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Abstract

Background: Molecularly-guided trials (i.e. PMed) now seek to aid clinical decision-making by matching cancer targets with
therapeutic options. Progress has been hampered by the lack of cancer models that account for individual-to-individual
heterogeneity within and across cancer types. Naturally occurring cancers in pet animals are heterogeneous and thus
provide an opportunity to answer questions about these PMed strategies and optimize translation to human patients. In
order to realize this opportunity, it is now necessary to demonstrate the feasibility of conducting molecularly-guided
analysis of tumors from dogs with naturally occurring cancer in a clinically relevant setting.

Methodology: A proof-of-concept study was conducted by the Comparative Oncology Trials Consortium (COTC) to
determine if tumor collection, prospective molecular profiling, and PMed report generation within 1 week was feasible in
dogs. Thirty-one dogs with cancers of varying histologies were enrolled. Twenty-four of 31 samples (77%) successfully met
all predefined QA/QC criteria and were analyzed via Affymetrix gene expression profiling. A subsequent bioinformatics
workflow transformed genomic data into a personalized drug report. Average turnaround from biopsy to report generation
was 116 hours (4.8 days). Unsupervised clustering of canine tumor expression data clustered by cancer type, but supervised
clustering of tumors based on the personalized drug report clustered by drug class rather than cancer type.

Conclusions: Collection and turnaround of high quality canine tumor samples, centralized pathology, analyte generation,
array hybridization, and bioinformatic analyses matching gene expression to therapeutic options is achievable in a practical
clinical window (,1 week). Clustering data show robust signatures by cancer type but also showed patient-to-patient
heterogeneity in drug predictions. This lends further support to the inclusion of a heterogeneous population of dogs with
cancer into the preclinical modeling of personalized medicine. Future comparative oncology studies optimizing the delivery
of PMed strategies may aid cancer drug development.
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Introduction

Novel approaches are needed to improve outcomes for cancer

patients. In the last decade, advances in biological platforms and

investigative tools have permitted the molecular characterization

of cancer in a clinically relevant setting. Indeed, the field of

personalized medicine (PMed) represents the integration of

genomic, proteomic and epigenetic data in the characterization

of a patient’s cancer [1,2,3,4]. Goals of personalized medicine are

to reveal unique disease drivers or susceptibilities, potential

toxicities, and resistance profiles and develop patient-specific

therapeutic interventions. Despite the promise in this approach,

many gaps remain in the determination of best practices, the

feasibility of real-time molecular profiling of patient samples in

support of therapeutic decision-making, and the actual clinical

benefit of these time-consuming and costly techniques.
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Molecular features of cancers have been the basis for selecting

specific treatments of patients for over a decade. Initial approaches

were candidate-based, such as the use of imatinib (Gleevec) for

acute myeloid leukemias harboring BCR-ABL gene translocations,

HER2Neu positive breast cancer treatment with trastuzumab

(Herceptin), and, prior to this, tamoxifen in ER/PR positive breast

cancer patients [5,6]. Such approaches represent some of the

earliest forms of molecularly guided therapy. In its current form,

PMed has evolved to represent a large-scale non-candidate based

assessment of a given cancer across the whole genome with greater

pharmacopeia coverage, rather than queries of specific candidate

analytes for a single disease-drug context [7,8]. It encompasses a

series of high throughput analyses such as gene expression, whole-

genome sequencing, whole exome-sequencing and epigenetic

assessments aimed to detail somatic and inherited mutations in

individual patients and their tumors. However, genome-wide

surveillance is complex and does not necessarily lead to a single or

defined intervention. Sophisticated mathematical algorithms are

needed to integrate these large pools of molecular data and then

match or identify appropriate or reasonable therapeutic approach-

es. Examples of non-candidate PMed clinical studies have been

reported. The Bisgrove trial, conducted by Von Hoff et al., treated

66 patients with refractory and metastatic cancers with regimens

chosen through immunohistochemical and gene expression

profiling of each patient’s tumor in conjunction with heuristic

biomarker rules based upon literature evidence [9]. Progression

free survival (PFS) improved compared to the immediate previous

regimen in 27% of patients [9]. Tsimberidou et al. described the

benefits of molecularly tailored therapy over non-molecularly

matched therapy with higher overall response rates (27% v. 5%),

longer time to treatment failure (median 5.2 v. 2.2 months), and

improved overall survival (median 13.4 v. 9 months) in Phase I

studies [10]. Other studies have similarly demonstrated the

feasibility and potential utility of PMed approaches in a variety

of clinical settings[11][12]. The early successes in proof-of-concept

trials with human patients emphasize the need to optimize various

aspects of PMed for broader clinical application. Examples of

areas in need of optimization include the improvement of sample

collection and processing techniques, the definition of molecular

features of patient samples, and the application of mathematical

algorithms to integrate these large pools of molecular data to

model relevant therapeutic approaches. The quantity and diversity

of available data coupled with differences in processing algorithms

can make it difficult to determine how to prioritize the links

between molecular targets and therapeutic agents [13]. Indeed,

comparisons between algorithms that seek to match targets with

therapeutics are needed. Conventional preclinical models of

cancer are not characterized by the individual-to-individual

heterogeneity seen in human cancers. As such there is limited

opportunity to use these preclinical models to effectively optimize

and translate components of PMed. Furthermore, it is unlikely that

such optimization of PMed can be accomplished in human trials

alone.

Comparative oncology is most often used to describe the study

of cancer biology and therapy in pet animals that naturally

develop cancer [14,15,16]. The heterogeneity and complexity of

cancer in the pet dog population and within cohorts of dogs with

the same histological diagnoses is well suited for modeling PMed.

The public availability of a progressively annotated canine genome

and the advent of high throughput genomic techniques for the dog

has enabled comparative oncology to describe canine cancer

biology and define potential therapeutic targets in many of the

same ways as human cancers [17]. In addition, strong cancer

breed predilections support ‘breed-based’ germ-line discoveries

that may streamline the definition of specific cancer targets as

‘‘drivers’’ of a cancer event. Since comparative oncology modeling

does not require up-front treatment with specific cancer treatment

regimens, novel therapeutic agents can be offered through clinical

trials at any stage in cancer presentation. Compressed disease

progression times in pet dogs with cancer allow for the evaluation

of a variety of PMed interventions against longitudinal endpoints

of cancer progression in ways not possible in the human clinic.

Finally comparative oncology randomized control trials can be

conducted in the newly-diagnosed, adjuvant (i.e. minimal residual

disease) and metastatic settings, evaluating the utility of PMed

drug selection and algorithm prediction across a range of clinical

scenarios.

To begin to realize these opportunities to model PMed

strategies, a proof of concept study was conducted through the

Comparative Oncology Trials Consortium (COTC) to determine

if the collection and analysis of tumor samples from dogs with

cancer, within a PMed framework, could be completed in a time

period (,1 week) considered feasible for implementation in a

future therapeutic trial. Tumor biopsies across multiple histologies

and in cohorts of canine bladder transitional cell carcinoma

(TCC), lymphoma, and melanoma were collected and quality

assurance/control measures applied to each step in the process of

generating molecular data to support a PMed derived therapeutic

report. The results revealed that high-quality, prospective tumor

collections, and large-scale target/drug identification studies in

canine cancers are feasible. As observed in human PMed trials,

tumor gene expression signatures in dogs cluster by cancer type,

whereas the personalized drug reports were uniquely patient

defined. Data from this study serves as rationale to now include

dogs with spontaneous cancers in the advancement and optimi-

zation of PMed for human patients.

Results

Study Enrollment
The study design (Table 1: Study Schedule) provided for

prospective tumor collection and real-time molecular profiling in

dogs with cancer. A total of 31 dogs were enrolled and assigned to

one of four cohorts. The first cohort was open to all cancer types

(n = 15 enrolled, 10 samples passed QA/QC), while the remaining

three cohorts were breed and/or cancer type specific. The cancer

type specific cohorts included Scottish terriers with bladder

transitional cell carcinoma (n = 5 enrolled, 4 passed QA/QC),

golden retrievers with lymphoma (n = 5 enrolled, 5 passed

QA/QC), and American cocker spaniels with melanoma. The

melanoma cohort was opened to all breeds after three months to

enhance accrual (n = 6 enrolled, 5 passed QA/QC). Age (range:

5.1–13.4 years, median 9.7 years), sex (18 spayed females, 1 intact

female, 9 castrated males, 3 intact males) and breed (5 mixed-

breed and 26 purebred) were recorded variables for all dogs

enrolled (Table 2: Study Cohorts). The trial opened on May

11, 2011 and closed on October 19, 2011 upon achieving its

accrual goals. There were no significant adverse events reported

(according to VCOG-CTCAE convention) [18].

Quality Assessment/Quality Control measures were
successful in defining high quality tumor samples for
expression analysis

Histopathology quality assurance and control (QA/QC) assess-

ment of all biopsies were performed by one pathologist (EJE).

Twenty-four of 31 cases enrolled (77%) passed QA/QC with an

average tumor surface area of 75–100%, tumor nuclei of 75–

100%, and necrosis , or equal to 10%. (Table 2: Study

Comparative Optimization of Precision Medicine
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Cohorts) Reasons for histopathology QA/QC failures included

samples with too little viable tumor, high degree of necrosis, small

sample size, or non-cancer diagnosis (Table 3: Reasons
samples failed QA/QC).

RNA isolation and QA/QC assessment was performed for all

enrolled cases (n = 31) at a Clinical Laboratory Improvement

Amendments (CLIA) accredited facility (Clinical Reference

Laboratory, Lenexa, KS) to ensure quality laboratory testing.

QA/QC standards defined here have been previously used for the

conduct of human tissue processing and clinical trials (http://

wwwn.cdc.gov/clia) [19]. Quality measures for RNA isolation

were quantity (total yield .20 ng) and integrity (A260/A280$1.8,

RIN$8.0) measured by Nanodrop and Agilent Bioanalyzer

respectively. Thirty of the 31 cases (96.78%) passed RNA QA/

QC. One sample (0507) failed QA/QC due to poor RNA quality

(low RIN score = 2.60), likely due to its abundant connective tissue

component (Figure 1 and Table 3: Reasons samples failed
QA/QC). Finally, cDNA was then amplified for all remaining

samples. Quality control for amplified cDNA included isolation

quantity (total yield $5 ug) and integrity (260/280$1.8); all 30

samples passed cDNA assessment.

Each case underwent the above described histopathologic and

RNA/cDNA evaluations. Samples (n = 24/31) that passed all

stages of QA/QC were analyzed for gene expression on an

Affymetrix platform (Canine Genome v 2.0). Common reasons for

QA/QC failures were small specimens or specimens with an

inadequate amount of viable tumor present (Table 3: Reasons
samples failed QA/QC). These results are consistent with those

of tissues collected for human PMed trials.

Bioinformatics analyses utilized genomics data to
generate individual patient personalized medicine
reports within a clinically relevant time frame

Gene expression data from each tumor was compared to that of

a reference gene set to define a relative gene expression profile.

The reference set consisting of forty normal canine tissues was

used to estimate variance in gene expression across normal

physiology [20]. Each gene probeset was represented by a z-score

depicting its tumoral expression in terms of the number of

standard-deviations from the mean expression of that probe set in

the reference data. Genes with a positive z-score in the tumor were

thereby over-expressed whereas those with a negative z-score were

under-expressed. Expression data was then analyzed by six

predictive methodologies (Drug Target Expression, Drug Re-

sponse Signatures, Drug Sensitivity Signatures, Network Target

Activity, Biomarker-Based-Rules-Sensitive, Biomarker-Based-

Rules-Insensitive) to identify potential therapeutic agents for

consideration (Figure 2) according to a previously-elucidated

workflow [19]. Drug sensitivity was ranked by z-score and p values

were transformed (2log(p)) and reported individually for each

specific algorithm then summated (sum of (2log(p) across

algorithms) to provide an overall prediction of drug selection. A

summary table and drug method comparison defined the top

selected agents (Table S1). The summary gives more weight to

drugs suggested by more than one algorithm. PMed reports were

not intended to be used therapeutically in this pilot study, although

their timely generation demonstrated the bioinformatics feasibility

to use the dog as a model for future PMed clinical trials.

The minimum feasible clinical time line (time from sample

ascertainment and shipment from COTC site to completed PMed

report returned to attending clinician) was defined prior to study

initiation as 168 business hours (, or equal to 7 days) (Figure 3).

Turnaround time for all cases was faster than projected. It was less

than 5 business days (n = 24, 116.5 business hours (4.85 days) and

168.46 total total hours (7.01 days)). (Table 4: Clinical Turn
Around Time). Clinical turnaround time for case 0508 (TCC)

was an outlier (completed in 212 business hours). The expression

data was generated in 91 business hours (3.79 days), but there was

a delay in sending the PMed report to investigators. Its inclusion in

the analysis did not impact the study conclusions. Overall the

turnaround for sample analyses fit a relevant clinical window for

future comparative oncology trials to model human PMed

advancements.

Canine tumor samples clustered by cancer type but drug
reports were patient specific

To characterize the utility of the resultant canine tumor

expression data for future therapeutic consideration, clustering

analysis was performed. Multidimensional scaling (MDS) coordi-

nates were generated using individual tumor gene (mRNA)

expression and drug prediction scores. Consistent with others

efforts using MDS and principal component analysis (PCA) of

human tumors, gene expression in the dog tumors clustered by

cancer type (Figure 4). As expected, broad histologic categories

shared genomic signatures, with carcinomas (bladder TCC, nasal

carcinoma, hepatocellular carcinoma (HCC)), mesenchymal (soft

tissue sarcomas, hemangiosarcoma, histiocytic sarcoma, melano-

ma), and round cell (lymphoma) tumor samples clustering in

Table 1. Study Schedule.

ACTION ELIGIBILITY DAY 1

Tumor measurements (caliper or US
measurement (cm))

X

Physical Exam X X

Digital photo of tumor X

Serum, plasma collection X

Tumor Biopsy (frozen and formalin) X

Buccal/saliva sample collection X

doi:10.1371/journal.pone.0090028.t001

Table 2. Study Cohorts.

COHORT CASES ENROLLED CASES PASSING QA/QC

Scottish Terriers with Transitional Cell Carcinoma 5 4

Golden Retrievers with Lymphoma 5 5

Various breeds with Melanoma 6 5

Open histology (any breed/histology) 15 10

doi:10.1371/journal.pone.0090028.t002
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subgroups. The single HCC sample was an outlier due to liver

specific genes being highly expressed with high variance relative to

other samples. Breed was analyzed as an independent variable in

tumor gene expression but did not influence clustering (Figure
S1). Both pure bred and mixed breed dog samples were grouped

by histologic description.

The second phase of MDS analysis used total nested PMed drug

score, a summation of individual method scores, to cluster

individual samples by drug susceptibility (Figure 5). The drug

pool available for this analysis included 184 FDA approved agents.

There was a weak association of drug calls with tumor type, but

also clear heterogeneity in drug prediction even within a defined

cancer type. Preliminary drug predictions based on individual

tumor characteristics support the use of PMed drug prescription in

future comparative oncology studies.

Discussion

In this study, our objective was to determine the feasibility of

real time transcriptome analysis of canine tumors as part of a

PMed strategy to allow selection of potentially active drugs for

personalized patient therapy. The timeline from tumor biopsy to

PMed report generation was ,5 business days, confirming the

practicality of prospective tumor collection, molecular profiling,

and generation of an actionable PMed report in dogs with cancer.

Tumor samples collected were of high quality measured by both

histopathologic and molecular standards of nucleic acid integrity

and yield.

MDS analysis revealed that canine tumor gene expression was

strongly tied to cancer type. Although the number of histologic

subgroups analyzed was small, the data was consistent. Addition-

ally, clustergram analysis of personalized drug reports across

samples demonstrated heterogeneity in predictions even within a

single cancer type. This lends support to the inclusion of dogs with

naturally occurring cancers in PMed preclinical studies, where

patient-to-patient variability within a given cancer type (histology)

exists. Indeed, review of the drug predictions derived from canine

expression studies includes several therapeutic agents that are

reasonably predicted to have efficacy in a given cancer (i.e.

mitoxantrone in lymphoma) as well as agents not commonly used

in that cancer but used in other cancer types (i.e. the knase

inhibitor sunitinib in bladder cancer), and also drugs that are not

commonly used in cancer patients (i.e. theophylline). This selection

of PMed derived agents, supports the over-riding premise of this

approach, since conventionally used drugs are included as options

(proof of concept), but is extended by agents that may not be

considered without this approach.

Breed and type-specific collections for Golden Retrievers with

lymphoma, Scottish terriers with TCC, and an open histology/

open breed cohort also allowed for comparisons across tumor type

and breed. Cancer type-defined clusters trumped breed associa-

tions. However it is possible that, if sequenced, tumor mutational

status might be more specifically descriptive of breed. Also of note,

accrual was slower for some breed and cancer type-specific cohorts

(notably American Cocker Spaniels with melanoma), and,

therefore subsequent breed based efforts require additional

large-scale incentivized accrual to be sustainable.

Companion animals with cancer have been increasingly used to

provide insight into tumor biology and in clinical studies of drug

development [15,21,22]. As noted above, this is particularly

germane to PMed where traditional rodent xenograft models do

not collectively represent the heterogeneity known to exist in a

population of human patients with a given histological diagnosis of

cancer [14,23]. Comparative models may address challenges in

the PMed field by providing both types of heterogeneity and as

such the opportunity to ask if PMed guided interventions are

associated with improved outcomes compared to conventional

approaches. Furthermore, since PMed algorithms often define

‘‘first,’’ ‘‘second,’’ ‘‘third’’ tier agents, comparative oncology trials

could test the clinical value of the first versus the second and third

agents. Such agents may be offered as front line therapy for dogs

with cancer alone or in combination with other cancer therapy.

Comparative oncology trials could also allow the comparison of

PMed algorithms (which are likely to be context-sensitive) through

head-to-head trials to define the most successful approaches or

scenarios for algorithm prescription[28]. With crossover rules for

progressive disease, novel trial designs may also allow the

evaluation of presumed ‘‘negative’’ (i.e. not predicted to be

effective) agents compared to presumed ‘‘positive) agents (i.e.

Table 3. Reasons samples failed QA/QC.

DISEASE TERM

% TUMOR
NUCLEI
(.75% PASS)

% TUMOR
NECROSIS
(,20% PASS)

TOTAL YIELD $20
NG (IN 14 UL)
(PASS)

NANODROP
260/280 $1.8
(PASS)

BIOANALYZER
RIN $8.0 (PASS)

REASON FOR
SAMPLE FAILURE

Bladder transitional cell
carcinoma-trigonal (0204)

25–50% Fail ,20% 3.91 ng/ul 3.76 N/A Sample too small for
analysis

Lymphoma (0503) 75–100% .20% Fail 3092.04 ng/ul 2.03 9.40 High degree of sample
necrosis

Osteosarcoma (appendicular)
(0506)

0–24% Fail ,10% 69.99 ng/ul 2.08 9.60 Too little viable tumor
to analyze

Mast cell tumor (0507) 75–100% ,10% 614.62 ng/ul 2.10 2.60 Fail Poor quality RNA due
to abundant
connective tissue

Melanoma-mucosa/mandible
(0502)

0–24% Fail ,10% 536.99 ng/ul 2.08 8.2 Sample too small for
analysis

Lymphoma (1301) 0–24% Fail N/A 16.67 ng/ul 1.93 9.60 Sample too small for
analysis

Histiocytic Sarcoma (1302) 0–24% N/A 657.76 ng/ul 2.12 9.80 Non-cancer diagnosis.
Histopathology was
panniculitis

doi:10.1371/journal.pone.0090028.t003
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predicted to be effective). Further, components of the PMed

approach may be individually tested and optimized through

comparative models. Points of optimization may include defining

the best sources of molecular data input, determining optimal

biopsy collection techniques, evaluating informed algorithm

generation, and exploring combinational therapy selection [26].

PMed comparative oncology studies are however limited by

challenges in the translation of genomic signatures across species.

For example, although there are data demonstrating similarities in

gene expression between canine and human cancer types, the use

of human expression signatures to query canine expression data is

not well-established [24,25][27]. Further, in the case of gene

expression data, the dearth of normal reference sets in compar-

ative species can present a challenge. In this report the use of a

canine normal tissue expression data set was utilized. Alternative

options for such reference sets may include expression data from

other tumor types. From the perspective that these analyses are

aimed at identification of key deregulation phenomena, we expect

that significant deregulation will be identified even when highly

variable reference sets of tumors are used. All methods begin with

basic z-scores and for genes that are deregulated these scores will

be very significant regardless of the reference. In support of this,

review of the drug selection data (Table S1) provides support for

the validity of this cross-species approach. For example, the drug

selection outcomes in canine lymphoma compared to other types

disproportionately include cytotoxic drugs that are conventionally

used to treat canine and human lymphoma. Similarly, the

transitional cell carcinoma of the bladder disproportionately

included several inhibitors of the cox-2 pathway. Interestingly

these agents have been shown to be active and are under

evaluation in canine and human bladder cancers.

Complex models are needed to effectively evaluate PMed study

designs and this proof of concept trial validates the dog with cancer

as a model for clinical evaluation of novel PMed approaches. It is

now reasonable that dogs with cancer can begin to fill the gap in

optimizing the delivery of these approaches for translation to

Figure 1. Histopathology and RNA quality assurance and control measures were successful in procuring high quality canine tumor
samples. Formalin-fixed, paraffin-embedded tumor biopsy samples were sectioned, paraffin embedded, and H&E stained for light microscopic
evaluation. A single board-certified veterinary pathologist (EJE) assessed % tumor surface area, % tumor nuclei and % tumor necrosis to determine
their quality prior to molecular profiling. Images of representative H&E images are shown: A. Sample 0209, a golden retriever with lymphoma, passed
QA/QC. (Tumor 75–100%, necrosis ,10%), while B. sample 0503, a beagle with lymphoma, failed QA/QC (Tumor 75–100%, necrosis .20%). Biopsies
that failed to pass QA/QC in any category were excluded from subsequent analysis. Additionally RNA isolation was performed for all enrolled cases
(n = 31) at a CLIA certified laboratory. RNA was extracted from Tumor A biopsy samples. Quality measures included quantity (total yield .20 ng) and
integrity (A260/A280.1.8, RIN.8.0) measured by Nanodrop and Agilent Bioanalyzer. Electropherograms from cases C. 0210 and D. 0507 are depicted.
Sample 0210, an oral melanoma, passed RNA QA/QC while sample 0507, a mast cell tumor, failed QA/QC (poor quality RNA due to a large connective
tissue component).
doi:10.1371/journal.pone.0090028.g001
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human patients. Our study used operational, analytical and

clinical aspects of a comparative approach to identify potentially

active agents in spontaneously derived cancers. This study sets the

foundation for trials that will become more integrative and

comprehensive in nature though the generation and analysis of

multiple dimensions of genomic data in conjunction with

prospective clinical outcomes. Comparative oncology models have

the potential to expedite this evaluation and lead advancements in

personalized medicine.

Methods

Comparative Oncology Trials Consortium
The goals and infrastructure of the COTC have been previously

described [14,21,29]. All COTC trial data were reported

electronically and contemporaneously reviewed through the

Cancer Central Clinical Database (C3D), a controlled-access

database developed through the NCI’s Center for Cancer

Research (CCR) and Cancer Bioinformatics Grid (CaBIG) and

modified for use in canine clinical trials [30].

Study design and schedule
Client-owned pet dogs with histologically confirmed cancer,

favorable performance status (grade 0 or 1 modified Eastern

Cooperative Oncology Group (ECOG) performance status), and

informed owner consent were eligible for enrollment. Specific

subsets including Scottish terriers with transitional cell carcinoma

of the bladder, golden retrievers with multi-centric lymphoma and

all breeds with oral melanoma were eligible for enrollment.

Eligibility criteria required a tumor amenable to a peripheral

biopsy (except the cases with transitional cell carcinoma of the

bladder). Only dogs with naı̈ve disease were eligible for

enrollment. Physical examination and laboratory [complete

blood count (CBC), serum biochemical profile, urinalysis (UA)]

Figure 2. Bioinformatic analysis defines the platform for PMed report generation. Gene expression data from each tumor was compared
to a reference sample set (canine normal tissue compendium, GSE20113 from Gene Expression Omnibus) to obtain a relative gene expression profile.
Each gene probeset was represented by a z-score depicting its expression in the tumor in terms of the number of standard-deviations from the mean
expression in the reference set. In the iteration of the PMed tools used in this study, data were analyzed by six distinct predictive methodologies
(Drug Target Expression, Drug Response Signatures, Drug Sensitivity Signatures, Network Target Activity, Biomarker-Based-Rules-Sensitive,
Biomarker-Based-Rules-Insensitive) to identify (or exclude in the case of biomarker resistant rules) potential agents for consideration. All predictions
were based on the conversion of canine genomic data into human homologs (for both patient tumor samples and the reference set of normal
tissues) prior to the application of the specific algorithms that rely exclusively on human knowledge and/or empirical drug screens using human cell
lines (see Methods). While individual patient tumor PMed report generation and distribution was the final step in this process, this specific study did
not have therapeutic intent and drug prescription was not performed.
doi:10.1371/journal.pone.0090028.g002
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evaluations were performed to evaluate eligibility prior to

enrollment. Exclusion criteria removed dogs with significant co-

morbidities (such as renal, liver, and heart failure or coagulopa-

thy), history of chemotherapy (including corticosteroids in

lymphoma cases and NSAIDs in TCC), radiation therapy or

immunotherapy. All dogs were evaluated uniformly and treated

within a defined clinical protocol with IACUC approval at each

COTC enrollment site (Colorado State University, Michigan State

University, Purdue University, Tufts University, University of

Georgia, University of Minnesota, and University of Wisconsin-

Madison). The NCI-Comparative Oncology Program (COP)

reviewed the eligibility screening and approved trial entry of each

patient. Potential adverse events related to the research protocol

were monitored according to accepted VCOG-CTCAE criteria

[18].

Patient and Sample Tracking by Wiki
Defining the clinical turnaround time for prospective gene

expression analysis and personalized medicine report generation

was a main objective of this study. The Confluence Enterprise

Wiki online database tracked the location of the specimens and

time spent at each step of the QA/QC process. Confluence

Enterprise Wiki was created by Atlassian and was utilized for this

study. Researchers involved in the study were given usernames

and passwords to access the common study site. At the start of the

study 4 tables, one for each cohort, were constructed on the wiki

space. When a patient enrolled, their patient ID, sex, date of birth,

breed, and tumor type were entered into the table by the study

monitor (CM). The specimens and results were tracked in real

time with each investigator entering the date and time a sample

arrived in their laboratory, when analysis began, and was

completed, as well as the sample results. The wiki space allowed

us to track the location of the specimens and derived data at each

step of the QA/QC process.

Figure 3. Expected clinical turnaround time for canine tumor sample collection, processing, expression, bioinformatic analysis and
PMed report delivery. The graphic defines the prospective timeline of key steps in the process of sample collection, shipment, histopathology and
RNA quality assurance and control assessments, expression profiling and PMed report generation. Samples were biopsied at their clinical COTC site,
sent to histopathology and CLIA labs for parallel sample and RNA QA/QC, Affymetrix gene expression analysis performed, and the derived genomic
data sent to the Van Andel Research Institute for bioinformatics evaluation and PMed report generation. Minimum feasible turnaround time for
sample analysis was described prospectively as 7 business days (168 hours), however all cases were completed in 4.85 days (116.46 hours). The
process was successful in defining high quality tissues for molecular analysis and will be used in future canine PMed comparative studies.
doi:10.1371/journal.pone.0090028.g003

Table 4. Clinical turn around time.

COHORT PATIENT NUMBER TOTAL TIME IN BUSINESS HOURS (DAYS) TOTAL TIME IN HOURS

Open histology 10 114.50 (4.77) 174.50

Lymphoma 5 117.00 (4.88) 165.00

TCC 4 116.75 (4.86) 158.75

Melanoma 5 119.60 (4.98) 167.60

All Cases* 24 116.46 (4.85) 168.46

*Clinical turnaround time for case 0508 (TCC) was an outlier (completed in 212 business hours).
The expression data was generated in 91 business hours (3.79 days) but there was a delay in the PMed report being sent to investigators. Overall the turn around for
sample analysis fits a clinical window and its inclusion in the analysis did not impact the study conclusions.
doi:10.1371/journal.pone.0090028.t004
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Sample Collections
Tumors. Tumor biopsies on Day 1 of the study were

required from all dogs. Tumors must have been at least 3 cm in

longest diameter to be eligible for biopsy. Biopsy techniques were

prospectively defined by standard operating procedures (SOPs)

and used uniformly at all participating COTC sites. Biopsies were

collected by either a 10–14 gauge Tru-cut instrument, 6 mm

punch biopsy, or an open biopsy technique. Biopsies for dogs with

transitional cell carcinoma were collected by cystoscope or

ultrasound guided. Two samples of at least 1 cm in length were

obtained at various planes within the tumor to capture natural

disease heterogeneity. The two planes were labeled as Tumor A

and Tumor B. Each of the sections were bisected equally. Tumor

A was divided and equal specimens placed in either RNAlater or

formalin. Tumor B was divided and equal specimens placed in

formalin or flash frozen. Tumor A samples (RNAlater) were

shipped overnight on a 220 C ice pack to the Clinical Reference

Laboratory (CRL) for RNA isolation. Tumor A and B samples

(formalin) were shipped overnight on a 220 C ice pack to

Colorado State University.

Plasma and serum. Plasma and serum samples were

collected for all patients by standardized procedures on Day 1.

These were flash frozen in liquid nitrogen and stored at 280 C. At

the end of the study samples were shipped overnight on dry ice to

the NCI-COP for permanent storage. These were stored for

potential post hoc secondary analyses.

Histopathology Review
Formalin-fixed, paraffin-embedded tumor biopsy samples were

routinely sectioned, paraffin embedded, and stained with H&E for

light microscopic evaluation. Histopathology quality assurance

and control (QA/AC) assessment for all biopsies were performed

by one pathologist (EJE). Data was subjectively classified into

ordinal catagories: % tumor surface area was defined as the

percentage surface area of each examined tissue that was

determined to be tumor; % tumor nuclei was defined as the

percentage of each examined tissue’s nuclei that were determined

to be tumor nuclei; % tumor necrosis was defined as the

percentage of each examined tumor that was determined to be

necrotic. Samples were evaluated for all 3 parameters (tumor

surface, nuclei, and necrosis) at both the top and bottom of the

tumor specimen and then averaged. Categories for percent tumor

surface area were 0%–24%, 25%–49%, 50%–74%, and 75–

100%. Categories for percent tumor nuclei were 0%–24%,

Figure 4. Cancer type defines canine tumor gene expression signatures. Multidimensional scaling (MDS) coordinates were generated using
individual tumor gene (mRNA) expression z-scores to define relationships within the dataset. Tumor gene expression clustered by tumor type.
Additionally, histologic categories share genomic signatures, with carcinomas (bladder TCC, nasal carcinoma, hepatocellular carcinoma (HCC)),
mesenchymal (soft tissue sarcomas, hemangiosarcoma, histiocytic sarcoma, melanoma), and round cell (lymphoma) tumors clustering together in
subgroups.
doi:10.1371/journal.pone.0090028.g004
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25%–49%, 50%–74%, and 75–100%. Categories for percent

tumor necrosis were ,10%, 10–20%, and .20%. Passing

parameters were considered . or equal to 75% tumor and , or

equal to 20% necrosis. Biopsies that failed to pass assessment were

excluded from the remainder of the study. Representative

microscopic images were captured for all examined samples and

banked for future use.

Total RNA Extraction
RNA isolation and QA/QC assessment from samples collected

in the study was performed at a Clinical Laboratory Improvement

Amendments (CLIA) accredited facility (Clinical Reference

Laboratory, Lenexa, KS) to ensure quality laboratory testing.

Standards defined here have been previously used for the conduct

of human tissue processing and clinical trials (http://wwwn.cdc.

gov/clia). RNA was extracted from canine tumor biopsy tissues

(Tumor A) taken on Day 1 of the study and stored in RNAlater

stabilization solution (Ambion, Cat # AM7020). The quality

measures for RNA isolation were quantity (total yield .20 ng) and

integrity (A260/A280$1.8, RIN$8.0) measured by Nanodrop and

Agilent Bioanalyzer respectively.

Canine Genome 2.0 Expression Analysis
cDNA synthesis and amplification were accomplished using the

NuGen Ovation Pico WTA System (Cat # 3300-12). Fifty

nanograms of total RNA was used for cDNA synthesis using the

following steps as per the Ovation Pico WTA System protocol:

First Strand cDNA synthesis, second strand cDNA synthesis,

cDNA purification, SPIA cDNA amplification, and amplified

SPIA cDNA purification. The amplified DNA was checked for

quality and quantity using the Nanodrop spectrophotometer.

cDNA samples with a 260/280 ratio of $1.8 and a concentration

above 5 mg in 30 ul were considered acceptable for further

processing using the Affymetrix Canine genome 2.0 array.

Amplified cDNA samples generated with the NuGen Ovation

Pico WTA system were used for fragmentation and labelling

process using the NuGen Encore Biotin Module (Cat # 4200-12).

The resulting fragmented and labeled cDNA was used for

Affymetrix Canine 2.0 array hybridization. The hybridized arrays

were washed and stained using GeneChip Hybridization, Wash

and Stain Kit (Affymetrix, Cat # 900720).

Initial QC analysis of the scanned array was accomplished using

the Affymetrix Expression Console Software. Background noise

,100, % present call $30%, scale factor 100 and appropriate

spike in control signals are necessary for adequate sample quality.

Upon passing all criteria, MAS5.0 processed .CEL and normal-

ized pivot .TXT files were extracted and deposited on a secure

FTP site at Van Andel Research Institute (VARI) for subsequent

analysis. This data has also been uploaded to GEO, accession

#GSE51131.

Bioinformatics
The general analytical workflow undertaken upon receipt of a

tumor-derived gene expression profile is shown diagrammatically

Figure 5. Drug prediction scores define individual tumor
predicted drug susceptibilities. A. MDS analysis shows nested
PMed summary drug scores cluster individual samples by drug
susceptibility. There was a weak association of drug calls with cancer
type, but clear heterogeneity in drug prediction even within a single
cancer type (histology). B. A heat map of targeted and conventional
agent sensitivity across each patient sample. Individualized drug
predictions based on tumor characteristics support the use of PMed
drug prescription in future comparative oncology studies.
doi:10.1371/journal.pone.0090028.g005
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in Figure 2 and is adapted from a workflow previously established

in human neuroblastoma [19]. Gene expression data from each

tumor was compared to a reference sample set in order to obtain a

relative gene expression profile [20]. Each gene probeset was

represented by a z-score depicting its expression in the tumor in

terms of the number of standard-deviations from the mean

expression in the reference set. The individual patient samples

from the canine Affymetrix array probesets were converted to z-

scores using a normal K-9 reference set based on the 39 samples in

GEO data set GSE20113. In the cases where multiple probesets

represented the same gene (Affymetrix canine 2.0 version 31

annotation) they were aggregated using the mean to a single value

for the appropriate Entrez gene identifier. The canine Entrez gene

identifiers were then converted to human Entrez ID’s using the

homolog data from the NCI database (ftp://ftp.ncbi.nih.gov/

pub/HomoloGene/current/homologene.data dated 11/15/

2010). Any canine ID’s that had ambiguity in the mapping to

human genes were removed and only values whose canine ID’s

exhibited clear and concise (one-to-one mapping from canine to

human genes) conversion to human ID’s were retained. The final

step in the conversion process was to convert the human Entrez

gene identifiers to the appropriate Affymetrix U133 Plus 2.0

probesets (U133 Plus 2.0 annotation version 31). Only concisely

mapped Entrez gene IDs to Affymetrix probesets were retained.

Use of the U133 Plus 2.0 probeset data facilitates the use of the

standard workflow and application of the previously-detailed

predictive methods developed for human subjects [19]. The

standard workflow is capable of utilizing z-Score values associated

with the U133 Plus 2.0 probesets. After this pre-processing step,

data was submitted to the following collection of predictive

methodologies to identify potential agents for consideration. All

predictions are based on canine genomic data (tumor and normal

tissues) but a human bioinformatics backbone as detailed:

Drug Target Expression. This first and most rudimentary

method utilizes a human drug-target (mechanism of action)

knowledge base and rules-based method to identify over-expressed

genes (z-score $+3) in a patient’s tumor that represent known

molecular targets of antagonists, then match the appropriate drug

from the knowledge base (example rule: IF EGFR Expression z-

score $+3 THEN INDICATE Cetuximab). Multiple sources of

public domain knowledge have been used to establish the

internally-curated drug-target knowledge base including Drug-

Bank, MetaCore (GeneGo-Thomson Reuters), MedTrack,

PharmGKB, UpToDate and DrugDex (Thomson Reuters)

[31,32]. These rules are subject to change based on review of

current literature evidence. Existing z-score thresholds of +3 or 23

were selected based on prior experience, but thresholds are

variable by rule and can be adjusted as needed. The p values are

derived from the z-score of the expression level used to trigger the

rule – the greater the z-score, the lower the p value associated with

the rule. 260 vetted drug-target rules covering 123 drugs across

260 unique targets were contained within the drug-target

knowledge base used in this study (Table S2).

Biomarker Rules. Much like target expression, this method

employs predefined and published rules maintained in a drug-

biomarker database mined from public knowledge in which the

efficacy of a specific drug has been associated with the expression

of a specific molecular marker [9]. However, this method not only

highlights drugs with predicted sensitivity, but also highlights drugs

that may be contraindicated (insensitive drugs) on the basis of

resistance rules (example rule: IF ERCC1 z-score $+3 THEN

CONTRAINDICATE Oxaliplatin). Further, this method can take

into account underexpressed genes (z-scores #23). Currently,

there are 34 biomarker rules indicating sensitivity to 14 FDA

approved drugs in this database. Combining sensitive and

resistance biomarker rules indicates 20 unique FDA approved

drugs within the drug-biomarker rules knowledge base (Table
S3).

Drug Response Signatures. This method reproduces the

Connectivity Map (CMAP) concept initially developed by the

Broad Institute in which the genomic consequence of drug

exposure is used to connect drug effect to disease signatures [33].

The hypothesis underlying this method is that drugs that reverse

the disease genotype (gene expression profile) towards normalcy

have the potential to reverse the disease phenotype. The CMAP

method is based on the exposure of four cell lines (MCF7, PC3,

HL60, and SKMEL5) to a series of 142 small molecules and

measurement of pre- and post-exposure gene expression profiles as

described in the above reference. For our purposes, over- and

under-expressed genes in the patient’s tumor (z-scores $+2.0 or

#22.0 respectively) are compared to every array in the CMAP

drug response signature database. Rank-based statistics are then

used to identify drugs with a significant inverse connectivity to the

disease genotype and to generate an enrichment score for each

gene in the list. The drug list is a subset derived from CMAP and

refined based on literature support (Table S4) and drug match

scores are calculated using Kolmogorov-Smirnov statistics with p-

values estimated using permutation testing with 50,000 permuta-

tions. Only those patterns that match with a p-value less than 0.05

are reported.

Drug Sensitivity Signatures. This method reproduces a

previously published implementation of the Parametric Gene Set

Enrichment Analysis (PGSEA) method using the NCI-60 cell line

sensitivity data provided in the COMPARE database [34,35,36].

Gene expression signatures from the untreated NCI-60 lines

associated with differential response to specific drugs on the basis

of IC-50s from an in vitro drug screen reported in the COMPARE

database are compared to the canine tumor-derived gene

expression signature (all probesets from one sample standardized

to z-score relative to the normal reference set) through the PGSEA

analysis tool which in this iteration utilizes a one sample t-test to

determine sensitivity to a subset of 11 drugs selected from the NCI-

60 list (Table S5). Each drug is assigned a p-value for predictive

efficacy and only those with a p-value less than 0.05 are reported.

This approach is consistent with well-published methods for

inferring drug sensitivity utilizing the NCI-60 cell line dataset

[35,36,37].

Network Target Activity. This method predicts the activity

(rather than expression) level of drug targets on the basis of a

specific type of molecular network analysis referred to as

topological analysis described previously [38]. This method utilizes

gene expression data and pre-requisite knowledge of protein-

protein interactions based on GeneGo topology analysis to predict

upstream target activity on the basis of observed downstream

transcriptional events selected from Affymetrix probes – either all

z-scores $2 or the top 200 overexpressed probes (K in formula

below). K thus represents a subset of a global interaction network

of size N. Construction of a directed shortest path network

connecting nodes from K to each other is performed utilizing the

MetaCore GeneGO database of over 200,000 protein-protein and

protein-small molecule interactions. The shortest path network, S,

is constructed by building directed paths from each node in K to

other nodes in K, traversing via other nodes in the global network

as necessary. The number of node pairs in the shortest path

network which are connected through each pair of nodes i and j is

determined (Kij). This process is repeated in the global network to

calculate the number of node pairs connected through nodes i and

j (Nij). The probability that the number of nodes would be Kij or
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larger given the size of the input network and the distribution of

shortest paths in the global network is given by:

pij(Kij)~

Nij

Kij

� �
N{Nij{2

K{Kij{1

� �

N{2

K{1

� �

Hereby, the analysis output is the probability that a given drug

target provides significant input to or output from a highly

connected network identified in each tumor. Calculated p values

are used to rank predictive scores and only those above 0.05 are

reported. Currently, this method attempts to predict the activity of

260 unique drug targets spanning 123 FDA human approved

drugs (Table S2).

Personal Medicine Report Generation
Upon execution of the different analytical methodologies, a

compiled report was generated. The personalized drug report

conveys the predicted efficacy (or resistance in the case of

biomarker resistance rules) of the drugs identified by each of the

methods described above. These reports contain a summary

section combining results of each method with scores that

represent stronger indications for drugs that were predicted by

multiple methods. These scores are adjusted for multiple methods

and are based on the sum of scores from individual methods. In

addition, each method contains scores reflecting the contribution

of multiple genes to the suggested therapy. Further, personalized

drug reports also associate public clinical and contextual

knowledge to show any evidence that may support the use of

the predicted drug in the context of the patient’s disease state.

The supporting evidence comes from a variety of sources

including PubMed, clinicaltrials.gov and DrugDex (Thomson

Reuters).

Clinical Turnaround Time Monitoring
All sample processing time points were recorded on the

COTC016 wiki page. This included the time of biopsy, time

shipped from COTC site and time tumor specimens arrived at the

Clinical Reference Laboratory (CRL) for expression analysis and

Colorado State University (CSU) for histopathology analysis. Also

included were the QA/QC analysis start and completion times at

the CRL and CSU. Each lab entered the results in the wiki and

uploaded data and/or representative images. All recorded times

were listed in their respective time zone. When calculating the

total elapsed time from biopsy shipment to PMed report

generation, all times were converted to EST then military time

for calculation purposes. Holiday and weekend hours were

subtracted from total times to calculate business hours necessary

for sample evaluation.

Gene Expression Cluster Analysis
mRNA expression values for each gene in the canine tumor

samples were normalized relative to the average expression of that

gene in 40 canine normal tissue samples from a reference set [20].

The tumor to normal ratio and standard deviation in the tumor

samples was used to calculate a z-score statistic for each gene

(mRNA) as described above in Bioinformatics. mRNA z-scores

and drug prediction scores for each sample were then used for

separate multidimensional scaling (MDS) analyses for each data

type. MDS coordinates were generated using the classical

multidimensional scaling (cmdscale) function of the R statistical

application (http://www.r-project.org; v2.14.1) based on sample

to sample distances calculated using Pearson’s correlation distance

(one minus Pearson’s correlation coefficient).

Supporting Information

Figure S1 Canine tumor gene expression signatures
cluster independently of breed. In a cursory evaluation of the

potential effect of breed on tumor classification in this limited

sample set, breed did not influence MDS analysis of gene

expression z-scores. Both pure bred and mixed breed dog samples

clustered by cancer type.

(TIF)

Table S1 Summary of drug predictions: Top drug
prediction by algorithm [2log(p) score] (Inferring
gene(s) where applicable). Drug recommendations based on

the six drug prediction methodologies are shown for each tumor

and includes the highest ranked recommended according to a

summary score. This summary score gives more weight to drugs

suggested by more than one algorithm.

(DOCX)

Table S2 Expression and network-based drugs and
targets. Two hundred and sixty unique drug targets for 123

FDA approved human are shown alongside supporting evidence

for the drug-target interactions that guideds4 inclusion in the

network-based prediction algorithm.

(DOCX)

Table S3 Biomarker rules. Thirty-four biomarker rules are

shown that match 20 FDA approved drugs to 22 targets according

to sensitivity or resistance alongside supporting evidence for these

interactions.

(DOCX)

Table S4 Response signature drugs. The subset of 107

CMAP drugs refined based on literature support and used to

match drugs based on disease genotypes.

(DOCX)

Table S5 Sensitivity profile drugs. The subset of 11 drugs

selected from the NCI-60 list COMPARE database and matched

to gene expression signatures.

(DOCX)
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