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Abstract 

DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly 
dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns 
are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns 
established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compel-
ling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and 
pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated 
DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has 
not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism 
in RNA-targeting drug development.
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Background
DNA methylation is the methyl modification on the fifth 
carbon of cytosines (5-methylcytosine, 5mC) typically 
found in the context of symmetrical CpG dinucleotides in 
mammals [1, 2]. It is estimated that 70–80% of CpG sites 
in the mammalian genome are methylated [3], exclud-
ing specific regions called CpG islands (CGIs). CGIs are 
CpG-rich sequences of about 1 kilo-base (kb) in length 
that mostly exist in gene promoters [4]. Approximately 
60% of human gene promoters contain CGIs [5].

DNA methylation is established by DNA methyltrans-
ferases (DNMTs). In the simplified but widely accepted 
‘division of labor’ model, it is proposed that DNMT3A 
and DNMT3B are essential for de novo DNA meth-
ylation, while DNMT1 is for methylation maintenance 

during DNA replication [6]. Ten-eleven translocation 
(TET) family of enzymes (TET1, TET2, and TET3) 
oppose the actions of the DNMT family by oxidation of 
5mC, followed by replication-dependent dilution or thy-
mine DNA glycosylase (TDG)-dependent base excision 
repair, leading to active DNA demethylation [7–9].

Genome-scale analysis revealed distinct DNA meth-
ylation patterns across different cell types, develop-
mental stages, and in response to different stimuli [3, 
10, 11]. Aberrant DNA methylation pattern is associ-
ated with diseases, including cancer [12–15]. In cancer 
cells, whereas the general DNA methylation levels are 
reduced, the CGIs are hypermethylated in a cancer-spe-
cific manner [16, 17]. These observations raised a fun-
damental question: how does the cell type-specific DNA 
methylation pattern established across the genome? It is 
well-demonstrated that histone modification and chro-
mosome remodeling [18], as well as transcriptional fac-
tors, play key roles in the regulation of DNA methylation 
genome-wide and in site-specific manner [19–22]. Stud-
ies in recent years have accumulated compelling evi-
dence to suggest that long non-coding RNA (lncRNA) is 
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another important regulator of DNA methylation, espe-
cially in cancer.

While less than 2% of the human genome encodes pro-
teins, nearly three-quarters can be actively transcribed 
into non-coding RNAs [23], amongst the ones typically 
with length more than 200 nucleotides are cataloged as 
lncRNAs. According to a current statistical analysis, 
there are more than 173,112 annotated lncRNAs tran-
scribed from 96,411 genomic loci [24]. It is demonstrated 
that lncRNAs play versatile roles in development and 
diseases including cancer [25–27]. In the nucleus, lncR-
NAs regulate chromatin remodeling and transcription; In 
the cytoplasm, lncRNAs regulate translation and mRNA 
turnover (reviewed in ref. [27]). There is accumulat-
ing evidence up to date showing that lncRNAs mediate 
DNA methylation via multiple manners, thereby regulat-
ing target gene expression in diverse physiological and 
pathological processes. In this review, we summarize our 
current understanding of lncRNA-mediated DNA meth-
ylation, with emphasis on the functions of this mecha-
nism in cancer. The future direction and potential clinical 
application are also discussed.

LncRNAs recruit DNA methyltransferases
More than a decade ago, it was discovered that lncRNAs 
transcribed from the promoter of rRNA genes (rDNA) 
regulate DNA methylation and transcription of rDNA 
[28]. Later, it was demonstrated that this kind of lncRNA 
interacts with rDNA promoter and forms a DNA: RNA 
triplex, which is recognized by DNMT3B to epigeneti-
cally regulate rDNA expression [29, 30]. Although it is 
still unclear if this is a common model nowadays, a vari-
ety of lncRNAs have been reported to recruit DNMTs 
and regulate target gene expression, playing key roles in 
mesoderm commitment [31], muscle regeneration [32, 
33], neural differentiation [34], adipogenesis [35], mental 
disorder [36], cardiovascular diseases [37–40], osteoar-
thritis [41], as well as types of cancer (Table 1).

Using an optimized RIP-seq method, Merry et al. iden-
tified 148 lncRNAs interacting with DNMT1 in colon 
cancer cells [59], and the following investigation showed 
that one of these lncRNAs, DACOR1, could recruit 
DNMT1 and reprogram genome-wide DNA methylation 
[60]. Currently, a growing number of studies suggest that 
lncRNA might recruit DNMTs directly to specific targets 
(Fig.  1a), including both protein-coding genes  [43, 44, 
46, 47, 49–51, 55, 57, 58, 62, 63] and non-coding genes 
such as miRNA [42, 52, 93]. For instance, in esophageal 
cancer (EC), lncRNA ADAMTS9-AS2 was reported to 
recruit DNMT1/3 to CDH3 promoter, inhibiting the 
cancer cell proliferation, invasion, and migration [50]. 
Two other lncRNAs, HOTAIR and LINC01270 might 
recruit DNMTs to the promoters of MTHFR and GSTP1 

respectively, leading to chemoresistance in EC [47, 49]. 
In lung adenocarcinoma (LUAD), lncRNA HAGLR was 
identified as a tumor suppressor by recruiting DNMT1 
to the promoter of E2F1 to inhibit tumor growth [58]. A 
recent study revealed a more complex scenario, in which 
the authors identified two novel variants of lncRNA 
LINC00887, and showed that the short form variant 
suppressed Carbonic Anhydrase IX (CA9) by recruit-
ing DNMT1 to its promoter, while the long-form variant 
activated CA9’s transcription via interacting with HIF1α 
[45]. The two variants were supposed to differentially 
respond to hypoxia and oppositely control the progres-
sion of tongue squamous carcinoma [45].

Meanwhile, several groups also proposed that lncR-
NAs could recruit DNMT indirectly through the media-
tion of other factors (Fig. 1b). It was previously proposed 
that the polycomb group (PcG) protein EZH2 (Enhancer 
of Zeste homolog 2) interacts with DNMT and associ-
ates with DNMT activity [94]. Studies in recent years 
demonstrated in diverse cancers that lncRNAs might 
regulate DNA methylation of target genes via association 
with EZH2, promoting tumor growth [80, 82], metasta-
sis [79, 81, 83] and radio-resistance [84]. Alternatively, 
EZH2 might regulate DNA methylation by the forma-
tion of H3K27me3 histone modification [78], while the 
molecular mechanism involved in H3K27me3-induced 
DNA methylation is unclear. Apart from histone modi-
fier EZH2, two transcriptional regulators, NF-κB and 
PHB2 were also reported to interact with DNMT3A 
[85, 95]. LncRNA NKILA was identified as a suppres-
sor of NF-κB by sequestering NF-κB in cytoplasm [96]. 
Upon proinflammatory stimuli, NF-κB is released from 
the sequestration and translocated into the nucleus 
(Fig.  2). DNMT3A is then recruited to the promoter of 
KLF4 by NF-κB, repressing KLF4 transcription by DNA 
methylation [95]. Another study by Wang et al. reported 
a lncRNA called Lnc34a, which could interact with Pro-
hibitin 2 (PHB2) and then recruit DNMT3A to miR-34a 
promoter, silencing miR-34a expression and promoting 
colorectal cancer growth [85]. PHB2 is a multi-functional 
protein that can shuttle between nucleus and mitochon-
dria [97]. Interestingly, the nuclear-encoded lncRNA 
MALAT1 was recently discovered to be transported into 
mitochondria and to regulate the methylation status of 
mitochondrial DNA in hepatocellular carcinoma [64], yet 
the detailed mechanism is unclear.

While most of the reported function of lncRNA recruit-
ment of DNMT is to target DNMT to specific genomic 
sites or regions, recent work from Jones et al. proposed 
a different model, in which the lncRNA CCDC26 spe-
cifically interacts with DNMT1 and promote its localiza-
tion from the cytosol to nucleus (Fig.  2), while removal 
of CCDC26 leads to genome-wide hypomethylation, 
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Table 1  LncRNAs mediate DNA methylation in cancer

lncRNA Role Factor Target Function Cancer Ref

TINCR Recruit DNMT1 miR-503-5p Regulate EGFR expression BC [42]

MROS-1 Recruit DNMT3A PRUNE2 Nodal metastases OC [43]

HOTAIR Recruit DNMT1 PTEN Cell proliferation, invasion and 
migration

CML [44]

LINC00887 Recruit DNMT1 CA9 Suppress oncogenic CA9 TSCC [45]

LINC00472 Recruit DNMTs MCM6 Inhibited tumor growth and 
metastasis

TNBC [46]

LINC01270 Recruit DNMTs GSTP1 Promote tumorigenesis and drug 
resistance

EC [47]

DLX6-AS1 Recruit DNMT1 LARGE Promotes Lymph Node Metastasis PCa [48]

HOTAIR Recruit DNMTs MTHFR chemoresistance EC [49]

ADAMTS9-AS2 Recruit DNMT1/3 CDH3 Inhibits proliferation, invasion, 
and migration

EC [50]

IRAIN Recruit DNMT1/3 VEGFA Suppresses tumor growth RC [51]

PVT1 Recruit DNMT1 miR-18b-5p Promotes proliferation GBC [52]

DLX6-AS1 Recruit DNMTs CADM1 Maintenance of cancer stem cells HCC [53]

BZRAP1-AS1 Recruit DNMT3b THBS1 Promotes angiogenesis HCC [54]

KCNQ1OT1 Recruit DNMT1 Kcnq1 Promotes chemoresistance OSA [55]

PYCARD-AS1 Recruit DNMT1, G9a PYCARD Regulates apoptosis BC [56]

MIR210HG Recruit DNMT1 CACNA2D2 Promotes proliferation and inva-
sion

NSCLC [57]

HAGLR Recruit DNMT1 E2F1 Suppresses tumor growth LUAD [58]

DACOR1 Recruit DNMT1 Genome-wide CRC​ [59, 60]

LINC00628 Recruit DNMTs LAMA3 Promotes tumorigenesis and 
drug resistance

LUAD [61]

PVT1 Recruit DNMT1 BNIP3 Promotes cell proliferation GC [62]

HOTAIR Recruit DNMT3B HOXA5 Promotes cell proliferation AML [63]

MALAT1 Mitochondrial DNA Control metabolic Reprogram-
ming

HCC [64]

HOTAIR Upregulate DNMT3b PTEN Doxorubicin resistance AML [65]

RP11-159K7.2 Upregulate DNMT3A Promotes cell growth and inva-
sion

LSCC [66]

GAS5 Down-regulate DNMTs miR-424 Suppresses multiple malignant 
phenotypes

Glioma [67]

lnc-OIP5-AS1 Upregulate DNMT1 pre-miR-218–1 Promote cell motility and prolif-
eration

KS [68]

Linc-GALH Ubiquitinate DNMT1 Gankyrin Promotes metastasis HCC [69]

LUCAT1 Inhibits ubiquitination DNMT1 tumor-suppressor genes Promotes tumor formation and 
metastasis

ESCC [70]

HOTAIR Upregulate (via EZH2) DNMTs miR-122 Activate Cyclin G1 and promote 
tumorigenicity

HCC [71]

HOTAIR Upregulate DNMT1/3B HOXA1 Multidrug resistance SCLC [72]

H19 Upregulate TET3 MED12 Promotes cell proliferation UL [73]

DBCCR1-003 Sequestrate DNMT1 DBCCR1 Inhibits cell growth BCa [74]

TTTY15 Sequestrate DNMT3A TBX4 Suppresses metastasis NSCLC [75]

HOTAIRM1 Sequestrate G9a/EZH2/ DNMTs HOXA1 Promotes tumor growth and 
invasion

GBM [76]

91H Repel DNMTs H19/IGF2 locus Promotes tumorigenesis BC [77]

HOTAIR Recruit (via EZH2) HOXA1 Multidrug resistance SCLC [78]

SNHG3 Recruit (via EZH2) MED18 Promotes cell migration and 
invasion

GC [79]

HOXB13-AS1 Recruit (via EZH2) DNMT3B HOXB13 Promotes cell proliferation Glioma [80]

Lnc-LALC Recruit (via EZH2) DNMTs LZTS1 Liver metastasis CRC​ [81]
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Table 1  (continued)

lncRNA Role Factor Target Function Cancer Ref

HOTAIR Recruit (via EZH2) DNMT1 miR-454-3p Promotes tumor growth CS [82]

GIHCG Recruit (via EZH2) DNMT1 miR-200b/a/429 Promotes tumor growth and 
metastasis

HCC [83]

LINC00630 Restrict (via EZH2) DNMT3B BEX1 Suppresses cell apoptosis and 
promotes radio-resistance

CRC​ [84]

Lnc34a Recruit (via PHB2) DNMT3A miR-34a Promotes cell proliferation CRC​ [85]

H19 Inhibit (via inhibiting SAHH) DNMT3b Beclin1 Induces autophagy activation 
and tamoxifen resistance

BC [86]

LINC00662 Regulate MAT1A/ SAHH Activates SAM-dependent 
oncogenes

HCC [87]

SNHG6 Regulate (via miRNAs) MAT1A, MAT2A Genome-wide HCC [88]

H19 Inhibit (via inhibiting SAHH) DNMTs LINE-1 Benzo [a]pyrene (BaP) carcino-
genesis

Lung cancer [89]

MAGI2-AS3 Recruit TET2 LRIG1 Inhibits the self-renewal of leu-
kaemic stem cells

AML [90]

SSTR5-AS1 Recruit TET1 E-cadherin Inhibits tumor progression and 
metastasis

LSCC [91]

SATB2-AS1 Recruit (via GADD45A) TETs SATB2 Inhibits cell metastasis and regu-
lates immune response

CRC​ [92]

Abbreviations: BC Breast cancer, OC Oral cancer, CML Chronic myeloid leukemia, TSCC Tongue squamous cell carcinoma, TNBC Triple-negative breast cancer, 
EC Esophageal cancer, PCa Prostate cancer, RC Renal carcinoma, GBC Gallbladder cancer, HCC Hepatocellular carcinoma, OSA Osteosarcoma, NSCLC Non-
small cell lung cancer, LUAD Lung adenocarcinoma, CRC​ Colorectal cancer, GC Gastric cancer, AML Acute myeloid leukemia, LSCC Laryngeal squamous cell 
carcinoma, KS Kaposi’s sarcoma, ESCC Esophageal squamous cell carcinoma, SCLC small-cell lung cancer, UL Uterine leiomyomas, GBM Glioblastoma multiforme, 
CS Chondrosarcoma

Fig. 1  LncRNA interacts with DNMTs/TETs. a. LncRNAs directly recruit DNMTs/ TETs. b. LncRNAs indirectly recruit DNMTs via EZH2/PHB2. c. LncRNAs 
indirectly recruit TETs via GADD45A. d. LncRNAs sequestrate DNMTs
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increasing double-stranded DNA breaks and induc-
ing cell death [98]. More investigation is needed to con-
firm if the interaction is direct and to reveal the detailed 
mechanisms.

LncRNAs recruit TET enzymes
TET (Ten-eleven Translocation)-mediated 5mC oxi-
dation is responsible for the active erasure of DNA 
methylation [99]. Studies from recent years have 
revealed that a subset of lncRNAs has the potential 
to interact with TETs and regulate DNA methylation 
(Table 1).

In some cases, lncRNA directly interacts with TETs 
and recruits them to specific targets (Fig.  1a). It was 
demonstrated that lncRNA Oplr16 binds to the Oct4 
promoter, orchestrating the promoter-enhancer loops 
and then interacts with TET2 by the 3’ region of 
Oplr16 [100]. Similarly, Du et al. identified two motifs 
in lncRNA Platr10 that interact with Oct4 promoter 
and TET1 respectively, thus inducing TET1- mediated 
DNA demethylation at specific site [101]. A research 
by Zhou et  al. suggested that lncRNA TETILA regu-
lates TET2 subcellular localization and enzymatic 
activity by binding to the DSBH (double-stranded 
β-helix) domain of TET2 [102]. In acute myeloid leu-
kemia, lncRNA MAGI2-AS3 recruits TET2 to LRIG1 
promoter, inducing up-regulation of LRIG1 and 
inhibition of leukemic stem cell self-renewal [90]. 
Interestingly, using RNA reverse transcription-asso-
ciated trap sequencing (RAT-seq) approach to profile 

genome-wide interaction targets for lncRNAs in mice, 
a recent study reported that lncRNA Peblr20 recruits 
TET2 to the enhancer of Pou5F1 and activates the 
enhancer-transcribed RNAs [103]. Whether a simi-
lar mechanism exists in humans especially in cancer 
development remains uninvestigated.

There is also evidence supporting an indirect model 
(Fig. 1c), in which lncRNAs recruit TET via GADD45A. 
It was first reported by Arab et  al. that an antisense 
lncRNA from TCF21 gene locus termed TARID might 
recruit GADD45A (growth arrest and DNA-damage-
inducible, alpha), and GADD45A then recruits TET 
to the promoter of its partner gene and induce its acti-
vation by DNA demethylation [104]. In the following 
work, the authors further showed that TARID forms 
an R-loop at the TCF21 promoter to recruit GADD45A 
[105]. It was speculated that lncRNA PCDHα-AS might 
function in a similar mechanism to recruit TET3 via 
GADD45A, driving stochastic promoter choice to 
establish a neuronal surface identity code for circuit 
assembly [106]. In colorectal cancer (CRC), lncRNA 
SATB2-AS1 directly recruits WDR5 and GADD45A, 
promoting SATB2 transcription by histone modifica-
tion, as well as DNA demethylation [92], which inhibits 
cell metastasis and regulates the immune response in 
CRC. Recently, a database was created, with a compre-
hensive list of R-loops and their respective regulatory 
proteins [107], which might serve as a useful resource 
to identify novel lncRNAs with the potential to recruit 
GADD45A via formation of R-loops.

Fig. 2  LncRNAs regulate DNMT activity via nucleocytoplasmic shuttling. LncRNA CCDC26 interacts with DNMT1 and promotes its localization from 
the cytosol to the nucleus. LncRNA NKILA sequesters NF-κB in the cytoplasm, which hinders NF-κB recruitment of DNMT3A in the nucleus
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LncRNAs repel/ sequestrate DNA methyltransferases
While most of the current reports suggest the DNMT-
recruiting role of lncRNAs, some lncRNAs are also 
shown to repel or sequestrate DNMT to negatively regu-
late DNA methylation (Fig. 1d and Table 1).

It was first reported by Di Ruscio et al. that a lncRNA 
arising from the CEBPA gene locus binds to DNMT1 
and prevents CEBPA promoter methylation [108]. The 
lncRNA DBCCR1-003 was reported to function simi-
larly to suppress DBCCR1 promoter methylation by 
sequestrating DNMT1 and eventually to inhibit cell 
growth in bladder cancer [74]. In non-small cell lung 
cancer, lncRNA TTTY15 interacts with DNMT3A and 
inhibits the binding of DNMT3A to TBX4 promoter, 
while the lower expression level of TTTY15 is associated 
with tumor metastasis [75]. In glioblastoma, lncRNA 
HOTAIRM1 was suggested to interact with several epige-
netic factors including DNMT1/3A/3B to sequester them 
away from HOXA1 promoter [76]. In breast cancer, it was 
discovered that lncRNA 91H, which is transcribed from 
the antisense orientation of H19, promotes oncogenesis 
by masking methylation site on the H19 promoter, induc-
ing the oncogenic H19 overexpression [77].

LncRNAs control SAM/ SAH level to regulate DNMT activity
DNMT catalyzes transmethylation reactions using 
S-adenosylmethionine (SAM) as the methyl group donor, 
yielding S-adenosylhomocysteine (SAH) as a by-prod-
uct, which is also a strong feedback inhibitor of DNMT 
[6]. In mammals, SAM is biosynthesized by methionine 
adenosyltransferase (MAT) from ATP and methionine 
[109], while SAH is reversibly cleaved into adenosine 
and homocysteine by S-adenosylhomocysteine hydrolase 

(SAHH, also known as AdoHcy hydrolase, AHCY), 
which is essential to prevent accumulation of SAH [109], 
thereby relieving its inhibition to DNMT (Fig. 3).

It was proposed that lncRNA H19 binds to and inhib-
its SAHH, leading to genome-wide methylation changes 
at numerous gene loci [110]. Afterward, this mechanism 
was verified in embryonic hematopoietic stem cell devel-
opment [111], odontogenic differentiation [112], meta-
bolic abnormality [113] and neurodegenerative diseases 
[114]. In breast cancer, it was demonstrated that H19 
inhibits SAHH, resulting in the accumulation of SAH, 
which restricts DNMT3B from methylating Beclin1 pro-
moter and inducing the upregulation of Beclin1 and sub-
sequently initiates autophagy, contributing to tamoxifen 
resistance [86]. Interestingly, the interaction of H19 and 
SAHH might be enhanced by Benzo [a]pyrene (BaP), 
which is a potent carcinogen, especially in lung cancer 
[89].

Other than the SAH level regulated by SAHH, the 
SAM level regulated by MAT is another factor affecting 
DNMT activity (Fig. 3). MAT has several homologs and 
isoenzymes, among which, MAT1A is mainly expressed 
in adulthood, serving as a marker for the normal differ-
entiated liver. While MAT2A is a marker for rapid liver 
growth and dedifferentiation, which is transcriptionally 
induced in hepatocellular carcinoma (HCC) [109]. It was 
reported that the oncogenic lncRNA SNHG6 upregulates 
MAT2A expression as a competitive endogenous RNA 
(ceRNA) to sponge miR-1297, while down-regulates 
MAT1A translation by suppressing nucleocytoplasmic 
shuttling of MAT1A mRNA, thereby causing genome-
wide hypomethylation and promoting HCC [88]. 
Recently, the same group of investigators identified a 

Fig. 3  LncRNAs control SAM/SAH level to regulate DNMT activity. S-adenosylhomocysteine (SAM) is biosynthesized by MAT (methionine 
adenosyltransferase) and converted to SAH (S-adenosylhomocysteine) by DNMTs. SAH is also a strong feedback inhibitor of DNMTs and it can be 
cleaved by S-adenosylhomocysteine hydrolase (SAHH). LncRNAs control SAM/SAH level by interacting with MAT or SAHH, and carcinogens such as 
benzo [a]pyrene (BaP) might enhance the interaction
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novel lncRNA named LINC00662 that was shown to 
decay MAT1A mRNA by RNA–RNA interactions and 
degrades SAHH protein by ubiquitination [87]. These 
studies revealed a pathway regulating the level of SAM/
SAH to further control DNMT activity, with broad func-
tions in cancer and other diseases.

LncRNAs regulate the expression of DNMTs/ TETs
There is compelling evidence showing that lncRNAs con-
trol the expression of DNMTs and TETs at diverse lev-
els to regulate DNA methylation (Table 1 and Fig. 4). It 
was reported that lncRNAs promote or suppress DNMT 
expression, playing key roles in osteogenesis [115], mac-
rophage polarization [116], as well as cell invasion in 
Kaposi’s sarcoma [68] and chemoresistance in small cell 
lung cancer [72] and acute myeloid leukemia [65]. Several 
molecular mechanisms of lncRNA’s regulatory effect on 
DNMTs or TETs have been elucidated (Fig. 4).

The first mechanism is to regulate the transcription, as 
demonstrated in malignant glioma, where lncRNA GAS5 
directly interacts with EZH2 and stimulates the forma-
tion of polycomb repressive complex 2 (PRC2), thereby 
transcriptionally suppressing DNMT [67]. There is also 
a report suggesting that EZH2 is recruited by lncRNA 
HOTAIR to upregulate DNMT, while the mechanism is 
unclear [71].

The second mechanism is to regulate the stability of 
DNMT mRNA, where lncRNA functions as a mediator 

to upregulating DNMT by interaction with the stabiliz-
ing factor HuR [117], or as a ceRNA to sponge specific 
miRNA, thereby upregulating DNMT [66]. The latter 
mechanism was also discovered in TET regulation, where 
estradiol and progesterone upregulate lncRNA H19 to 
suppress miRNA Let-7 and stabilize TET3 mRNA, acti-
vating key fibroid-promoting genes in uterine leiomyo-
mas [73]. LncRNA might also exert this effect via a more 
indirect manner, as demonstrated for LINC1281, which 
stabilizes the expression of Let-7 miRNA, thus down-reg-
ulating its targets DNMT3A/B [118].

The third mechanism is to regulate DNMT at the pro-
tein level. Current studies mainly focus on protein deg-
radation by ubiquitination (Fig.  4). It was reported by 
several groups that lncRNAs serve as a protein-binding 
scaffold and induce ubiquitin-mediated DNMT protein 
degradation, epigenetically regulating target gene expres-
sion in obesity-mediated beta cell dysfunction [119], 
polycystic ovary syndrome [120] and hepatocellular car-
cinoma (HCC) [69]. The detailed mechanism involving 
the role of lncRNA in DNMT ubiquitination is largely 
unknown and warrant more deep investigation. In esoph-
ageal squamous cell carcinoma, a distinct model was pro-
posed, in which, the lncRNA LUCAT1 binds DNMT1 
to protect it from ubiquitination, while LUCAT1 knock-
down promotes ubiquitination of DNMT1 through 
UHRF1 (Ubiquitin-Like PHD and RING Finger Domain-
Containing Protein 1) [70]. However, it is well established 

Fig. 4  LncRNAs regulate the expression of DNMTs/ TETs at diverse levels. Firstly, lncRNAs might regulate the transcription of DNMTs via interaction 
with EZH2 to form repressive chromatin; Secondly, lncRNAs can stabilize DNMTs mRNA by recruiting HuR or as a miRNA sponge; Thirdly, lncRNAs 
regulate DNMT on the protein level by promoting or inhibiting its ubiquitination
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that UHRF1 deposits dual mono- ubiquitination on the 
H3 histone tail and PCNA-associated factor 15 (PAF15) 
for direct DNMT1 recruitment and DNA methylation 
maintenance [121–123], while its roles in the mediation 
of DNMT1 ubiquitination need further validation and 
investigation.

Conclusions and discussions
Studies in recent years have revealed the multi-faceted 
role of lncRNA in regulating DNA methylation. Firstly, 
lncRNAs can recruit or repel DNA modifiers (DNMTs/ 
TETs) to specific gene targets (Fig.  1; Fig.  2); Secondly, 
lncRNAs can regulate DNMT activity by controlling 
the level of DNMT cofactor SAM/ SAH (Fig.  3); Lastly, 
lncRNAs can regulate the expression of DNMTs/ TETs 
per se at multiple levels (Fig.  4). All these mechanisms 
have been investigated in development and disease, with 
emphasized roles in cancer.

While most of the studies focused on the DNA methyl-
ation of the gene promoters, there is also a recent report 
highlighting the gene-body methylation mediated by a 
lncRNA by recruiting DNMT3A, which facilitates tran-
scription of CTSG in dermatomyositic myoideum [124]. 
Whether this mechanism exists in cancer needs further 
investigation.

Although this review mainly discussed the lncRNA 
function in mediating DNA methylation, another 
two issues should be noted. The first is that lncR-
NAs are in turn regulated  targets of DNA methyla-
tion [125–128]; The second is that lncRNAs also 
mediate other epigenetic alterations such as his-
tone modification and chromosome remodeling 
[129–136]. These issues provide an additional layer 
of gene expression regulation to form complex cross-
talk between lncRNA, transcriptional factors, and 
various epigenetic modifications. More elaborate 
investigations are warranted to reveal the common 
mechanisms.

Perspectives
The emerging roles of lncRNAs in cancer through the 
mediation of DNA methylation suggest novel applica-
tions in drug development. While there are currently no 
drugs targeting lncRNA based exactly on this mecha-
nism, relevant studies shed light on this field (Fig. 5).

One direction is to design lncRNA mimics to regulate 
the activity of their target proteins, which was recently 
applied in treating a rare disease of phenylketonuria, 
where a lncRNA HULC was identified to interact with 
phenylalanine hydroxylase (PAH) and to modulate the 
enzymatic activities of PAH. In their work, the authors 
constructed a lncRNA mimic that rescues PAH enzy-
matic activity in HULC-deficient cells and mouse models, 
which showed the therapeutic potential for phenylke-
tonuria [137].

Another direction is to design small molecules directly 
targeting lncRNA-protein interactions [138–141]. Based 
on the structural insight of the interaction between 
lncRNA HOTAIR and EZH2, Ren et al. conducted a high-
throughput virtual screening and identified a compound 
that selectively interrupts the lncRNA-protein interac-
tion and inhibits cancer cell invasion and migration [142].

Owing to the fast progress of RNA structural biol-
ogy and screening technologies, as well as the in-depth 
mechanistic studies and drug delivery technologies, it is 
reasonable to expect that RNA-targeting will emerge as a 
growing therapeutic strategy for human disorders, espe-
cially cancer.
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