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Abstract

The increasingly complex and rapid transmission dynamics of many infectious diseases necessitates the use of new, more
advanced methods for surveillance, early detection, and decision-making. Here, we demonstrate that a new method for
optimizing surveillance networks can improve the quality of epidemiological information produced by typical provider-
based networks. Using past surveillance and Internet search data, it determines the precise locations where providers
should be enrolled. When applied to redesigning the provider-based, influenza-like-illness surveillance network (ILINet) for
the state of Texas, the method identifies networks that are expected to significantly outperform the existing network with
far fewer providers. This optimized network avoids informational redundancies and is thereby more effective than networks
designed by conventional methods and a recently published algorithm based on maximizing population coverage. We
show further that Google Flu Trends data, when incorporated into a network as a virtual provider, can enhance but not
replace traditional surveillance methods.
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Introduction

Since the Spanish Flu Pandemic of 1918{1919, the global

public health community has made great strides towards the

effective surveillance of infectious diseases. However, modern

travel patterns, heterogeneity in human population densities,

proximity to wildlife populations, and variable immunity interact

to drive increasingly complex patterns of disease transmission and

emergence. As a result, there is an increasing need for effective,

evidence-based surveillance, early detection, and decision-making

methods [1–3]. This need was clearly articulated in 2009 by a

directive from the Department of Homeland Security and the

Centers for Disease Control and Prevention to develop a

nationwide, real-time public health surveillance network [4,5].

The U.S. Outpatient Influenza-Like Illness Surveillance Net-

work (ILINet) gathers data from thousands of healthcare providers

across all fifty states. Throughout influenza season (CDC

mandating reporting during weeks 40{20, which is approximate-

ly October through mid-May), participating providers are asked to

report weekly the number of cases of influenza-like illness treated

and total number of patients seen, by age group. Cases qualify as

ILI if they manifest fever in excess of 1000F along with a cough

and/or a sore throat, without another known cause. Although the

CDC receives reports of approximately 16 million patient visits

per year, many of the reports may use a loose application of the

ILI case definition and/or may simply be inaccurate. The data are

used in conjunction with other sources of laboratory, hospitaliza-

tion and mortality data to monitor regional and national influenza

activity and associated mortality. Similar national surveillance

networks are in place in 11 EU countries and elsewhere around

the globe [6–9].

Each US state is responsible for recruiting and managing

ILINet providers. The CDC advises states to recruit one regularly

reporting sentinel provider per 250,000 residents, with a state-wide

minimum of 10 sentinel providers. Since 2003, the Texas

Department of State Health Services (DSHS) has enrolled a total

of 300 volunteer providers. Participating providers regularly drop

out of the network; Texas DSHS aims to maintain approximately

200 active participants through year-round recruitment of

providers in heavily populated areas (cities with populations of at

least 100,000). DSHS also permits other (non-targeted) providers

of family medicine, internal medicine, pediatrics, university

student health services, emergency medicine, infectious disease,

OB/GYN and urgent care to participate in the network. During

the 2009{2010 influenza season, the Texas ILINet included 205
providers with approximately 50% reporting most weeks of the

influenza season.

A number of statistical studies have demonstrated that ILI

surveillance data is adequate for characterizing past influenza

epidemics, monitoring populations for abnormal influenza activity,

and forecasting the onsets and peaks of local influenza epidemics

[10–16]. However, the surveillance networks are often limited by

non-representative samples [17], inaccurate and variable reporting

[12–14], and low reporting rates [6]. Some of these studies have

yielded specific recommendations for improving the performance

of the surveillance network, for example, inclusion of particular

categories of hospitals in China [12], preference for general

practitioners over pediatricians in Paris, France [14], and a
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general guideline to target practices with high reporting rates and

high numbers of patient visits (per capita) [6]. Polgreen et al.

(2009) recently described a computational method for selecting

ILINet providers so as to maximize coverage, that is, the number

of people living within a specified distance of a provider [17]. They

applied the approach to optimizing the placement of the 22
providers in the Iowa ILINet. While their algorithm ensures

maximum coverage, it is not clear that maximum coverage is, in

general, the most appropriate criterion for building a statistically

informative ILINet.

In 2008, Google.org launched Google Flu Trends, a website

that translates the daily number of Googles search terms associated

with signs, symptoms, and treatment for acute respiratory

infections into an estimate of the number of ILI patients per

100,000 people. It was shown that Google Flu Trends reliably

estimates national influenza activity in the US [18], the state of

Utah [18], and in some European countries [19], but it provided

imperfect data regarding the 2009 H1N1 pandemic in New

Zealand [20]. We assessed the correlation between Google Flu

Trends for Texas and Texas’ ILINet data and found a correlation

of 0:87, similar to those presented in Ginsberg et al. 2009 [18] (See

Text S1). The Google Flu Trends website includes ILI-related

search activity down to the level of cities (in beta version as of

November 2011). Thus, Google Flu Trends may serve as a

valuable resource for influenza detection and forecasting if

effectively integrated with public health data such as those coming

from state ILINets.

Here, we present an evaluation of the Texas Influenza-Like-

Illness Surveillance Network (ILINet), in terms of its ability to

forecast statewide hospitalizations due to influenza (ICD9 487 and

488) and unspecified pneumonia (ICD9 486). Although we

henceforth refer to this subset of hospitalizations as influenza-like

hospitalizations, we emphasize that these data do not perfectly reflect

influenza-related hospitalizations: some unrelated pneumonias

may be classified under ICD9 486, and some influenza cases

may not be correctly diagnosed and/or recorded as influenza.

Nonetheless, this subset of hospitalizations likely includes a large

fraction of hospitalized influenza cases and exhibits strong seasonal

dynamics that mirror ILINet trends. The inclusion of all three

ICD9 codes was suggested by health officials at Texas DSHS who

seek to use ILINet to ascertain seasonal influenza-related

hospitalization rates throughout the state (Texas DSHS contract

numbers 2009{032591 and 2011{037903). Hospitalizations

associated with these three codes in Texas accounted for between

20 and 35% of all hospitalizations due to infections and roughly

9:5 billion dollars of hospitalization payments in 2008 (See Text

S1).

Using almost a decade of state-level ILINet and hospitalization

data, we find that the existing network performs reasonably well in

its ability to predict influenza-like hospitalizations. However, smaller,

more carefully chosen sets of providers should yield higher quality

surveillance data, which can be further enhanced with the

integration of state-level Google Flu Trends data. For this analysis,

we adapted a new, computationally tractable, multilinear

regression approach to solving complex subset selection problems.

The details of this method are presented below and can be tailored

to meet a broad range of surveillance objectives.

Results

Using a submodular ILINet optimization algorithm, we

investigate two scenarios for improving the Texas ILINet:

designing a network from scratch and augmenting the existing

network. We then evaluate the utility of incorporating Google Flu

Trends as a virtual provider into an existing ILINet.

Designing a New ILINet
To construct new sentinel surveillance networks, we choose

individual providers sequentially from a pool of approximately

2000 mock providers, one for each zip code in Texas, until we

reach 200 total providers. At each step, the provider that most

improves the quality of the epidemiological information produced

by the network is added to the network. We optimize and evaluate

the networks in terms of the time-lagged statistical correlation

between aggregated ILINet provider reports (simulated by the

model) and actual statewide influenza-like hospitalizations. Specifical-

ly, for each candidate network, we perform a least squares

multilinear regression from the simulated ILINet time series to the

actual Texas hospitalization time series, and use the coefficient of

determination, R2, as the indicator of ILINet performance.

Henceforth, we will refer to these models as ILINet regression models.

We compare the networks generated by this method to

networks generated by two naive models and a published

computational method [17] (Figure 1). Random selection models

an open call for providers and entails selecting providers randomly

with probabilities proportional to their zip code’s population;

Greedy selection prioritizes providers strictly by the population

density of their zip code. Submodular optimization significantly

outperforms these naive methods, particularly for small networks,

with Random selection producing slightly more informative

networks than Greedy selection. The Geographic optimization method

of Polgreen et al. [17] selects providers to maximize the number of

people that live within a specified ‘‘coverage distance’’ of a

provider. Submodular optimization consistently produces more

informative networks than this method at a 20 mile coverage

distance (Figure 1) (5, 10, and 25 mile coverage distances perform

worse, not shown). To visualize the relative performance of several

of these networks, we compared their estimates of influenza-like

hospitalizations (by applying each ILINet regression model to

simulated ILINet report data) to the true state-wide hospitalization

data (Figure 2). The time series estimated by a network designed

using submodular optimization more closely and smoothly

matches true hospitalizations than both the actual 2008 Texas

ILINet and a network designed using geographic optimization

(each with 82 providers).

The submodular optimization algorithm is not guaranteed to

find the highest performing provider network, and an exhaustive

search for the optimal 200 provider network from the pool of 2000
providers is computationally intractable. However, the submod-

Author Summary

Public health agencies use surveillance systems to detect
and monitor chronic and infectious diseases. These
systems often rely on data sources that are chosen based
on loose guidelines or out of convenience. In this paper,
we introduce a new, data-driven method for designing
and improving surveillance systems. Our approach is a
geographic optimization of data sources designed to
achieve specific surveillance goals. We tested our method
by re-designing Texas’ provider-based influenza surveil-
lance system (ILINet). The resulting networks better
predicted influenza associated hospitalizations and con-
tained fewer providers than the existing ILINet. Further-
more, our study demonstrates that the integration of
Internet source data, like Google Flu Trends, into
surveillance systems can enhance traditional, provider-
based networks.

Influenza Surveillance Networks
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ular property of the objective function allows us to compute an

upper bound on the performance of the optimal network, without

knowing its actual composition (Figure 1). The performance gap

between the theoretical upper bound and the optimized networks

may indicate that the upper bound is loose (higher than the

performance of the true optimal network) and/or the existence of

better networks that might be found using more powerful

optimization methods.

The networks selected by submodular optimization reveal some

unexpected design principles. Most of the Texas population resides

in Houston and the ‘‘I-35 corridor’’ – a North-South transpor-

tation corridor spanning San Antonio, Austin, and Dallas

(Figure 3a). The first ten provider locations selected by

submodular optimization are spread throughout the eastern half

of the state (Figure 4a, pink circles). While most of the providers

are concentrated closer to Texas’ population belt, only two are

Figure 1. Expected performance of optimized ILINets. Four different methods were used to design Texas ILINets that effectively predict state-
wide influenza hospitalizations. Submodular optimization (Submodular) outperforms random selection proportional to population density (Random),
greedy selection strictly in order of population density (Greedy), and geographic optimization to maximize the number of people that live within
20 miles of a provider [17] (Geographic). The theoretical upper bound for performance (Upper Bound) gives the maximum R2 possible for a network
designed by an exhaustive evaluation of all possible networks of a given size. For each network of each size, the following procedure was repeated
100 times: randomly sample a set of reporting profiles, one for each provider in the network; simulate an ILI time series for each provider in the
network; perform an ordinary least squares multilinear regression from the simulated provider reports to the actual statewide influenza
hospitalization data. The lines indicate the mean of the resulting R2 values, and the error bands indicate the middle 90% of resulting R2 values,
reflecting variation stemming from inconsistent provider reporting and informational noise.
doi:10.1371/journal.pcbi.1002472.g001

Influenza Surveillance Networks
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Figure 2. Comparing ILINet estimates to actual state-wide influenza hospitalizations. Statewide hospitalizations are estimated using data
from three ILINets: the 2008 Texas ILINet (ILINet 2008), which consisted of 82 providers, and ILINets of the same size that were designed using
submodular optimization (Submodular) and maximum coverage optimization with a 20 mile coverage distance (Geographic). (a) The estimates from
each network are compared to actual Texas state-wide influenza hospital discharges from 2001–2008 (Observed). (b) The submodular ILINet yields
estimates that are consistently closer to observed values than the other two ILINets. For each of the three networks, the following procedure was
repeated 100 times: randomly sample a set of reporting profiles, one for each provider in the network; simulate an ILI time series for each provider in
the network; perform an ordinary least squares multilinear regression from the simulated provider reports to the actual Texas influenza
hospitalization data; and apply resulting regression model to the simulated provider time series data to produce estimates of statewide
hospitalizations. The figures are based on averages across the 100 estimated hospitalization time series for each ILINet.
doi:10.1371/journal.pcbi.1002472.g002

Figure 3. Statewide influenza activity mirrors population distribution. (a) Shading indicates zip code level population sizes, as reported in
the 2000 census. (b) Major populations centers exhibit covariation in influenza activity. We performed a principal component analysis (PCA) on the
centered hospitalization time series of all zip codes and calculated the time series of the first principal component. Zip codes are shaded according to
the R2 obtained from a regression of the first principal component time series to the influenza hospitalization time series for the zip code. Dark
shading indicates high synchrony between influenza activity in the zip code and the first principal component. The correspondence between darkly
shaded zip codes in (a) and (b) results from the high degree of synchrony in influenza activity between highly populated zip codes in Texas.
doi:10.1371/journal.pcbi.1002472.g003

Influenza Surveillance Networks
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actually located within Texas’ major population centers (in this

case, College Station).

The submodular networks are qualitatively different from the

networks created by the other algorithms considered, which focus

providers within the major population centers (Figure 4b). The

higher performance of the submodular ILINets suggest that over-

concentration of providers in major population centers is

unnecessary. Influenza levels in the major population centers

are strongly correlated (Figure 3b). Thus, ILINet information

from San Antonio, for example, will also be indicative of

influenza levels in Austin and Dallas. This synchrony probably

arises, in part, from extensive travel between the major Texas

population centers.

Subsampling and Augmenting an ILINet
Using submodular optimization, we augment the 2008 Texas

ILINet by first subsampling from the 82 enrolled providers and

then adding up to 40 new providers. When subsampling,

performance does not reach a maximum until all 82 providers

are included in the network (Figure 5), indicating that each

provider adds predictive value to the network. However, the

theoretical upper bound plateaus around 40 providers, suggesting

that smaller (more optimally chosen) networks of equal predictive

value may exist. During the second stage, 40 additional providers

improve the R2 objective by 33%. Most of these providers are

located in relatively remote areas of the state.

We also considered inclusion of Internet trend data sources as

virtual providers, specifically, the freely available Google Flu

Trends data for the state of Texas [21]. Google Flu Trends alone is

able to explain about 60% of the variation in state-wide

hospitalizations; it outperforms the 2008 Texas ILINet and

matches the performance of a network with 44 traditional

providers constructed from scratch using submodular optimization

(Figure 6). However, the best networks include both traditional

providers and Google Flu Trends. For example, by adding 50
providers to Google Flu Trends using submodular optimization,

we improve the R2 objective by a third and halve the optimality

gap (from a trivial upper bound of one). The additional providers

are located in non-urban areas (Figure 4a, green circles) distinct

from those selected when Google Flu Trends is not allowed as a

provider.

Out-of-Sample Validation
To further validate our methodology, we simulated the real-

world scenario in which historical data are used to design an

ILINet and build forecasting models, and then current ILINet

reports are used to make forecasts. Specifically, we used

2001{2007 data to design ILINets and estimate multilinear

regression models relating influenza-like hospitalizations to mock

provider reports, and then used 2008 data to test the models’

ability to forecast influenza-like hospitalizations. For networks with

fewer than 150 providers, the ILINets designed using submodular

optimization consistently outperform ILINets designed using the

other three strategies (Figure 7). Above 100 providers, the

predictive performance of the submodular optimization ILINet

begins to decline with additional providers. As the number of

providers approaches 222 (the number of weeks in the training

period), the estimated prediction models become overfit to the

2001{2007 period. Thus, the slightly increased performance of

the Random method over the submodular optimization after 175
providers is spurious. For the R̂R2 values presented in Figure 7, the

effect of noise and variable reporting are integrated out when

calculating the expected provider reports. An alternative approach

to out-of-sample validation is presented in Text S1; it yields the

same rank-order of model performance.

Figure 4. Location and population coverage of optimized ILINets. (a) Shading indicates zip code level population sizes, as reported in the
2000 census. Circles indicate the location (zip code) of the first ten providers selected when Google Flu Trends is included as a provider (green) and
when it is not (pink). Numbers indicate selection order, with zero being the first provider selected and nine the tenth provider selected. (b) The
cumulative population densities covered increase as each ILINet grows. Cumulative density is estimated by dividing total population of all provider
zip codes by total area of all provider zip codes. While ILINets designed using the geographic (orange) and random (green) methods primarily target
zip codes with high population densities, submodular optimization (purple) targets zip codes that provide maximal information, regardless of
population density. All three networks cover approximately the same total number of people.
doi:10.1371/journal.pcbi.1002472.g004

Influenza Surveillance Networks
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Discussion

Since the mid twentieth century, influenza surveillance has been

recognized as an increasingly complex problem of global concern

[22]. However, the majority of statistical research has focused on

the analysis of surveillance data rather than the data collection

itself, with a few notable exceptions [12,17]. High quality data is

essential for effectively monitoring seasonal dynamics, detecting

anomalies, such as emerging pandemic strains, and implementing

effective time-sensitive control measures. Using a new method for

optimizing provider-based surveillance systems, we have shown

that the Texas state ILINet would benefit from the inclusion of a

few strategically selected providers and the use of Internet data

streams.

Our method works by iteratively selecting providers that

contribute the most information about influenza-like hospitalizations.

We quantified the performance of various ILINets using the

coefficient of determination (R2) resulting from a multi-linear

regression between each provider’s time series and state-wide

influenza-like hospitalizations. Importantly, these simulated providers

have reporting rates and error distributions estimated from actual

ILINet providers in Texas (see Text S1). The result is a prioritized

list of zip codes for inclusion in an ILINet that can be used for

future ILINet recruiting. Although this analysis was specifically

Figure 5. Augmenting an existing ILINet. This compares theoretical upper bounds (dashed lines) to the performance of a submodular optimized
ILINet built by first subsampling the 82 zip codes of providers actually enrolled in Texas’ 2008 ILINet (green) and then adding 40 additional providers
from elsewhere in the state (gray). The error bands indicate the middle 90% of resulting R2 values, and reflect variation stemming from inconsistent
provider reporting rates and informational noise.
doi:10.1371/journal.pcbi.1002472.g005
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motivated by the Texas DSHS interest in predicting hospitaliza-

tions with ICD9 codes 486, 487, and 488, our method can be

readily extended to design a network for any disease or influenza

definition with the appropriate historical data. In general, the

method requires both historical provider reports and historical

time series of the prediction target. However, if one has reasonable

estimates of provider reporting rates and informational noise from

another source (e.g., estimates from a surveillance network in

another region or for another disease), then historical provider

reports are not necessary.

ILINet provider reports do not necessarily reflect true

influenza activity. Rather they are supposed to indicate the

number of patients that meet the clinical ILI case definition,

which results in a substantial number of false positives (reported

non-influenza cases) and false negatives (missed cases of influenza)

[23]. The case definition for ILI is often loosely applied, further

confounding the relationship between these measures and true

influenza. Similarly, the ICD9 codes used in our analysis do not

correspond perfectly to influenza hospitalizations: some influenza

cases will fail to be classified under those codes, and some non-

influenza cases will be. Nonetheless, public health agencies are

interested in monitoring and forecasting the large numbers of

costly hospitalizations associated with these codes. We find that

ILINet surveillance data correlates strongly with this set of

Figure 6. Google Flu Trends as a virtual ILINet provider. When state-level Google Flu Trends is treated as a possible provider, submodular
optimization choses it as the first (most informative) provider for the Texas ILINet, and results in a high performing network (pink line). Alone (black
line), the Google Flu Trends provider performs as well as a traditional submodular optimized network (blue line) containing 44 providers (intersection
of black and purple lines) and outperforms the actual 2008 Texas ILINet (green dot).
doi:10.1371/journal.pcbi.1002472.g006
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influenza-like hospitalizations, and that the networks can be designed

to be even more informative.

Although we provide only a single example here, this

optimization method can be readily applied to designing

surveillance networks for a wide range of diseases on any

geographic scale, provided historical data are available and the

goals of the surveillance network can be quantified. For example,

surveillance networks could be designed to detect emerging strains

of influenza on a global scale, monitor influenza in countries

without surveillance networks, or track other infectious diseases

such as malaria, whooping cough, or tuberculosis or non-infectious

diseases and chronic conditions such as asthma, diabetes, cancer

or obesity that exhibit heterogeneity in space, time or by

population subgroup. As we have shown with Google Flu Trends,

our method can be leveraged to evaluate the potential utility of

incorporating other Internet trend data mined from search, social

media, and online commerce platforms into traditional surveil-

lance systems.

While optimized networks meet their specified goals, they may

suffer from over optimization and be unable to provide valuable

information for other diseases or even for the focal disease during

atypical situations. For example, a surveillance network designed

for detecting the early emergence of pandemic influenza may look

very different from one optimized to monitor seasonal influenza.

Furthermore, an ILINet optimized to predict influenza-like

hospitalizations in a specific socio-economic group, geographic

region, or race/ethnicity may look very different from an ILINet

optimized to predict state-wide hospitalizations. When optimizing

networks, it is thus important to carefully consider the full range of

possible applications of the network and integrate diverse

objectives into the optimization analysis.

The optimized Texas ILINets described above exhibit much less

redundancy (geographic overlap in providers) than the actual

Texas ILINet. Whereas CDC guidelines have led Texas DSHS to

focus the majority of recruitment on high population centers, the

optimizer only sparsely covered the major urban areas because of

Figure 7. Predictive performance of ILINets. Data from the 2001–2007 period were used to design ILINets and estimate multilinear regression
prediction models. The predictive performance of the ILINets (y-axis) is based on a comparison between the models’ predictions for 2008
hospitalizations (from mock provider reports) and actual 2008 hospitalization data. For almost all network sizes, Submodular optimization
(Submodular) outperforms random selection proportional to population density (Random), greedy selection strictly in order of population density
(Greedy), and geographic optimization to maximize the number of people that live within 20 miles of a provider [17] (Geographic). The leveling-off of
performance around 100 providers is likely a result of over-fitting, given that there were only 222 historical time-points used to estimate the original
model.
doi:10.1371/journal.pcbi.1002472.g007
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their synchrony in influenza activity. This is an important

distinction between submodular optimization and the other

methods considered (Geographic, Random and Greedy). The sub-

modular method does not track population density and instead

adds providers who contribute the most marginal information to

the network. Consequently, it places far more providers in rural

areas than the other methods (Figure 4b). There can be substantial

year-to-year variation in spatial synchrony for seasonal influenza,

driven by the predominant influenza strains and commuter traffic

between population centers [24]. As long as the historical data

used during optimization reflect this stochasticity, the resulting

networks will be robust. However, synchrony by geography and

population density does not occur for all diseases including

emerging pandemic influenza [24]; thus the relatively sparse

networks designed for forecasting seasonal influenza hospitaliza-

tions may not be appropriate for other surveillance objectives, like

detecting emerging pandemic strains or other rare events. For

example, a recent study of influenza surveillance in Beijing, PRC

suggested that large hospitals provided the best surveillance

information for seasonal influenza, while smaller provincial

hospitals were more useful for monitoring H5N1 [12].

Although our method outperforms the Maximal Coverage Method

(MCM), referred to as Geographic, proposed by Polgreen et al.

(2009), there are several caveats. First, population densities and

travel patterns within Texas are highly non-uniform. The two

methods might perform similarly for regions with greater spatial

uniformity. Second, our method is data intensive, requiring

historical surveillance data that may not be available, for example,

in developing nations, whereas the population density data

required for MCM is widely available. However, the type of data

used in this study is readily available to most state public health

agencies in the United States. For example, the CDC’s Influenza

Hospitalization Network (FluSurv-NET) collects weekly reports on

laboratory confirmed influenza-related hospitalizations in fourteen

states. In addition, alternative internet-based data sources like

Google Flu Trends are becoming available. Third, as discussed

above, our networks are optimized towards specific goals and may

thus have no expected level of performance for alternate

surveillance goals. Important future research should focus on

designing networks able to perform well under a range of

surveillance goals. Fourth, neither ILINet data nor influenza-like

hospitalizations correspond perfectly to actual influenza activity.

One could instead optimize ILINets using historical time series of

laboratory-confirmed cases of influenza. Although some provider

locations and the estimated regression models may change, we

conjecture that the general geospatial distribution of providers will

not change significantly. Fourth, we followed Polgreen et al.

(2009)’s use of Euclidean distances. However, travel distance is

known to correlate more strongly with influenza transmission than

Euclidean distance [24], and thus alternative distance metrics

might improve the performance of the MCM method. Finally,

while submodular optimization generally outperforms the other

design methods in out-of-sample prediction of influenza-like

hospitalizations, it suffers from overfitting when the number of

providers in the network approaches the number of data points in

the historical time series.

The impressive performance of Google Flu Trends leads us to

question the role of traditional methods, such as provider-based

surveillance networks, in next generation disease surveillance

systems. While Texas Google Flu Trends alone providers almost as

much information about state-wide influenza hospital discharges

as the entire 2008 Texas ILINet, an optimized ILINet of the same

size contains 33% more information than Google Flu Trends

alone. Adding Google Flu Trends to this optimized network as a

virtual provider increases its performance by an additional 12:5%.

Internet driven data streams, like Google Flu Trends, may have

age and socio-economic biases that over-represent certain groups,

a possible explanation for the difference in providers selected when

Google Flu Trends is included, Figure 4a. Given the relatively low

cost of voluntary provider surveillance networks, synergistic

approaches that combine data from conventional and Internet

sources offer a promising path forward for public health

surveillance.

This optimization method was conceived through a collabora-

tion between The University of Texas at Austin and the Texas

Department of State Health Services to evaluate and improve the

Texas ILINet. The development and utility of quantitative

methods to support public health decision making hinges on the

continued partnership between researchers and public health

agencies.

Materials and Methods

Data
The Texas Department of State Health Services (DSHS)

provided (1) ILINet data containing weekly records from

2001{2010 reporting the number of patients with influenza-

like-illness and the total number of patients seen by each provider

in the network, and (2) individual discharge records for every

hospital in Texas from 2001{2007 (excluding hospitals in

counties with less than 35,000 inhabitants, in counties with less

than 100 total hospital beds, or those hospitals that do not seek

insurance payment or government reimbursement). We classified

all hospital discharges containing ICD9 codes of 486, 487, or 488
as influenza-related. Google Flu Trends data was downloaded

from the Google Flu Trends site [21] and contains estimates of ILI

cases per 100,000 physician visits determined using Google

searches [25]. Data on population size and density was obtained

from the 2000 census [26].

Provider Reporting Model
The first step in the ILINet optimization is to build a data-

driven model reflecting actual provider reporting rates and

informational noise, that is, inconsistencies between provider

reports and true local influenza prevalence.

We model reporting as a Markov process, where each provider

is in a ‘‘reporting’’ or ‘‘non-reporting’’ state. A provider in the

reporting state enters weekly reports, while a provider in the non-

reporting state does not enter reports. At the end of each week,

providers independently transition between the reporting and non-

reporting states. Such a Markov process model allows for streaks of

reporting and streaks of non-reporting for each provider, which is

typical for ILINet providers. We estimate transition probabilities

between states from actual ILINet provider report data. For each

provider, the transition probability from reporting to non-

reporting is estimated by dividing the number of times the

transition occurred by the number of times any transition out of

reporting is observed. The probabilities of remaining in the

current reporting state and transitioning from non-reporting to

reporting are estimated similarly.

We model noise in reports using a standard regression noise

model of the form

Provider{report(i)~c0zc1Percent{ILI(i)zN(0,s2), ð1Þ

where Provider{report(i) denotes the number of ILI cases

reported by the provider in week i; Percent{ILI(i) denotes the

estimated prevalence of ILI in the provider’s zip code in week i; c0
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and c1 are regression constants fixed for the provider; and N(0,s2)

is a normally distributed noise term with variance s2 also fixed for

the provider. For existing providers, we use empirical time series

(their past ILINet reporting data matched with local ILI prevalence,

described below) to estimate the constants c0,c1, and s2 using least

squares linear regression. This noise model has the intuitive

interpretation that each provider’s reports are a noisy reading of

the percent of the population with ILI in the provider’s zip code.

We use the Texas hospital discharge data to estimate the local

ILI prevalences (Percent{ILI(i)) for each zip code. Given an

estimate of the influenza hospitalization rate [27] and assuming

that each individual with ILI is hospitalized independently, we can

obtain a distribution for the number of influenza-related

hospitalizations in a zip code, given the number of ILI cases in

the zip code. Using Bayes rule, a uniform prior, and the real

number of influenza-related hospitalizations (from the hospital

discharge data), we derive distributions for the number of ILI cases

for each zip code and each week. We then set Percent{ILI(i) for

each zip code equal to the mean of the distribution of ILI cases in

that zip code for week i, divided by the population of the zip code.

Generating Pools of Mock Providers
The second step in the ILINet optimization is to generate a pool

of mock providers. For each actual provider in the Texas ILINet,

we estimate a reporting profile specified by [1)] transition

probabilities between reporting and non-reporting (Markov) states,

and the constants c0,c1 and s2, modeling noise in the weekly ILI

reports. To generate a mock provider in a specified zip code, we

select a uniformly random reporting profile out of all reporting

profiles estimated from existing providers. The generated mock

providers are thereby given reporting characteristics typical of

existing providers. We can then generate an ILI report time series

for a mock provider, by 1) generating reports only during

reporting weeks, and calculating reports using equation (1) with

the constants given in the provider’s reporting profile and

estimates of Percent{ILI(i) for the mock provider’s zip code.

We select providers from pools consisting of a single mock

provider from each zip code. Zip codes offer a convenient spatial

resolution, because they have geographic specificity and are

recorded in both the Texas ILINet and hospital discharge data.

The optimization algorithm is not aware of a mock provider’s

reporting profile when the provider is selected (discussed below).

Provider Selection Optimization
The final step in our ILINet design method is selecting an

optimized subset of providers from the mock provider pool. We

seek the subset that most effectively predicts a target time series

(henceforth, goal), as measured by the coefficient of determination

(R2) from a least squares multilinear regression to the goal from the

report time series for all providers in the subset. Specifically, the

objective function is given by

R2(G,S)~
Var(G){Var(G{

P
i[S aiPi)

Var(G)
,

where G is the goal random variable; S is a subset of the mock

provider pool; Pi are provider reports for provider i; and the ai are

the best multilinear regression coefficients (values that minimize

the second term in the numerator).

There are several advantages to this objective function. First, it

allows us to optimize an ILINet for predicting a particular random

variable. Here, we set the goal to be state-wide influenza-related

hospitalizations for Texas. This method can be applied similarly to

design surveillance networks that predict, for example, morbidity

and/or mortality within specific age groups or high risk groups.

Second, the objective function is submodular in the set of

providers, S [28], implying generally that adding a new provider to

a small network will improve performance more than adding the

provider to a larger network. The submodular property enables

computationally efficient searches for near optimal networks and

guarantees a good level of performance from the resulting network

[29]. Without a submodular objective function, optimization of a k
provider ILINet may require an exhaustive search of all subsets

of k providers from the provider pool, which quickly becomes

intractable. For example, an exhaustive search for the optimal 200
provider Texas ILINet from our pool of approximately 2000 mock

providers would require roughly 10660 regressions.

Taking advantage of the submodular property, we rapidly build

high performing networks (with k providers) according to the

following algorithm:

1. Let P be the entire provider pool, S be the providers selected

thus far, and f (S) be a submodular function in S. We begin

without any providers in S.

2. Repeat until there are k providers in S:

(a) Let x be the provider in P{S that maximizes f (Szx){
f (S)

(b) Add x to S.

This is guaranteed to produce a network that performs within a

fraction of 1{
1

e
of the optimal network [28]. The submodularity

property also allows us to compute a posterior bound on the distance

from optimality, which is often much better than 1{
1

e
. Finally, even

if implemented naively, the algorithm only requires approximately

105:6 regressions to select 200 providers from a pool of 2000.

When optimizing, it is important to consider potential noise

(underreporting and discrepancies between provider reports and

actual ILI activity in the zip code). However, we assume that one

cannot predict the performance of a particular provider before the

provider is recruited into the network. To address this issue, the

optimization’s objective function is an expectation over the

possible provider reporting profiles. Specifically, we define ~jj as a

random variable describing the provider reporting profile for the

entire pool of mock providers. If ĵj is a specific reporting profile,

then the R2 objective function can be written as

R2(G,S,ĵj)~
Var(G){Var(G{

P
i[S aiPi(ĵj))

Var(G)
:

To design the ILINet, we solve the following optimization problem

max
S(P

E~jj½R
2(G,S,~jj)�:

The objective function is a convex combination of submodular

functions, and thus is also submodular. This allows us to use the

above algorithm along with its theoretical guarantees to design

ILINets using a realistic model of reporting practices and

informational stochasticity, without assuming that the designer

knows the quality of specific providers a priori.

Maximal Coverage Model
We implemented the Maximal coverage model (MCM) following

Polgreen et al. (2009). Briefly, a greedy algorithm was used to
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minimize the number of people in Texas who live outside a pre-

defined coverage distance, C, of at least one provider in the

selected set, S. A general version of this algorithm was developed

by Church and Re Velle (1974) to solve this class of MCM’s [30].

As per Polgreen et al. (2009), we assumed that the population

density of each zip code exists entirely at the geographic center of

the zip code and used Euclidean distance to measure the distance

between zip codes. Using a matrix of inter-zip code distances we

select providers iteratively, choosing zip codes that cover the

greatest amount of population density within the pre-defined

coverage distance, C. We considered C~5, 10, 20, and 25 miles,

and found that C~20 miles yielded the most informative

networks.

Naive Methods
We used two naive methods to model common design practices

for state-level provider-based surveillance networks.

1. Greedy selection by population density - All zip codes were ordered by

population density and added to the provider pool P. Providers

are then moved from P to the selected set S from highest to

lowest density. The algorithm stops when S reaches a pre-

determined size or P is empty.

2. Uniform random by population size - Zip codes are randomly

selected from P and moved to S with a probability

proportional to their population size. The algorithm proceeds

until either S reaches a pre-determined size or P is empty.

Principal Component Analysis of Hospitalization Time
Series across Texas Zip Codes

To analyze similarities in ILI hospitalizations across different zip

codes, we apply principal component analysis (PCA) [31].

Specifically, we perform PCA on the centered (mean zero),

standardized (unit variance) hospitalization time series of all zip

codes in Texas. We first compute a time series for the first

principal component, and then compute an R2 for each zip code,

based on a linear regression from the first principal component to

the zip code’s centered, standardized hospitalizations. Zip codes

with high R2 values have hospitalization patterns that exhibit high

temporal synchronicity with the first principal component.

Out-of-Sample Validation
To validate our method, we first use submodular optimization

to create a provider network of 200 providers, using only data

from 2001 to 2007, and then evaluate the performance of the

network in predicting 2008 influenza-like hospitalizations. Specif-

ically, after creating the 200-provider network (Strain), we use

actual hospitalization data and mock provider reports for the

2001–2007 period to fit a multilinear regression model of the form

Gtrain(t)~
P

i[Strain
atrain

i Ptrain
i (t{2) where Gtrain(t) is time series

of state-wide influenza-like hospitalizations at week t for weeks in

2001 to 2007, Ptrain
i (t{2) is the mock report time series of

provider i during week t{2 for weeks in 2001 to 2007, and atrain
i is

the best multilinear regression coefficient associated with provider

i.

We then use the estimated multilinear regression function to

forecast state-wide influenza-like hospitalization during 2008 from

mock provider reports of 2008, and compare these forecasts to

actual 2008 hospitalization data. This simulates a real-world

prediction, where only historical data is available to create the

provider network (Strain) and estimate the prediction function

(atrain
i ’s), and then the most recent provider reports (P2008

i ’s) are

used to make predictions. We evaluate the 2008 predictions using

a variance reduction measure similar to R2, except that the

multilinear prediction model uses coefficients estimated from prior

data, as given by

R̂R2(G2008,Strain)~

Var(G2008){Var(G2008{
P

i[Strain
atrain

i
:Ej½P2008

i (j)�)
Var(G2008)

,

where G2008 is the hospitalization time series in 2008, j is the

provider noise profile, and P2008
i (j) are the mock provider reports

in 2008. Importantly, we first calculate an expected value for the

provider reports, P2008
i (j), given the noise profiles j, before

calculating R̂R2. We also considered an alternative validation

method in which we first calculate an R2 for each provider report

and noise-profile combination, and then analyze the resulting

distribution of R2 values (see Text S1 for results).

Supporting Information

Figure S1 Proportion of hospitalizations associated
with ICD9s 486, 487 and 488 - We present the proportion

of respiratory illness related hospitalizations that were also

associated with ICD9s 486, 487 and 488. The total number of

respiratory illness related hospitalizations were estimated from the

Texas hospitalization database, the same database used to

determine the number of ICD9 486, 487 and 488 associated

cases. There is a strong seasonality in the proportion, with peaks in

the winter between 0.30 and 0.37 and valleys in the summer

around 0.24.

(TIF)

Figure S2 Weekly costs associated with ICD9s 486, 487
and 488 - The total weekly billing charges associated with

influenza-like hospitalizations are plotted from the end of 2001

through the beginning of 2009. On average 500 million dollars of

hospital charges were billed per month to patients associated with

ICD9s 486, 487 and 488. However, it is important to note the over

two-fold increase in this amount since 2002. For the 2007–2008

influenza season this increase corresponded to a total billed

amount of 9.3 billion dollars. This represents nearly 1 percent of

the yearly GDP in Texas, which is not much less than the year-to-

year economic growth.

(TIF)

Figure S3 Texas ILINet provider reporting rates - (a)

Histograms are presented for the four transition probabilities used

in our Markov model of provider reporting. The change in skew

between panels i and iv as compared to panels ii and iii is expected

given the observation of ‘‘streaky’’ reporting of ILINet providers in

Texas. The providers with a score of one in panel ii are those ideal

providers who are likely to resume reporting after missing a week.

(b) A scatter plot of the values in S3a- i and S3a- ii, Report given

Reported and Report given Failed to Report, are presented to

indicate that there are both reliable and unreliable providers

enrolled in the Texas ILINet, with darker blue indicating a more

reliable provider and light-blue to white a less reliable provider.

(TIF)

Figure S4 Out-of-Sample Model Validation - We used

data from 2001–2007 to design ILINets and to fit multi-linear

prediction functions, and then generated provider-report based

forecasts of hospitalizations during 2008 (without using any data

from 2008) and compared these predictions to actual 2008

hospitalization data (see text for details). The ~RR2 values reflect the
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predictive performance of the different ILINets. For each ILINet,

we predicted 100 time series from simulated provider reports, each

time drawing random deviates from the provider noise and

reporting distributions, and then compared them to actual 2008

hospitalizations by calculating ~RR2. Lines indicate the average ~RR2

and shaded regions indicate the middle 90% of the ~RR2 distribution.

Negative values indicate that the predicted hospitalization time

series are more variable than the actual time series. The

increasingly poor performance and uncertainty with additional

providers is a result of over-fitting of the prediction model to data

from the 2001–2007 training period. The submodular method is

the only one to yield ILINets with a ~RR2 greater than zero.

(TIF)

Figure S5 The importance of realistic reporting rates
and noise - We compared the first ten providers selected by the

submodular optimization method when providers either contained

(a) perfect information and perfect reporting rates or (b) were

subject to the patterns of imperfect and variable reporting

exhibited by actual ILINet providers. When simulated providers

had reporting probabilities and noise similar to actual providers

the resulting network contained more geographic redundancy

than one built from simulated providers with perfect information

and reporting rates. All results presented in the manuscript were

determined using simulated providers with patterns of imperfect

and variable reporting derived from actual ILINet data. The stark

difference highlights the importance of incorporating the charac-

teristics of actual ILINet provider reporting.

(TIF)

Text S1 In text S1, we present the results of five
supplementary analyses. 1) The importance of influenza-like

hospitalizations in terms of total respiratory disease related

hospitalizations and health care charges in Texas, 2) The details

of actual ILINet provider reporting in Texas, the data described

here were used to derive our provider reporting model, 3) The

time-lagged, linear relationship between influenza-like hospitaliza-

tions, ILINet, and Google Flu Trends in Texas, 4) Additional

model validation results, which support and confirm those

presented in the main text, and 5) The importance of

incorporating realistic provider reporting rates and noise illustrat-

ed by the dramatic difference in the results when perfect

information and reporting is assumed.

(PDF)
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