mapped to chromosome 3 and

contained the rosy eye color marker on a rosy null background (see

Table S2 for genotypes) and offspring of interest separated based

on absence of balancer chromosome markers e.g. RNAi

construct/+; GAL4 driver/P element. Male and female flies were

separated and survivorship assays performed on the optimized

glycerol+sucrose diet. The day of ,50% survival was noted for

progeny from each cross and results plotted (Figure 6).

From the 50% survival plots, top enhancers and suppressors of

glycerol hypersensitivity were identified. For (dGyk-IR; c564-

GAL4)/P element flies, this totaled ,14% of lethal transposon

insertion mutants tested. For (dGK-IR; c564-GAL4)/P element flies,

this totaled ,4% of lethal transposon insertion mutants tested.

One synthetic lethal cross was identified (c564-GAL4/+; dGK-

IR/P element) that mapped to the gene encoding Na+-K+ ATPase

alpha subunit. Two mutations are synthetically lethal if flies with

either of the single mutations are viable but flies with both

mutations are inviable. In this case, both RNAi flies and the

heterozygous lethal transposon insertion mutant flies were viable

but a combination of c564-GAL4/+; dGK-IR and heterozygous

lethal transposon insertion was inviable. Originally identified in a

double P element insertion, synthetic lethality was confirmed in a

Figure 4. Identification of transposon insertion dGyk hypomorph. Using glycerol hypersensitivity as a screen-able phenotype, we tested 6 fly
lines with transposon insertions that map to the genomic loci for dGyk (e00237, 21039, and 22516) and dGK (f05001, 15351, and c06596). For each
line, survival assays were performed using 7–10 day old male flies by placing the flies (n.100) on glycerol (1 M) and 1.3% agarose as food source.
One fly line (dGyke00237 homozygous) was found to be glycerol hypersensitive (A). Heterozygous dGyke00237/TM6B flies were not glycerol
hypersensitive. The 22516 and c06596 fly lines were homozygous lethal i.e. homozygous flies could not be assayed. Analysis of dGyke00237

homozygous 3rd instar larvae revealed decreased dGyk expression (B), decreased GK activity (C), elevated glycerol (D), and normal triglyceride levels
(E). For a control fly line, a transposon insertion line was used that had an identical type of P element (pBACRB) as used to create the dGyke00237 fly
line. Survival analysis was performed using the log-rank test on the Kaplan and Meier data. Otherwise statistical analysis was performed using the
Student’s t-test. **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0031779.g004
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second lethal transposon insertion mutant mapping to the Na+-K+

ATPase alpha subunit gene. Further investigation of the cause of the

synthetic lethality is required to confirm Na+-K+ ATPase alpha as a

modifier of glycerol hypersensitivity.

Strikingly, the majority of c564-GAL4; dGyk-IR/P element flies

were more glycerol hypersensitive than the control w1118; c564-

GAL4; dGyk-IR flies (Figure 6A). A similar but weaker trend was

observed for of c564-GAL4; dGK-IR/P element flies (Figure 6B).

We suspected that the rosy null genetic background of the lethal

transposon insertion mutants might be the cause of the enhanced

glycerol hypersensitivity.

Glycerol hypersensitivity is affected by eye pigmentation
null mutations

Results from the preliminary modifier screen indicated that the

rosy null background of the lethal transposon insertion mutant flies

might affect glycerol hypersensitivity. To investigate whether this

Figure 5. Transgenic suppression of glycerol hypersensitivity. A) Both over-expression constructs dGyk-OE and dGK-OE suppressed glycerol
hypersensitivity of c564-GAL4; dGyk-IR flies. Additionally, enhanced glycerol hypersensitivity was observed for dGyk-IR/c564-GAL4; dGyk-IR flies. B)
Suppression of glycerol hypersensitivity was observed for dGK-OE/c564-GAL4; dGK-IR flies but not dGyk-OE/c564-GAL4; dGK-IR flies. dGK-IR/c564-GAL4;
dGK-IR flies did not show significantly enhanced glycerol hypersensitivity. For each genotype, n.100. Survivorship curves were analyzed using a Log-
rank test on the Kaplan and Meier data.
doi:10.1371/journal.pone.0031779.g005

Drosophila Model of Glycerol Kinase

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e31779



effect was rosy specific or a feature of eye color mutants, we tested a

panel of eye color mutants by performing glycerol hypersensitivity

survivorship analysis on c564-GAL4; dGyk-IR and c564-GAL4;

dGK-IR flies that also possessed a heterozygous null mutation in an

eye pigmentation gene. Additionally, we included yellow fly

mutants; these flies have yellow body cuticles and have previously

been shown to be sensitive to desiccation [31]. This revealed that

the mutants brown, garnet, rosy, vermillion, and yellow, all enhanced

glycerol hypersensitivity (Figures 7A and 7B). These flies were all

tolerant over 10 days to a sucrose only diet (Figures S6A and S6B).

Although control flies (heterozygous pigmentation null mutation in

trans to the c564-GAL4 driver) were tolerant over 10 days for

sucrose only and glycerol+sucrose food sources, yellow flies did

show some glycerol hypersensitivity after 10 days (Figures S6C and

S6D).

Further screening of brown mutants resulted in a variety of

outcomes (Figures 7C and 7D): a DNA insertion null mutant

enhanced glycerol hypersensitivity (bw1); a premature stop codon

mutant (bw19) suppressed glycerol hypersensitivity; a brown mis-

sense mutation (bw16) did not significantly alter glycerol hyper-

sensitivity compared to controls. These results suggest the brown

gene to be an important genetic modifier locus of both the dGyk

and dGK glycerol hypersensitive phenotype.

To test whether eye pigmentation homozygous null mutants

were themselves glycerol hypersensitive we performed survivorship

assays on glycerol+sucrose and sucrose only food sources (Figure

S7). Again we included the yellow mutant fly line as a positive

control. This revealed a large variation in glycerol hypersensitivity

with several homozygous null mutants showing significantly

enhanced glycerol hypersensitivity for example the garnet (g1)

homozygous null mutation. Interestingly the yellow mutant fly line

was both glycerol hypersensitive and sucrose hypersensitive. These

results reinforce the important role that dGyk and dGK in addition

to brown, garnet, rosy, vermillion and yellow play in glycerol

hypersensitivity.

Discussion

The conservation of metabolic and signaling pathways between

Drosophila and mammals makes it an excellent model organism to

study human disease genes (reviewed in [32]). Additionally,

Drosophila has recently emerged as an important organism for the

study of lipid biology [33] and genes involved in regulation of

metabolism [34]. Here we have used Drosophila as a model

organism for the study of the human metabolic disorder glycerol

kinase deficiency (GKD). The presence in Drosophila genome of all

the genes encoding enzymes involved in glycerol metabolism in

humans [19] makes Drosophila a relevant model organism for the

study of glycerol metabolism. However, it should be noted that

there are some important differences between insect and

mammalian fat metabolism. While both mammalian and insect

systems use lipoproteins for lipid transport, the major lipid

transported in insects is diacylglycerol whereas in mammals it is

triacylglycerol [35,36]. Nevertheless, a genetically tractable

Drosophila model for GKD would be a powerful tool for the study

of GKD.

Glycerol kinase phosphorylates glycerol to glycerol 3-phosphate

in an ATP-dependent reaction. Therefore reduced GK activity

should cause elevated levels of glycerol. As expected, RNAi

targeting of dGyk and dGK expression resulted in knockdown flies

with reduced dGyk and dGK RNA expression, reduced GK activity,

and elevated glycerol levels. These are similar characteristics to

human GKD patients with hyperglycerolemia and indicate that

we have successfully made a Drosophila model for GKD.

Interestingly, individual knockdown of dGyk or dGK was sufficient

to reduce GK phosphorylation indicating that both are required to

maintain normal glycerol levels.

Further characterization of RNAi progeny identified a glycerol

hypersensitive phenotype whereby flies would rapidly die when

placed on a food source supplemented with glycerol. Identification

of a glycerol hypersensitive piggyBac transposable insertion dGyk

hypomorph confirmed glycerol hypersensitivity to be an authentic

phenotype due to reduced glycerol kinase activity. However,

without performing a precise excision and reversion of the

phenotype there is a small possibility that the glycerol hypersen-

sitivity could be due to some other linked recessive mutation in the

homozygous dGyke00237 fly line.

Although glycerol hypersensitivity could in part be due to an

inability to metabolize glycerol, knockdown flies also died rapidly

when placed on complete fly food supplemented with glycerol

Figure 6. Pilot modifier screen performed using glycerol hypersensitivity phenotype. We screened 77 lethal transposon insertion mutant
fly lines by crossing to (A) c564-GAL4; dGyk-IR/t(2;3)SM6;TM6B or (B) c564-GAL4; dGK-IR/t(2;3)SM6;TM6B fly lines (see methods for breeding strategy).
Groups of male or female progeny (n = 20–25) with the genotypes c564-GAL4; dGyk-IR/P element or c564-GAL4; dGK-IR/P element were collected and
placed on an optimized food source consisting of glycerol and sucrose (see methods for assay details). Survivorship was assayed for 10 days and plots
created for day of ,50% survivorship versus frequency. * one synthetic lethal cross identified. ‘‘C’’ indicates day of ,50% survivorship for control flies,
genotypes w1118; c564-GAL4; dGyk-IR or w1118; c564-GAL4; dGK-IR.
doi:10.1371/journal.pone.0031779.g006
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indicating toxicity to glycerol. Due to the hygroscopic nature of

glycerol, we suspect glycerol hypersensitivity is a desiccation

sensitive phenotype and suggests a novel role for glycerol kinase in

desiccation resistance. Additionally, the control of glycerol levels in

insects such as the goldenrod gall fly, Eurosta solidaginis [27] is

known to play an important role in desiccation tolerance.

Therefore we predict glycerol hypersensitivity is due to a

combination of altered glycerol levels in the glycerol kinase RNAi

knockdown flies in addition to the hygroscopic nature of glycerol

in the fly food. Interestingly, males were more glycerol

hypersensitive than female Drosophila. One possible explanation

for this difference is that females are larger than the males and

contain more water leading to suppression of glycerol hypersen-

sitivity.

Indirect evidence supporting glycerol hypersensitivity as a

desiccation tolerance phenotype was obtained by the finding that

yellow homozygous null mutant flies, previously shown to be

desiccation sensitive using a starvation/desiccation assay [31] were

also glycerol hypersensitive (Figure S7). It should be noted that the

function of the yellow protein, which is known to play a role in

black melanin synthesis in the body cuticle [37], has not been fully

elucidated.

As mentioned previously, human glycerol kinase expression is

highest in the liver [13]. Therefore, we used the c564-GAL4 driver

which has previously been shown to drive expression of GAL4 in

the larval fat body [29], a tissue that plays an important role in

energy metabolism similar to that of mammalian liver [30]. The

c564-GAL4 driver has previously been used to drive RNAi

Figure 7. Glycerol hypersensitivity is affected by eye pigmentation null mutations. Flies heterozygous for eye pigmentation null
mutations in trans to c564-GAL4 driver and RNAi construct were found to show enhanced glycerol hypersensitivity. Mean survival times are shown for
A) dGyk-IR progeny and B) dGK-IR progeny. RNAi progeny from Canton-S flies were used as wild type. Progeny from yellow mutant flies were included
as a control for desiccation sensitive flies. Additional glycerol hypersensitive survival assays were performed using flies heterozygous for 3 brown
mutations (bw1, bw16, and bw19) in trans to C) c564-GAL4; dGyk-IR and D) c564-GAL4; dGK-IR. These results show that glycerol hypersensitivity can be
either enhanced (bw1) or suppressed (bw19), suggesting the brown locus to be an important genetic modifier of glycerol hypersensitivity. Glycerol
hypersensitive survivorship assays used 6–10 day old female flies, n.100 (see methods for assay conditions). Survivorship curves were analyzed using
a Log-rank test on the Kaplan and Meier data. Control data is shown in Figures S6 and S7.
doi:10.1371/journal.pone.0031779.g007
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expression in adult flies to explore gene function in relation to fat

metabolism [34]. However, it should be noted that in adult flies,

the GAL4 expression pattern driven by c564-GAL4 is not fat body

specific. Using a GFP reporter construct, GFP expression was

observed to have a much wider expression pattern that included

fat body, gut, malpighian tubules, salivary glands and eye.

Therefore we speculate that glycerol hypersensitivity might not

be due to decreased expression in the fat body alone. In addition

to liver, mammalian glycerol kinase is also highly expressed in the

kidney so the malpighian tubules, which perform a similar

function to mammalian kidney, could be an important tissue for

the glycerol hypersensitivity phenotype. Further RNAi experi-

ments using additional GAL4 drivers might clarify which cell

type/tissue is important for glycerol hypersensitivity.

One advantage of using Drosophila as a model organism is the

ability to perform genetic modifier screens [38]. To this end, we

used the glycerol hypersensitive phenotype to perform a

preliminary screen of lethal transposon insertion mutants. Our

aim was to show that our GKD Drosophila model could be used to

identify genetic modifier loci. Conveniently, results of survivorship

assays can be quantitatively analyzed, allowing lethal transposon

insertion mutants to be ranked based on day of ,50% survival

and allows both suppressors and enhancers of glycerol hypersen-

sitivity to be identified. The power of this type of screen increases

with the number of lethal transposon insertion mutants screened

and a full screen would be required to identify the best targets.

Using an identical set of lethal transposon insertion mutants,

data analysis of the preliminary glycerol hypersensitive survivor-

ship screen revealed a much wider distribution of 50% survival

times for dGyk-RNAi progeny compared to dGK-RNAi progeny

(Figure 6). This difference indicates that dGyk and dGK are likely to

have some redundancy in their enzymatic activity but in addition

they are likely to have some different functional roles. This is

similar to the mammalian glycerol kinase which has the enzymatic

activity as well as the alternative protein functions. It will be

interesting to examine these different roles of the two enzymes in

future studies including tissue specific expression, temporal

expression, and subcellular localization.

As mentioned previously, a complete screen of available lethal

transposon insertion mutants would be required to identify the

best enhancers and suppressors of glycerol hypersensitivity. One

candidate gene for further investigation was identified as a

synthetic lethal cross that mapped to the gene encoding the

ATPase alpha subunit. The ATPase is a Na+-K+ exchange pump

and has been implicated in a number of cellular processes in

addition to ion transport [39–42]. This suggests ion transport is an

important cellular process that is required to maintain viability

when dGK levels are reduced.

It was also noticed that the majority of c564-GAL4; dGyk-IR; P

element progeny were more glycerol hypersensitive compared to

control flies, suggesting that the rosy null background affects

glycerol hypersensitivity. Screening of a panel of eye pigmentation

null mutants (with the null mutation in trans to c564-GAL4; dGyk-

IR) revealed that in addition to rosy mutants, the eye color mutants

brown, garnet, and vermillion strongly enhanced glycerol hypersen-

sitivity (Figure 7A). A similar but reduced glycerol hypersensitive

enhancing effect of eye pigmentation null mutants was on c564-

GAL4; dGK-IR progeny was also observed. This effect was least in

female progeny. Consequently, to minimize eye color genetic

background effect on glycerol hypersensitivity, future screening of

lethal transposon insertion mutants will focus on c564-GAL4; dGK-

IR female progeny.

Whereas the bw1 null mutation of the brown gene resulted in

strong enhancement of glycerol hypersensitivity, the bw19 mutation

resulted in suppression of glycerol hypersensitivity. Unlike the bw1

null mutation, which is an insertion of DNA into the transcription

unit, the bw19 mutation is a nonsense substitution in codon 102

resulting in a premature stop codon. One explanation for this

result could be that the stop codon induces exon skipping, resulting

in an alternative protein that has a protective effect against

glycerol hypersensitivity. Another brown mutant, the bw16 missense

mutation A78V did not significantly affect glycerol hypersensitiv-

ity, indicating this amino acid change does not alter the function of

the brown protein with respect to its role in glycerol hypersen-

sitivity. These results suggest the brown gene could be an important

genetic modifier of the glycerol kinase RNAi glycerol hypersen-

sitivity phenotype.

In Drosophila eye, pigmentation genes encode proteins with a

variety of roles, for example: metabolic enzymes such as xanthine

dehydrogenase (rosy; [43]), tryptophan 2,3-dioxygenase (vermillion;

[44]); ATP-binding cassette (ABC) co-transporters (white, brown,

scarlet; [45,46]); a subunit of the AP-3 complex involved in

endocytosis (garnet; [47]). These proteins all either modify or

transport molecules of pigment precursors to pigment granules.

Interestingly, an interaction between eye pigmentation genes and

tau-induced neurodegeneration has recently been established in

the Drosophila eye [48]. However, these genes are widely expressed

but their non-eye roles are not understood. Our glycerol

hypersensitive phenotype indicates a new role for eye pigmenta-

tion genes outside of the eye.

The ABC co-transporters white and brown act as a dimer to

transport guanine-derived drosopterin precursors whereas white

and scarlet transport tryptophan-derived xanthommatin precur-

sors [49–52]. For dGyk- and dGK-RNAi knockdown flies, the white

and scarlet mutations had a relatively small effect on glycerol

hypersensitivity compared to the brown mutation. As both the

RNAi construct and the c564-GAL4 driver possess a mini-white

cDNA sequence, this could explain why the white mutant resulted

in only a small enhancement of glycerol hypersensitivity.

Therefore it is possible that white and brown dimers play a more

important role in the transport of molecules in response to

desiccation than white and scarlet dimers.

There are a number of other eye pigmentation mutants

characterized by the fly community that could potentially also

be glycerol hypersensitive. However the exact size of this group of

glycerol hypersensitive mutants remains unknown. Whether these

proteins all function in the same desiccation response pathway and

how glycerol kinase fits into this pathway remains to be elucidated.

To determine the significance of these results in relation to

glycerol kinase deficiency in humans will require further research

in mammalian systems. We hypothesize that genetic variation in

the human homologues of Drosophila eye pigmentation genes could

play an important role in the phenotypic variation observed in

human GKD patients. Mutations in human homologues of the

white ABC transporter family cause sitosterolemia and it has been

suggested that heterozygous variants in ABC gene mutations are

implicated in several complex disorders [53].

Mutations at the GK (Xp21) locus cause GKD in humans.

However, much remains to be understood about the underlying

pathogenic mechanism and why such a wide range of phenotype

severity is observed. Additionally, a role for GK alternative

functions and modifier loci has still to be fully explored. Using our

glycerol hypersensitive Drosophila model for GKD, we have found

evidence showing an important role for eye pigmentation genes in

determining phenotype severity. Future work will expand the

glycerol hypersensitive modifier screen with the aim of identifying

novel modifiers and confirm whether they are conserved between

insects and mammalian systems. We conclude that RNAi targeting
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of dGyk and dGK in Drosophila is a valid model for the study of GKD

and has the potential to identify genetic modifier loci that could

help unravel the complexity of the pathogenic mechanism

observed in GKD patients.

Materials and Methods

Constructs and Drosophila stocks
For all RNAi and over-expression constructs, cDNA fragments

were PCR amplified from Berkeley Drosophila Genome Project cDNA

clones GH12641 and GH18680 that contain complete coding

regions for dGyk and dGK respectively. For RNAi constructs, PCR

amplified cDNAs were initially subcloned into the pHIBS vector

before further subcloning as an inverted repeat (IR) into the pUDsGFP

vector [28]. The pUDsGFP construct co-expresses GFP with the

inverted repeat, allowing easy recognition of GFP-positive larvae that

possess both the RNAi construct and the GAL4 driver. Primers pairs

for PCR amplification were as follows: dGyk-IR-for d59-AGTTG-

GATCCGAAATAATCACGATTGGAA-39 and dGyk-IR-rev d59-

AGTTGGTACCTAGTAATCCGTGCGTTGAG-39; dGK-IR-

for d59- AGTTGGATCCCTGCTCAAGACGTTCGGTA-39 and

dGK-IR-rev d59- AGTTGGTACCTCGAACTGGCAGAGATT-

GA-39. For over-expression constructs, the complete coding regions

for dGyk and dGK were PCR amplified and subcloned into the pEX-

UAS vector [54]. Primers for PCR amplifying the complete coding

regions for dGyk and dGK were as follows: dGyk-for d59-

ATTGCGGCCGCAAAAAAAATGGATTCTCCC-39 and dGyk-

rev d59- ATTTCTAGATGATCACGCTCCGTCAAAGGC-39;

dGK-for d59- ATTGCGGCCGCAAGCAGCATGACCGAG-

GGC-39 and dGK-rev d59- AGCTCTAGATATTTACTGGCCA-

CTCGCAGC -39. Microinjection of DNA constructs, identification

of transformants and balancing was performed by BestGene Inc

(Chino Hills, CA).

Stable knockdown lines containing both GAL4 driver (c564-

GAL4 on chromosome 2) and RNAi construct (on chromosome 3)

were generated by standard genetic crosses using appropriate

balancer chromosomes and maintained over a translocated

chromosome 2–3 balancer - t(2;3)SM6;TM6B, from the Bloo-

mington Drosophila stock center (BDSC). Balancer chromosomes

contain nested chromosomal inversions that disrupt crossing over

[55]. They also contain marker mutations that are often recessive

lethals themselves. Therefore, stable heterozygous stocks for

transgenic constructs or mutations can be used for crosses and

the genotype of progeny reliably inferred by presence/absence of

the balancer chromosome marker.

All GAL4 driver fly stocks were obtained from the BDSC:

P{TubP-GAL4} [56]; P{GawB}c564 [29]; P{GawB}how[24B] [23];

P{GawB}Elav[C155] [57]; P{GMR-GAL4} [58]. For P insertions

mapping to dGyk and dGK, stocks 15351, 21039, 22516 were

obtained from the BDSC and the stocks c06596, e00237, and

f05001 were obtained from the Exelixis collection at Harvard

medical school. Bloomington stock 17932 was used as a control fly

line for e00237. Genotypes of all lethal transposon insertion

mutants stocks are listed in Table S2.

Eye pigmentation mutant flies were originally obtained from

BDSC: brown (bw1, bw16, bw19), garnet (g1), rosy (ry1), scarlet (st1),

vermillion (v1), and yellow (y1). The bw16 and bw19 mutants were

originally created and characterized by Kondrashov, A. et al.,

unpublished. The Canton-S (wild type control) and w1118 flies were

a kind gift from the laboratory of Dr G. Jackson.

RNA preparation and quantitative real-time PCR
RNA was extracted from ten 3rd instar larvae using the

RNAeasyH mini kit (Invitrogen, Carlsbad, CA) according to

manufacturer’s instructions. Total RNA (1 mg) was used for first-

strand cDNA synthesis using the SuperScriptH III reverse

transcriptase and random primers (Invitrogen). Quantitative

real-time PCR (qRT-PCR) was performed using PerfeCTaTM

SYBRH Green FastMixTM ROX (Quanta Biosciences, Gaithers-

burg, MD) on a StepOneTM real time PCR machine (Applied

Biosystems, Foster City, CA). Fold differences for each of the genes

tested were calculated using the 2[Delta][Delta]CT method [59].

All reactions were performed in triplicate. Expression levels of dGyk

and dGK were normalized to RpII. Primers were designed using

Primer3 software [60] and synthesized by Integrated DNA

Technologies (San Diego, CA). Primer sequences were as follows:

dGyk d59TAGGCATAACATCGGTTCTGG39 and d59GCCTT-

CCGTCCTAGTTGGTAG-39; dGK d59AGACGACAATCGT-

CTGGGATG39 and d59CACGATCTGCTCCACTGTAG39;

RpII d59AAGGCTATGGTGGTGTCTGG39 and d59GCTTA-

CCCTCCACGTTCTGT39.

Glycerol kinase activity assay
Glycerol kinase activity was determined by using a radiolabeled

assay as previously reported [61]. Briefly, protein was extracted in

homogenization buffer (1% KCl; 1 mM EDTA+Complete

protease inhibitor (Roche, Indianapolis, IN)) from two groups of

three 3rd instar larvae and assayed in duplicate using 4 mg of total

cellular protein for 20 min, assay conditions and reaction mix

previously determined to be optimal for 3rd instar larvae protein

extracts (data not shown). Incorporation of 14C-glycerol (GE

Healthcare, Piscataway, NJ) into glycerol 3-phosphate was

measured using a scintillation counter and GK activity of test

samples calculated by comparison to a standard curve.

Glycerol and triglyceride assays
For glycerol and triglyceride measurements, batches of three 3rd

instar larvae were homogenized in 250 ml homogenization buffer

(10 mM Tris-HCl pH 7.4, 10 mM NaCl, 1 mM EDTA, 0.5%

Triton X-100) including Complete protease inhibitor (Roche).

Next, 14 ml of 20% triton X-100 was added to 186 ml of the

sample. After heating at 70uC (5 mins) to inactivate endogenous

enzymes, samples were centrifuged for at 13000 rpm (5 mins) and

the supernatant transferred to a new tube (after homogenizing the

white lipid ring with the tip of the pipette). Glycerol levels were

measured using Free Glycerol Reagent (Sigma-Aldrich). Triglyc-

eride levels were determined using the L-type Triglyceride

determination kit M (Wako, Richmond, VA). Results from this

assay are not affected by free glycerol because all free glycerol is

decomposed in an initial experimental step before the enzymatic

hydrolysis of triglyceride. Values were normalized against protein

concentration using the Micro BCATM Protein Assay Kit (Thermo

Scientific, Rockford, IL) and experiments were performed in

triplicate for each genotype.

Glycerol hypersensitivity survivorship assay
For each genotype, 5 batches of 20–25 flies (7-day old males)

were transferred to vials containing defined food sources and

incubated at 25uC. Food sources used were: starvation (1.3%

agarose only), glycerol only (1 M glycerol+1.3% agarose), sucrose

only (5% sucrose+1.3% agarose), glycerol+sucrose (1 M glycer-

ol+5% sucrose+1.3% agarose). Dead flies were counted every

24 hr for survival rate calculations. Data are the average with

SEM from at least 5 vials for each genotype. The mean and SEM

of data was plotted and survivorship curves analyzed using a Log-

rank test on the Kaplan and Meier data.
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Preliminary modifier screen
Genotypes used for screen were (c564-GAL4; dGyk-IR)/

t(2;3)SM6;TM6B and (c564-GAL4; dGK-IR)/t(2;3)SM6;TM6B.

Note: RNAi construct lines were different to those used in other

experiments but progeny from Tub-GAL4 driver flies were shown

to have decreased dGyk- or dGK-RNA expression, decreased GK

activity and elevated glycerol. For glycerol hypersensitivity assays,

food sources consisted of 5% sucrose and 1.3% agarose with the

glycerol concentration optimized for survivorship assays to be

performed over 10 days. For each screen, glycerol concentrations

were as follows: dGyk male 1.5 M, dGyk female 2.0 M, dGK male

3.0 M, dGK female 3.0 M. Crosses were set up between RNAi

knockdown males and virgin lethal transposon insertion mutants

(see Table S2). Progeny were genotyped based on presence or

absence balancer chromosome markers. Sex specific survivorship

assays were performed by placing 7–10 day old flies (n = 20–25) on

glycerol+sucrose media and dead flies counted every 24 hr. Top

targets identified were ranked by repeating survivorship assays

(n.100).

Glycerol hypersensitive screen of eye color mutants
Glycerol hypersensitivity survivorship assays were performed as

previously described using eye pigmentation mutant flies. As

several of the genes for the color mutants are located on the X

chromosome, we crossed virgin female color mutant flies to stable

knockdown fly lines (c564-GAL4; dGyk-IR)/t(2;3)SM6;TM6B and

(c564-GAL4; dGK-IR)/t(2;3)SM6;TM6B. Assays were performed

using 8–10 day old female progeny.

Statistical analysis
Survival curves were analyzed using a Log-rank test on the

Kaplan and Meier data. One way ANOVA with post-hoc pair

wise multiple comparison procedures (Tukey Test) were applied to

qRT-PCR and biochemical data where stated. Student’s t-test was

used where stated and error bars represent SEM.

Supporting Information

Figure S1 GFP expression correlates with phenotype
severity. Western blot analysis was performed for GFP in

knockdown roaming 3rd instar larvae (the pUdsGFP RNAi vector co-

expresses GFP). Beta-actin was used as the control (Methods S1).

Relative levels of GFP would provide an indirect measure of the inverse

repeat (IR) expression levels, for example greater GFP levels would

indicate greater levels IR expression and infer greater knockdown of

the target gene expression levels. For dGyk-IR; Tub-GAL4 larvae,

western blot analysis revealed higher GFP levels in knockdown 3rd

instar larvae that died before eclosion than in 3rd instar larvae that

developed into glycerol hypersensitive adult flies. A similar trend was

observed for dGK-IR; Tub-GAL4 3rd instar larvae. Therefore larval

lethality is likely due to lower levels of dGyk and dGK due to greater

expression of the dGyk-IR and dGK-IR construct.

(TIFF)

Figure S2 Control RNA expression data for Figure 1.
Relative RNA expression levels of dGyk and dGK RNA were

quantitated for parental fly lines used to generate RNAi

knockdown flies (A and B) and over-expression flies (C and D).

For each group, values were not found to be statistically different.

Statistical analysis using ANOVA was performed by comparison

to GAL4 fly line.

(TIFF)

Figure S3 Adult c564-GAL4; dGyk-IR and c564-GAL4;
dGK-IR are hypersensitive to NaCl compared to control

flies. Survival assays were performed using 7-day old male

progeny placed on complete Jazz-mix Drosophila food (Fisher,

Pittsburgh, PA) supplemented with 3.5% NaCl (black bars) or

4.0% NaCl (white bars). For each genotype, 5 vials of 20–25 flies

were counted every 24 hr until 100% lethality. Survival analysis

using the log-rank test on the Kaplan and Meier data was used to

calculate mean survival time, standard error and significance.

*P,0.05, **P,0.01.

(TIFF)

Figure S4 Glycerol hypersensitive survivorship assay
optimization. Adult flies A) c564-GAL4; dGyk-IR and B) c564-

GAL4; dGK-IR were placed on food sources containing glycerol

(0–4 M glycerol; 5% sucrose; 1.3% agarose) and flies counted

every 24 hr. Survival curves were plotted for each glycerol

concentration. Each assay used 8–10 day old female flies, n = 25.

(TIFF)

Figure S5 Glycerol hypersensitive sex differences. For

RNAi knockdown flies, males were found to be more hypersen-

sitive to glycerol than females. Glycerol hypersensitive survivorship

assays were performed using single sex groups of flies. A) c564-

GAL4; dGyk-IR adult flies on 1.5 M glycerol, 5% sucrose, 1.3%

agarose. B) c564-GAL4; dGK-IR adult flies on 3 M glycerol, 5%

sucrose, 1.3% agarose. Each assay used 8–10 day old flies, n.100.

Survivorship curves were analyzed using a Log-rank test on the

Kaplan and Meier data. * P,0.05, ***,0.001.

(TIFF)

Figure S6 Control survivorship assays. Flies heterozygous

for eye pigmentation null mutations in trans to A) c564-GAL4;

dGyk-IR and B) c564-GAL4; dGK-IR are tolerant to a sucrose only

food source over 10 days (5% sucrose, 1.3% agarose). C) Using a

2 M glycerol, 5% sucrose food source, heterozygous pigmentation

null mutations in trans to the c564-GAL4 driver show some

glycerol hypersensitivity after 10 days. D) Using a 3 M glycerol,

5% sucrose food source, heterozygous pigmentation null muta-

tions in trans to the c564-GAL4 driver show increased glycerol

hypersensitivity after 10 days compared to the 2 M glycerol 5%

sucrose food source. In both C and D, control flies are more

tolerant to glycerol than the c564-GAL4; dGyk-IR and c564-

GAL4; dGK-IR knockdown flies (Figure 7). As a positive control,

survivorship assays were performed using progeny from yellow flies,

a mutant fly line previously shown to be desiccation sensitive. For

each genotype, female flies (n.100) were aged 6–10 days on

complete fly food before placing on the defined food source.

(TIFF)

Figure S7 Survival analysis of pigmentation homozy-
gous null mutant flies on defined food sources. A) 3 M

glycerol, 5% sucrose food source, and B) 5% sucrose only food

source. As a positive control, survivorship assays were performed

using progeny from yellow flies, a mutant fly line previously shown

to be desiccation sensitive. For each genotype, female flies (n.100)

were aged 6–10 days on complete fly food before placing on the

defined food source. Flies were counted every 24 hr until all were

dead.

(TIF)

Table S1 Summary of RNAi, over-expression, and P
element insertion fly lines.
(DOC)

Table S2

(DOC)

Methods S1 Western Blotting.
(DOCX)
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