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Abstract: Glioblastoma (GBM) is the most malignant primary brain tumor. The current standard
approach in GBM is surgery, followed by treatment with radiation and temozolomide (TMZ); however,
GBM is highly resistant to current therapies, and the standard of care has not been revised over the
last two decades, indicating an unmet need for new therapies. GBM stem cells (GSCs) are a major
cause of chemoresistance due to their ability to confer heterogeneity and tumorigenic capacity. To
improve patient outcomes and survival, it is necessary to understand the properties and mechanisms
underlying GSC chemoresistance. In this review, we describe the current knowledge on various
resistance mechanisms of GBM to therapeutic agents, with a special focus on TMZ, and summarize
the recent findings on the intrinsic and extrinsic mechanisms of chemoresistance in GSCs. We also
discuss novel therapeutic strategies, including molecular targeting, autophagy inhibition, oncolytic
viral therapy, drug repositioning, and targeting of GSC niches, to eliminate GSCs, from basic research
findings to ongoing clinical trials. Although the development of effective therapies for GBM is still
challenging, this review provides a better understanding of GSCs and offers future directions for
successful GBM therapy.

Keywords: glioblastoma; chemoresistance; cancer stem cells; temozolomide

1. Introduction

Glioblastoma (GBM) is one of the most recalcitrant tumors among all malignant solid
tumors [1]. Patients with GBM have a poor prognosis, with a 5-year survival rate of 6.8%
and a median overall survival of approximately 12–15 months [2]. The standard therapy
for patients with GBM is surgical resection, followed by radiotherapy and chemotherapy
with the alkylating antineoplastic agent, temozolomide (TMZ) [3]. However, considering
the difficulty in distinguishing the anatomical borders of GBM and its extreme infiltrative
growth, complete surgical resection is practically impossible [4]. In addition, GBM is highly
resistant to conventional therapies because of its high heterogeneity resulting from clonal
evolution due to genome instability and the differentiation of GBM stem cells (GSCs) [5].
Accordingly, the majority of patients with GBM experience tumor recurrence, and recurrent
tumors commonly show a poor response to standard therapy [6]. Despite advancements in
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the understanding of GBM molecular diagnosis and ongoing trials on targeted therapies,
standard therapy has not advanced over the past two decades [7].

TMZ is an oral alkylating agent used for the first-line treatment of GBM and anaplastic
astrocytoma since its U.S. Food and Drug Administration (FDA) approval in 2005 [8].
TMZ induces cytotoxicity by adding a methyl group to the N7 and O6 positions of guanine
residues and N3 position of adenine residue during DNA replication. Alkylation of guanine
or adenine results in mismatched base pairing that induces DNA strand breakage and
cell cycle arrest at the G2/M phase, thereby leading to cell apoptosis [9]. As TMZ is
the only chemotherapeutic agent currently used in patients with GBM, a strategy for
overcoming TMZ resistance is urgently needed. The main contributor to TMZ resistance is
O6-methylguanine-DNA methyltransferase (MGMT), which repairs the mutagenic DNA
adduct, O6-methylguanine, back to guanine. Although methylation at the guanine O6

position is the least frequent adduct formed by TMZ, MGMT efficiently prevents the TMZ-
induced formation of lethal DNA cross-links [10]. Nevertheless, approximately half of the
patients with GBM harbor the MGMT promoter methylation, which acts as a prognostic
indicator of whether a patient benefits from TMZ treatment [11]. However, some patients
with GBM suffer from TMZ resistance despite their low MGMT activity, indicating that
MGMT is not the only determinant of TMZ resistance.

Cancer stem cells represent a population of tumor cells that are capable of self-renewal
and differentiation [12]. GSCs are also characterized by their ability to form tumorspheres
with sustained proliferation in vitro and form tumors upon serial transplantation in vivo.
Specifically, they contribute to high levels of intratumoral cellular heterogeneity and plas-
ticity in GBM, thereby causing radioresistance and chemoresistance to induce tumor re-
currence [13,14]. The stem state of GSCs is not static but plastic; therefore, interconversion
between GSC and non-GSC states can occur according to various factors, including nutrient
deprivation, hypoxia, radiation and chemotherapeutic treatment [13,15]. Targeting GSCs
in combination with conventional therapies could be a promising therapeutic strategy
for eradicating GBM, and several putative GSC surface markers, such as CD133, CD15,
and CD44, and GSC transcription factors, such as SRY-box transcription factor 2 (SOX2),
octamer-binding transcription factor 4 (OCT4), and NANOG, have been discovered [16].
However, the known GSC markers are neither completely sensitive nor specific to the
GSC population [13] and, hence, have not been used in clinical practice, despite numerous
strategies to target GBM stemness [17].

This review summarizes the findings of recent studies about various mechanisms of
chemoresistance of GSCs, with a special focus on the resistance mechanism to TMZ, the
first-line drug for GBM treatment. Additionally, we have described recent therapeutic
strategies to directly or indirectly target GSCs and summarize the ongoing clinical trials
targeting GSCs. Although GBM remains incurable and an effective therapeutic strategy has
not yet been established, understanding GSCs will provide new directions for the treatment
of GBM.

2. Mechanisms of Chemoresistance in GSCs

Based on recent findings, we describe various resistance mechanisms of GBM to
therapeutic agents, particularly TMZ, including DNA repair systems, anti-apoptosis, mul-
tidrug resistance (MDR), metabolic rewiring, autophagy regulation, and extrinsic resistant
mechanisms (Figure 1).



Biomedicines 2022, 10, 1308 3 of 16Biomedicines 2022, 10, x FOR PEER REVIEW 3 of 17 
 

 
Figure 1. Comprehensive schematic diagram of various mechanisms of chemoresistance in GSCs. GSC-
specific pathways related to anti-apoptosis, multi-drug resistance, metabolic adaptation, and extrin-
sic resistant mechanisms are key for GSC chemoresistance and maintenance. 

2.1. DNA Repair Systems 
MGMT expression considerably increases the resistance to alkylating agents in GSCs 

[18]. GSCs express significantly higher levels of MGMT than stable glioma cell lines [19]. 
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positive GBM cells preferentially activate the checkpoint kinases 1 (Chk1) and 2 (Chk2), 
the key regulators of DNA checkpoint signaling, to repair DNA damage more effectively 
than autologous CD133-negative GBM cells [21]. CD133-positive cells are predominantly 
present in the inner tumor mass of GBM to avoid chemotherapeutic treatment. Accord-
ingly, MGMT is more highly expressed in the inner core than in the peripheral area of 
GBM tumor mass [22]. In contrast, GSCs are not uniformly resistant to TMZ, and the meth-
ylation status cannot precisely explain the response to TMZ [23]. In addition, TMZ treat-
ment at 500 μM induced cell death (25%) in neural stem cells (NSCs), while GSCs were 
rarely affected, even though GSCs and NSCs have similar levels of MGMT, indicating the 
possible existence of an alternative resistance mechanism [19]. These studies suggest that 
GSCs are resistant to alkylating agents not only because of the high expression of MGMT, 
but also because of a mechanism independent of MGMT-related therapeutic resistance. 
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lencing and multicellular development [24]. BMI1, a member of the polycomb group com-
plex 1, is recruited to DNA damage sites and plays a role in DNA double-strand break 
repair. BMI1 is highly enriched in CD133-positive GBM cells and is required for maintain-
ing GSC self-renewal and intracranial GBM tumor formation [25]. Moreover, BMI1 is pref-
erentially copurified with proteins involved in non-homologous end joining, including 
DNA-PK, poly (ADP-ribose) polymerase-1, hnRNP U, and histone H1, in CD133-positive 
GBM cells [26]. In contrast, a separate study showed that there was no difference in the 
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Figure 1. Comprehensive schematic diagram of various mechanisms of chemoresistance in GSCs.
GSC-specific pathways related to anti-apoptosis, multi-drug resistance, metabolic adaptation, and
extrinsic resistant mechanisms are key for GSC chemoresistance and maintenance.

2.1. DNA Repair Systems

MGMT expression considerably increases the resistance to alkylating agents in GSCs [18].
GSCs express significantly higher levels of MGMT than stable glioma cell lines [19]. Sim-
ilarly, MGMT levels in CD133-positive cells are higher than those in autologous CD133-
negative cells [20]. Moreover, irrespective of MGMT-dependent repair, CD133-positive
GBM cells preferentially activate the checkpoint kinases 1 (Chk1) and 2 (Chk2), the key
regulators of DNA checkpoint signaling, to repair DNA damage more effectively than autol-
ogous CD133-negative GBM cells [21]. CD133-positive cells are predominantly present in
the inner tumor mass of GBM to avoid chemotherapeutic treatment. Accordingly, MGMT is
more highly expressed in the inner core than in the peripheral area of GBM tumor mass [22].
In contrast, GSCs are not uniformly resistant to TMZ, and the methylation status cannot
precisely explain the response to TMZ [23]. In addition, TMZ treatment at 500 µM induced
cell death (25%) in neural stem cells (NSCs), while GSCs were rarely affected, even though
GSCs and NSCs have similar levels of MGMT, indicating the possible existence of an
alternative resistance mechanism [19]. These studies suggest that GSCs are resistant to
alkylating agents not only because of the high expression of MGMT, but also because of a
mechanism independent of MGMT-related therapeutic resistance.

Polycomb-group proteins are transcriptional regulators that mediate epigenetic silenc-
ing and multicellular development [24]. BMI1, a member of the polycomb group complex
1, is recruited to DNA damage sites and plays a role in DNA double-strand break repair.
BMI1 is highly enriched in CD133-positive GBM cells and is required for maintaining GSC
self-renewal and intracranial GBM tumor formation [25]. Moreover, BMI1 is preferentially
copurified with proteins involved in non-homologous end joining, including DNA-PK, poly
(ADP-ribose) polymerase-1, hnRNP U, and histone H1, in CD133-positive GBM cells [26].
In contrast, a separate study showed that there was no difference in the DNA repair mecha-



Biomedicines 2022, 10, 1308 4 of 16

nisms between GSCs and differentiated cells, but GSCs showed an elongation of all phases
of the cell cycle with enhanced basal activation of checkpoint proteins [27].

2.2. Anti-Apoptosis

Treatment with TMZ, the first-line drug for GBM, induces prolonged p53- and
p21(Waf1/Cip1)-associated cell cycle (G2/M) arrest [28]. Cytoprotective anti-apoptotic
mechanisms are likely activated in GSCs. TMZ-resistant GSCs show higher expression
levels of several anti-apoptotic genes, such as B-cell lymphoma-2 (BCL-2), BCL2 like
1 (BCL2L1), and MCL1, compared to differentiated cell lines [29]. Notably, the critical
anti-apoptotic protein, BCL-xL/BCL2L1, is highly expressed in GSCs and glioblastoma
stem-like cells (GSLCs) cultured using the tumorsphere method in comparison to differen-
tiated cells and prevents intrinsic apoptosis induced by alkylating agents [30]. In addition,
the inhibition of BCL-extra-large (BCL-xL)/BCL2L1 decreases the size and number of
GSLCs. GSC-enriched protein, BMI1, is required to prevent p53-mediated apoptosis, sug-
gesting that GSCs preferentially avoid TMZ-induced apoptosis, conferring therapeutic
resistance to GBM [31]. These data suggest that GSC-specific anti-apoptotic mechanisms
contribute to chemoresistance in GBM.

2.3. Multidrug Resistance

MDR is a generic term for a cross-resistant phenotype against various unrelated
drugs in cancer cells. There are diverse mechanisms associated with MDR, including
anti-apoptosis, detoxification, prevention of drug uptake, activation of drug efflux, and
DNA repair systems [32]. The ATP-binding cassette (ABC) transporter family, which
pumps drugs out of cells, is one of the most studied gene families related to MDR [33].
Likewise, the ABC transporters, MRP1 (ABCC1), MRP3 (ABCC3), and MRP4 (ABCC4), are
highly expressed in glioma cells [34]. Interestingly, ABC transporters are predominantly
expressed in cancer stem cells [35], and GSCs exhibit high expression levels of MRP1,
MRP3, and MDR1 (ABCB1) [34]. The expression levels of MRP1 and MDR1 in CD133-
positive GSCs were higher than those in differentiated tumor cells [36]. GSLCs derived
from the U87MG cell line also showed high expression of MDR1, indicating that GSCs
display intrinsic MDR [37]. In addition, treatment with the chemotherapeutic medications,
etoposide and TMZ, further increased the expression levels of MRP1 in CD133-positive
U251 GSLCs, presumably because of the plasticity of cancer stem cells [37,38]. In the same
study, knockdown of livin, an anti-apoptotic protein, suppressed cell proliferation with a
decrease in MRP1 expression and an increase in MRP3 expression in GSLCs [38]. Taken
together, ABC transporters, especially MRP1, MRP3, and MDR1, are highly expressed in
GSCs to prevent the drug entry, and each protein may play a different role depending on
its cellular context.

Breast cancer resistance protein (BCRP, also known as ABCG2) is related to the grade
and chemoresistance of glioma [39]. The expression levels of ABCG2 are significantly
higher in high-grade gliomas (grades III and IV) than in low-grade gliomas (grades I and II).
Interestingly, immunostaining of ABCG2 showed that 100% of the CD133-positive glioma
stem cells were ABCG2-positive, whereas no CD133-negative fraction expressed ABCG2.
In addition, treatment with nicardipine, an ABCG2 competitive inhibitor, sensitized CD133-
positive glioma stem cells to mitoxantrone, whereas no synergistic effect was observed in
CD133-negative tumor cells. Likewise, inhibition of ABCG2 by melatonin-induced pro-
moter methylation showed synergistic toxic effects with the chemotherapeutic agents, TMZ,
doxorubicin, and mitoxantrone [40]. ABCG2 expression is increased by the overexpression
of OCT4, which regulates GSC properties, and OCT4-overexpressed U251 GBM cells are
resistant to the chemotherapeutic agents, doxorubicin, carboplatin, and VP16 [41]. These
data suggest that the expression levels of ABC transporters are strongly related to the stem
phenotype of GSCs and contribute to chemoresistance.
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2.4. Metabolism

Metabolic dysregulation of cancer cells is a hallmark of cancer [42–44]. As GSCs must
survive harsh conditions, characterized by hypoxia and low nutrient supply, they have
high bioenergetic needs to maintain their rapid proliferation and stemness [13]. GSCs
preferentially take up glucose using the high-affinity glucose transporter 3 (GLUT3) to meet
their high metabolic demands [45,46]. Glucose obtained in this manner provides a carbon
source for nucleotide biosynthesis to support rapid cell proliferation [47]. Additionally,
the expression levels of glutamine synthetase are significantly higher in GSCs than in
autologous differentiated cells, and the synthesized glutamine is utilized for de novo purine
biosynthesis instead of replenishing the tricarboxylic acid cycle intermediates [48]. These
anabolic advantages of GSCs may contribute to their chemoresistant phenotype. In contrast,
the resistant clones of GSCs that survived radiotherapy and TMZ treatment showed high
expression levels of genes involved in genomic maintenance and DNA repair pathways
(SPT16 homolog, zinc finger CCCH-type containing 11A, chromosome 5 open reading frame
24, translocated promoter region, DExH-box helicase 9, and matrin 3), while genes with
functions associated with the inhibition of glucose uptake and suppression of insulin/Akt
signaling (ectonucleotide pyrophosphatase/phosphodiesterase 2, early growth response 1,
ITPR interacting domain containing 2, and protein phosphatase 2 scaffold subunit alpha)
were upregulated. Moreover, genes related to lipid catabolism and detoxification of lipid
peroxidation products (aldehyde dehydrogenase 3 family member A2, phospholipase D
family member 3, and oxysterol binding protein like 8) were upregulated, suggesting that
therapy-resistant GSCs may preferentially use fatty acids, rather than glucose, as a major
energy source for ATP production [49]. Similarly, slow-cycling GSCs that rely on oxidative
phosphorylation and lipid metabolism are more resistant to TMZ than fast-cycling GSCs
that mainly utilize glycolysis [50]. Taken together, GSCs require high metabolic flux to
maintain their anabolic requirements, and TMZ-resistant GSCs tend to increase fatty acid
oxidation, although they are likely context-dependent.

2.5. Autophagy

Over the last decade, autophagy was found to play dual roles in both cytoprotec-
tion and cell death in GBM [51–53]. Accordingly, whether autophagy should be inhib-
ited or induced in GBM treatment is unclear. As autophagy is a self-clearance pathway
that maintains basal reactive oxygen species (ROS) levels by removing the dysfunctional
organelles and oxidized peroxisomes, it can protect cells from chemotherapeutic agent-
induced ROS [54]. Autophagy induction may contribute to maintaining the stemness char-
acteristics of GSCs [55]. For example, in several recent studies, autophagy inhibitors, such
as chloroquine (CQ), were found to sensitize GSCs to TMZ [55–57]. Moreover, autophagy
is activated by the autophagy-associated factors, DNA damage regulated autophagy mod-
ulator 1 and p62/sequestosome 1, in migrating and invading GSCs [58]. However, other
studies have shown that autophagy induction using mammalian target of rapamycin
(mTOR) inhibitors induces anti-proliferative and pro-differentiating effects on GSCs. Au-
tophagy suppresses the self-renewal ability and tumorigenicity of GLSCs by promoting
Notch1 degradation [59]. Likewise, curcumin-induced autophagy also suppresses GSLC
self-renewal and proliferation by upregulating the differentiation markers, Tuj1, GFAP,
Olig2, and βIII-tubulin, and downregulating the GSC markers CD133 and nestin [60].
Autophagy induction promotes GSC differentiation and increases GSC sensitivity to DNA
damage [61,62]. Taken together, autophagy may act as a double-edged sword for both the
tumor-promoting and tumor-suppressive effects in GSCs.

2.6. Extrinsic Chemoresistance

Despite the intrinsic chemoresistant phenotype of GSCs, TMZ can eradicate GSCs
in vitro, suggesting that GSC chemoresistance is not solely dependent on its specific gene
expression signature [63]. Various extrinsic factors contribute to chemoresistance. One of
the most important extrinsic factors is the hypoxic GBM microenvironment. Rapid cell
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proliferation and tumor growth with erratic tumor neovascularization in GBM leads to a
hypoxic tumor microenvironment [64], and GSCs are more likely to suffer from hypoxia
as they are mainly located in the inner tumor mass [22]. Hypoxia increases the expression
levels of GSC markers and promotes a cancer stem-like phenotype [65]. Hypoxia-response
genes, including hypoxia inducible factor (HIF)-2A and vascular endothelial growth factor
(VEGF), were highly expressed in GSCs, and the expression of both HIF-1α and HIF-
2α was required for tumorsphere formation and stemness maintenance [66]. The acidic
microenvironment also promotes tumorsphere formation and the tumorigenic capacity
of GSCs with increased expression of HIF2α and GSC markers [67]. A separate study
discovered that HIF-1α activates the Notch signaling pathway, which is essential for
GSC maintenance [68].

GSC enrichment by extrinsic factors, including hypoxia, contributes significantly to
chemoresistance. Stabilization of HIF-1α positively regulates MGMT expression and con-
tributes to TMZ resistance in CD133-positive cells, but not in CD133-negative cells [69].
Clinically relevant doses of TMZ increase the GSC pool by increasing the expression levels
of GSC markers, including CD133, SOX2, Oct4, and nestin, in non-GSC subpopulations,
suggesting that chemotherapy-induced GSC amplification is a result of phenotypic conver-
sion from non-GSCs to GSCs [15]. Moreover, extracellular vesicles derived from hypoxic
GSCs highly promote TMZ resistance in GBM by delivering miR-30b-3p transcriptionally
induced by HIF-1α and signal transducer and activator of transcription 3 (STAT3) [70].
Therefore, the hypoxic microenvironment not only induces metabolic alteration toward
glycolysis, but also contributes to DNA repair and stemness of GSCs, resulting in increased
chemoresistance.

3. Strategies Targeting GSCs

Targeting cancer stem cells is the most promising therapeutic strategy, especially
for GBM, considering its chemoresistant phenotype and significantly high relapse rate.
Although its clinical application remains challenging, several basic research and clinical
trials that selectively target GSCs have been reported. In particular, based on the discovered
characteristics of GSCs, GSC-targeting drugs have been developed using several therapeutic
modalities, including molecular targeting, autophagy inhibition, oncolytic viral therapy,
drug repositioning, and indirect targeting of GSC niches (Table 1, Figure 2).

Table 1. Therapeutic compounds targeting GSCs.

Target Compound Phase NCT ID Disease Reference

CD133 RW03 CAR-T N/A N/A GBM [71]

EGFR

Gefitinib Phase II
NCT00052208 Newly diagnosed GBM [72]

NCT00250887 Recurrent GBM [73]

Erlotinib Phase II

NCT00525525 Newly diagnosed GBM [74]

NCT00445588 Newly diagnosed GBM
and Recurrent GBM [75]

Afatinib Phase II NCT00727506 Recurrent GBM [76]

Dacomitinib Phase II NCT01520870 Recurrent GBM [76]

Osimertinib N/A N/A GBM [77]

Notch1
RO4929097 Phase II NCT01122901 Newly diagnosed GBM

and Recurrent GBM N/A

DAPT N/A N/A GBM [78]

Shh pathway
Sonidegib N/A N/A GBM [79]

Silmitasertib N/A N/A GBM [80]
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Table 1. Cont.

Target Compound Phase NCT ID Disease Reference

STAT3

STX-0119 N/A N/A Recurrent GBM [81]

WP1066 Phase I NCT01904123 Newly diagnosed GBM
and Recurrent GBM N/A

Napabucasin Phase I/II NCT02315534 Newly diagnosed GBM
and Recurrent GBM N/A

ODZ10117 N/A N/A GBM [82]

Autophagy

NSC185058 N/A N/A GBM [83]

Chloroquine Phase III NCT00224978 Newly diagnosed GBM
and Recurrent GBM [84]

Bafilomycin A1 N/A N/A GBM [85]

Quinacrine N/A N/A GBM [86]

VEGF Bevacizumab Approved Recurrent GBM [87]
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3.1. Targeting GSC Markers and Related Signaling Pathways

Several GSC markers have been identified as useful targets for defining the GSC
population. GSC markers and related signaling pathways have been implicated in GSC
maintenance, stemness characteristics, and resistance to conventional therapies. In this
regard, several studies from basic to clinical levels, have selectively targeted GSC markers,
including CD133, epidermal growth factor receptor (EGFR), Notch1, sonic hedgehog (Shh),
and STAT3, as well as related signaling pathways.

CD133 is one of the most well-characterized cell surface markers used for GSC isola-
tion. As CD133 is a cell surface protein, it can be used as a target for antibody-based therapy.
A recent study suggested three immunotherapeutic methods targeting CD133-positive
cells: use of synthetic monoclonal antibody, dual-antigen T cell engager, and chimeric
antigen receptor (CAR) T cell. The anti-CD133 synthetic antibody, RW03, significantly
reduces the self-renewal ability, while barely changing the proliferative capacity of GSCs
in vitro. The dual-antigen T cell engager that recognizes CD3 and CD133 on T cells and
GBM cells, respectively, effectively eliminates GSCs in the presence of cytotoxic T cells
in vivo. CD133-targeting CAR T cells also exhibit high anti-tumor activity in vivo without
inducing acute toxicity in normal hematopoietic stem cells that express CD133 [71]. Con-
sidering that most immunotherapeutic strategies targeting GSCs focus on antigen-specific
immunotherapy, CAR T cell therapy could be a promising strategy to target GSCs [88]. In
addition, CD133-positive cells can be selectively targeted and diminished by photothermal
therapy. GBM cells were incubated with single-walled carbon nanotubes conjugated with a
CD133 monoclonal antibody, followed by near-infrared laser exposure. The tumorigenicity
of CD133-positive cells both in vitro and in vivo was significantly inhibited, indicating
their potential for use as photothermal therapeutic agents to effectively target GSCs [89].

EGFR is a transmembrane receptor tyrosine kinase that is overexpressed in GSCs to
promote self-renewal and tumorigenicity. In particular, EGFR variant III (EGFRvIII) is the
most common mutation in GBM and is detectable in 25–33% of patients with GBM [90]. A
bispecific antibody targeting EGFRvIII and CD133 specifically eliminates EGFRvIII/CD133-
positive cells and shows higher cytotoxicity in GSCs compared to the antibody against
either EGFRvIII or CD133 [91]. To date, three generations of EGFR tyrosine kinase in-
hibitors (TKIs) are clinically available [92]. First-generation EGFR TKIs, including gefitinib
and erlotinib, are reversible inhibitors that bind to EGFR and its co-receptor HER2 non-
covalently [93], whereas second-generation EGFR TKIs, including afatinib and dacomitinib,
bind irreversibly to EGFR [92]. Third-generation EGFR TKIs, such as osimertinib, are also
irreversible inhibitors, but show much more efficient blood–brain barrier (BBB) penetration
than those from other generations due to its lower efflux by BBB multidrug efflux pumps,
suggesting its potential use for treating brain cancer [94,95]. Several phase II clinical studies
have shown that osimertinib can be used for treating EGFR-mutant lung adenocarcinoma
with brain metastasis [96,97]. Osimertinib shows excellent BBB penetration and significantly
inhibits GBM tumorigenesis in vivo [98]. Nevertheless, clinical trials have demonstrated
that osimertinib in the treatment of EGFR-mutant GBM was marginally effective due to the
intratumoral heterogeneity of GBM [77,99].

Notch1 contributes to GSC maintenance and the modulation of differentiation, and
its activity can be effectively blocked by preventing its cleavage using γ-secretase in-
hibitors [100]. Treatment with the γ-secretase inhibitor, RO4929097, efficiently reduces
the viability of the proneural subtype of GSCs, which has a higher gene expression in-
volved in the Notch pathway than the other subtypes [101]. Notch1 positively regulates
VEGF activity in GSCs, and patients with high Notch1 expression are more resistant to
bevacizumab, an inhibitor of VEGF signaling, indicating that co-inhibition of Notch1 and
VEGF might be synergistic [102]. However, a phase I clinical trial of RO4929097 with
bevacizumab demonstrated that combination therapy showed little improvement in overall
survival (OS) and progression-free survival (PFS) [103]. A separate study showed that the
γ-secretase inhibitor, N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester
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(DAPT), enhances the therapeutic efficacy of TMZ. Treatment with DAPT and TMZ inhibits
tumorsphere repopulation and tumor recurrence by suppressing Notch1 signaling [78].

Shh signaling pathway mediates cell proliferation, stem cell fate determination, and
differentiation of both normal neural stem cells (NSCs) and GSCs [104,105]. LDE225, a
smoothened antagonist that blocks the hedgehog pathway, induces autophagic cell death
in GSCs, and CD133-positive cells are more sensitive to LDE225-derived cell death than
CD133-negative cells [79]. Moreover, a separate study showed that LDE225 inhibited the ex-
pression and nuclear translocation of Gli proteins, which are transcriptional effectors of the
Shh signaling pathway [106]. Casein kinase 2 (CK2) is also positively involved in Shh/Gli
signaling, and its expression contributes to GSC maintenance via transcriptional activation
of β-catenin [107]. An orally bioavailable selective CK2 inhibitor, CX-4945 (silmitasertib),
reduces MGMT expression by blocking β-catenin expression in medulloblastoma and
sensitized tumor cells to TMZ [108]. In agreement with the results from medulloblastoma,
CX-4945 significantly promoted the anti-tumor efficacy of TMZ, both in vitro and in vivo,
by downregulating MGMT and pSTAT3 expression levels in GBM [80].

STAT3 is an important regulator of GSCs that is required for cell survival, proliferation,
and tumorigenesis in GBM. Both STAT3 inhibitors, STX-0119 and WP1066, suppress GSC
proliferation in vitro, but only STX-0119 inhibits tumor growth in a subcutaneous xenograft
model of GSCs. Additionally, STX-0119 downregulates the expression levels of GSC mark-
ers, including CD44, NANOG, nestin, OLIG2, CD133, and SOX2, as well as STAT3 target
genes, including survivin, cyclin D1, c-Myc, MMP9, TGFB1, and VEGF in GSCs [81]. In
contrast, WP1066 significantly suppresses intracranial Janus kinase 2 (JAK2)/STAT3 signal-
ing and prolonged the survival of GBM-bearing mice [109]. Napabucasin, a small molecule
inhibitor of STAT3, impairs the stemness of GSLCs by inactivating p65/RelA involved in
nuclear factor-κB heterodimer formation and suppress the tumor growth in an orthotopic
xenograft model [109]. Another small-molecule STAT3 inhibitor, ODZ10117, also decreased
the stem cell properties of GSCs and reduced tumor growth in vivo by targeting the SH2 do-
main of STAT3 [82]. More recently, it was demonstrated that the JAK2-STAT3 signaling
pathway is disrupted in GSCs, but bone marrow and X-linked (BMX) non-receptor tyrosine
kinase induces STAT3 activation to bypass the suppressor of cytokine signaling 3-mediated
negative regulation of JAK2. Consequently, BMX inhibition by ibrutinib specifically dis-
rupts GSCs and suppresses GBM tumor growth, while exhibiting minimal effects on neural
progenitor cells activating JAK2-mediated STAT3 [110].

3.2. Targeting Autophagy

Although autophagy has both tumor-promoting and tumor-suppressing roles depend-
ing on the cellular context, targeting autophagy combined with conventional therapies can
be an effective strategy to eliminate GSCs because of its regulatory properties in the stress
response [111]. Targeting autophagy related 4B, a key protein in autophagosome forma-
tion, with its antagonist (NSC185058) attenuates the tumor-initiating ability of GSCs and
sensitizes GBM cells to radiotherapy in orthotopic xenograft mouse models [83]. Chloro-
quine (CQ) is the most widely used inhibitor of autophagy, which blocks the fusion of
autophagosomes with lysosomes, leading to the accumulation of degraded proteins in
cells [112]. Currently, four clinical trials have been conducted to test the effectiveness
of CQ as an adjuvant treatment for GBM; however, the anti-tumor effects of CQ are not
exclusive to GSCs [113]. Combination treatment with radiation, CQ, and PI-103, a dual
inhibitor of phosphatidylinositol 3-kinase and mTOR, synergistically induces apoptosis
and suppresses tumorsphere formation in GSCs [114]. Similarly, inhibition of autophagy
by bafilomycin A1 sensitizes GSCs to radiotherapy and significantly decreases their ability
to form tumorspheres [85]. In contrast, adjunctive treatment with quinacrine, an autophagy
inhibitor capable of crossing the BBB, enhances the anti-tumor effect of TMZ in primary
cultured GSCs, but not in orthotopic xenograft mouse models [86].
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3.3. Oncolytic Viral Therapy

Oncolytic viral therapy is an emerging novel treatment option for GBM. Oncolytic viral
vectors are capable of hijacking cellular machinery or inducing cell lysis by intracellular
viral replication in target cells. Although adenovirus does not integrate into the host cell
genome, it can be infected with high titers and is less pathogenic to humans than other
viruses. To specifically target GSCs, viral vectors incorporate either GSC-specific promoters
or modified viral capsids to bind GSC surface markers [115]. The oncolytic adenovirus,
Delta24-RGD, is currently under investigation in a phase II clinical trial for GBM treat-
ment [115]. It is selectively replicated in GSCs expressing an abnormal p16INK4/Rb path-
way and mediates autophagic cell death of GSCs by induction of endogenous ATG5 [116].
Furthermore, Delta24-RGD–infected GSCs co-cultured with M2 macrophages induced the
transition of macrophages toward the M1 phenotype, with an increase in the expression
levels of pro-inflammatory genes and cytokines [117]. In addition, treatment with the
oncolytic herpes simplex virus, G47∆, also shifted macrophages to a tumor-detrimental
phenotype with the impaired proliferation and self-renewal of GSCs [118]. Although sev-
eral clinical trials of oncolytic viral therapy have been performed, clinical viral therapy
targeting GSCs still has limitations, such as unstable curative effects due to the excessive
heterogeneity of GSCs.

3.4. Drug Repositioning

Drug repositioning is a new direction in drug discovery that lowers the overall devel-
opment costs and risk assessments as the safety of the original drug is already verified and
its use approved by regulatory institutions. Metformin, a first-line drug for type 2 diabetes
mellitus, was tested in a phase I clinical trial as an adjunctive treatment for GBM along with
TMZ, and was found to be safe and feasible for newly diagnosed GBM [119]. Metformin
preferentially reduces the tumorsphere ability and viability of GSCs by inhibiting Akt acti-
vation, whereas differentiated GBM cells are hardly affected [120]. Furthermore, metformin
promotes the differentiation of GSCs into non-GSC phenotypes via the activation of the
adenosine monophosphate-activated protein kinase–forkhead box O3 axis [121]. Interest-
ingly, another diabetes drug, glimepiride, impairs GSC maintenance and glycolytic flux
and confers radiosensitivity to GBM [46]. Together, these studies indicate that repurposed
drugs, especially diabetes drugs, can be used for GSC-targeting therapy; however, further
research is needed to identify the relationship between diabetes drug-induced metabolic
rewiring and stemness of GSCs.

3.5. Targeting GSC Niches

GSCs are localized in GSC niches, which have been identified as protective microen-
vironments in GBM. So far, five types of GSC niches have been identified: peri-vascular,
peri-arteriolar, peri-hypoxic, peri-immune, and extracellular matrix. Each niche contains
specific cell types that control GSC maintenance by regulating specific molecular mecha-
nisms [122]. In particular, the peri-vascular niche is the most frequently described GSC
niche and constitutes abnormal vasculature with friable blood vessels, lack of organization,
hypoxia, and impaired BBB due to excessive angiogenesis. Since GSCs produce high levels
of angiogenic factors, such as VEGF, and contribute to abnormal vasculature in the perivas-
cular niche [123,124], targeting angiogenic factors may be an ideal therapeutic strategy for
targeting GSCs. Bevacizumab, a recombinant humanized monoclonal antibody against
VEGF, was approved by FDA for the treatment of recurrent GBM in 2009. Nevertheless,
bevacizumab prolonged the progression-free survival, but did not significantly improve
the overall survival in newly diagnosed and recurrent GBM cases [125]. In contrast, in a
separate phase III clinical trial, bevacizumab was shown to provide a significant overall
survival benefit for patients with isocitrate dehydrogenase 1 wild-type proneural GBM in
combination with radiotherapy plus TMZ, indicating that the antiangiogenic therapy for
GBM may be subtype-specific [126]. The VEGF receptor (VEGFR), especially VEGFR2, is
involved in the survival, proliferation, and migration of GBM, and is also an important
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target for GBM antiangiogenic therapy [127,128]. VEGFR2 is preferentially expressed in
GSLCs and is necessary for vascularization and tumorigenesis by GSLCs [128]. To date,
several multikinase VEGFR inhibitors have been developed, and some of them have been
evaluated in clinical trials for GBM [129].

4. Conclusions

GBM remains an incurable disease owing to little progress in the development of
effective therapies. GSCs are responsible for tumorigenesis, therapeutic resistance, and
tumor recurrence, but GSC-targeting drugs are not yet used in clinical practice. In this
review, we summarized various molecular mechanisms of chemoresistance in GSCs. We
also discussed the recent strategies to target GSCs with respect to GSC-specific molecular
mechanisms and novel therapeutic approaches, from basic to clinical levels. Overall, the
therapeutic strategies described in this review have shown high efficacy in targeting GSCs.
In particular, CAR T cell therapy, which can be customized for each individual patient,
is currently considered the most promising strategy. However, most have failed to be
approved for clinical application because of a lack of understanding of the underlying
mechanisms or failure to consider individual characteristics. Hence, further investigation
of the resistance mechanisms and clinical research on the subtype-specific pathways of
GSCs may offer new directions for GBM therapy.
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