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Abstract

The Salvador-Warts-Hippo (SWH) pathway is an important regulator of tissue growth that is frequently subverted in human
cancer. The key oncoprotein of the SWH pathway is the transcriptional co-activator, Yes-associated protein (YAP). YAP
promotes tissue growth and transformation of cultured cells by interacting with transcriptional regulatory proteins via its
WW domains, or, in the case of the TEAD1-4 transcription factors, an N-terminal binding domain. YAP possesses a putative
transactivation domain in its C-terminus that is necessary to stimulate transcription factors in vitro, but its requirement for
YAP function has not been investigated in detail. Interestingly, whilst the WW domains and TEAD-binding domain are highly
conserved in the Drosophila melanogaster YAP orthologue, Yorkie, the majority of the C-terminal region of YAP is not
present in Yorkie. To investigate this apparent conundrum, we assessed the functional roles of the YAP and Yorkie C-termini.
We found that these regions were not required for Yorkie’s ability to drive tissue growth in vivo, or YAP’s ability to promote
anchorage-independent growth or resistance to contact inhibition. However, the YAP transactivation domain was required
for YAP’s ability to induce cell migration and invasion. Moreover, a role for the YAP transactivation domain in cell
transformation was uncovered when the YAP WW domains were mutated together with the transactivation domain. This
shows that YAP can promote cell transformation in a flexible manner, presumably by contacting transcriptional regulatory
proteins either via its WW domains or its transactivation domain.
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Introduction

The Yes-associated protein (YAP) is a transcription co-activator

that mediates the transcriptional output of the Salvador/Warts/

Hippo (SWH) pathway, which is a tumour suppressor pathway

that was first identified in Drosophila melanogaster [1]. The SWH

pathway restricts organ size in D. melanogaster and mammals, and

deregulation of the pathway leads to egregious organ overgrowth

[2,3,4]. In D. melanogaster, core components of the SWH pathway

include the scaffold proteins, Salvador (Sav) and Mob as tumor

suppressor (Mats), and the S/T kinases, Warts (Wts) and Hippo

(Hpo). These proteins limit organ growth by phosphorylation-

mediated inhibition of Yorkie (Yki), which is homologous to YAP

in mammals [5]. In mammals, LATS1 and LATS2 (the homologs

of D. melanogaster Wts) phosphorylate YAP on five sites, of which

S127 and S381 appear to be the most important [6,7]. S127

phosphorylated YAP partitions more readily to the cytoplasm

through binding with 14-3-3 proteins [6,7], while S381 phosphor-

ylation leads to YAP destabilization through ubiquitin-mediated

degradation [8]. Upstream of the core kinase cassette, an

increasing number of proteins, many of which reside at cell

junctions, have been shown to regulate SWH pathway activity [9].

Following the discovery that Yki promotes the growth of D.

melanogaster tissues, several points of evidence have shown that YAP

has oncogenic potential in mammals. Overexpression of YAP can

confer anchorage-independent growth of NIH3T3 or MCF10A

cells and can stimulate growth-factor independent growth,

migration and invasion of MCF10A cells, which are hallmark

properties of oncogenes [10,11,12]. In transgenic mice, YAP

overexpression in liver, gastrointestinal tract and skin induces

hyperplasia [6,13,14], whilst the YAP gene was found to be

amplified in mouse models of breast and liver cancer [10,15]. In

addition, YAP protein is elevated and more nuclear at a high

frequency in several types of human cancer, and increased nuclear

YAP correlates with poor patient outcome in tumors such as

ovarian, liver and lung [16,17,18,19].

Although the mechanism of YAP-induced oncogenesis is not

fully understood, several studies have suggested that the TEAD1-4

transcription factors are major mediators of YAP’s growth-

promoting ability. YAP activates TEAD1-4 and stimulates

transcription of known TEAD1-4 target genes [20,21]. In

addition, gene-profiling studies showed a large degree of overlap

of genes induced by overexpression of murine YAP or constitu-

tively active TEAD2 [22]. The association between YAP and

TEAD1-4 is mediated by the N-terminus of YAP and the C-

termini of TEAD1-4 [21]. Reducing the expression of TEAD1-4,

or destroying the interaction between YAP and TEAD1-4, blocks

YAP-induced cell transformation [20]. Similarly, in D. melanogaster,

the sole TEAD1-4 homologue, Scalloped (Sd), interacts with Yki

and is required for Yki-induced tissue overgrowth [23,24,25]
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As well as possessing a TEAD1-4-binding region in its N-

terminus, YAP possesses several other conserved protein domains.

It harbors two WW domains that mediate interactions with

important regulatory proteins that either promote or inhibit YAP’s

ability to drive transcription and promote cell transformation,

migration and epithelial to mesenchymal transition in a cell- and

context-dependent fashion [11,12,26]. YAP also possesses binding

motifs for SH3- and PDZ-domains, as well as a putative

transactivation (TA) domain in its C-terminus [27,28]. The TA

domain was first identified based on its ability to transactivate the

minimal Gal4 DNA-binding domain as well as the pEBP2a
transcription factor [29], although its relationship to YAP’s

biological functions has never before been studied. Interestingly,

homology between the C-termini of Yki and YAP is very low and

they vary greatly in length; following the second WW domain, Yki

contains a further 55 amino acids, whereas YAP contains 226–242

amino acids, depending on the splice variant. This low homology

is in direct contrast to other regions of Yki and YAP, e.g. the WW

domains, Sd/TEAD-binding domain and LATS/Wts phosphor-

ylation sites, that are highly conserved [30,31].

Therefore, we sought to investigate the requirement of the TA

domain for YAP’s ability to stimulate cell proliferation, migration,

invasion and oncogenic transformation, as well as the C-terminus

of Yki for its ability to stimulate tissue growth in vivo. Surprisingly,

we found that the TA domain was dispensable for YAP-mediated

transformation and proliferation. By contrast, this domain was

required for YAP to stimulate cell migration and invasion. These

results question an obligate requirement for the putative TA

domain for YAP’s ability to act as a transcriptional co-activator

protein.

Materials and Methods

Drosophila melanogaster strains
Transgenic flies harbouring the UAS-yki or UAS-ykiDC trans-

genes (represented schematically in Figure 1) were generated by

phiC31-mediated targeted insertion into the VIE-260E site on

chromosome 2L. Other were strains were: GMR-Gal4, 71B-Gal4,

ex697, ykiB5 [5] y w, hsFLP, UAS-CD8-GFP; tub-Gal4, FRT42D, tub-

Gal80 [32]. D. melanogaster genotypes by Figure panel:

Figure 2a) w; UAS-GFP/+; GMR-Gal4/+
Figure 2b) w; UAS-Yki/+; GMR-Gal4/+
Figure 2c) w; UAS- YkiDC/+; GMR-Gal4/+
Figure 2d) w; UAS-GFP/+; 71B-Gal4/+
Figure 2e) w; UAS-Yki/+; 71B-Gal4/+
Figure 2f) w; UAS- YkiDC/+; 71B-Gal4/+
Figure 2h) w; en-Gal4, UAS-GFP/UAS-Yki

Figure 2i) w; en-Gal4, UAS-GFP/UAS-YkiDC

Figure 2j) w, hsFLP, UAS-CD8-GFP; tub-Gal4, FRT42D, tub-

Gal80/FRT42D, ykiB5

Figure 2k) w, hsFLP, UAS-CD8-GFP; tub-Gal4, FRT42D, tub-

Gal80/UAS-Yki, FRT42D, ykiB5

Figure 2i) w, hsFLP, UAS-CD8-GFP; tub-Gal4, FRT42D, tub-

Gal80/UAS- YkiDC, FRT42D, ykiB5

Wing size measurements
Wings of male flies were mounted in Canada Balsam (Sigma)

and imaged on an Olympus BX-51 microscope. Wing size was

quantified using Adobe Photoshop CS3 as in [33]. Microsoft Excel

was used for statistical analysis (two-sample students T-test

assuming unequal variance).

Figure 1. Schematic illustration of wild-type and mutant Yorkie and YAP proteins. Wild-type Yki is 418 amino acids long, whereas Yki-DC
lacks the final 51 amino acids at the C-terminus. YAP2L is 504 amino acids long and contains two WW domains, as well as three domains in its C-
terminus: an SH3 binding domain, a transactivation domain (TA) and a PDZ-binding motif. In YAP-DC, the C-terminus of YAP is deleted. In YAP-DTA,
the TA domain is deleted. These deletions were generated in wild-type YAP2L, as well as in YAP2L-S127A, which contains a single amino acid
mutation of S127 to A. In YAP-S127A-DTA-S94A, S94 is also mutated to A. YAP-WW1+2* includes W199F and P202A mutations in WW domain 1 and
W258F and P261A mutations in WW domain 2. In YAP-WW1+2*-DTA, the WW domains are mutated as above and the TA domain is deleted.
doi:10.1371/journal.pone.0031994.g001

YAP: A Flexible Transcription Co-activator Protein
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Immunohistochemistry
Imaginal wing discs were stained as described [34], using mouse

anti-b-Galactosidase (1:200; Sigma) and goat anti-mouse 555

(1:600; Molecular Probes, Invitrogen). Images were recorded on

an Olympus FV-1000 microscope and processed using Adobe

Photoshop CS3. ykiB5 mutant clones (with and without UAS-yki

transgene expression) were generated by a 15 min heat shock

72 hrs after egg deposition and were dissected 49 hrs later.

Mammalian cell culture and analysis
MCF10A and NIH-3T3 cell transfection and infection were

performed as described previously [11,35]. Protein expression was

determined by immunoblotting with anti-Flag (Sigma) and anti-

Actin (Cell Signaling) antibodies. Two-dimensional culture of

NIH-3T3 cells, three-dimensional culture of MCF10A cells, soft

agar, cell proliferation, migration and invasion assays were

performed using published protocols [11,35].

Expression constructs
YAP-S127A, YAP-WW1+2* and YAP-S94A mutations were

described previously [11]. DC and DTA mutations were generated in

either YAP2L or YAP2L-S127A by PCR amplification and cloned

into pBabe. Yki-DC was generated by PCR and cloned into PKC26.

All plasmids were verified by sequencing. Primer sequences were:

Figure 2. The carboxyl terminus of Yorkie is dispensable for its ability to stimulate tissue growth in D. melanogaster. (a–c) Dorsal views
of fly heads expressing the indicated transgenes with the eye-specific GMR-Gal4 driver. (d–f) Wings of flies expressing the indicated transgenes using
the 71B-Gal4 driver. (g) Quantification of wing sizes of genotypes displayed in (d–f). Data is presented as mean +/2 SD, n = 20 for each genotype, ***
indicates p,0.0001. (h and i) Expression of Yki (h) and Yki-DC (i) in the posterior compartment of the developing wing (marked by GFP, green) with
the en-Gal4 driver resulted in upregulation of ex-lacZ (grayscale in single channel, red in overlay). (j–l) ykiB5 mutant clones alone or co-expressing a yki
transgene in wing discs, marked by GFP (green). Nuclei of cells are marked with DAPI (blue). (j) ykiB5 mutant clones. (k) ykiB5 mutant clones co-
expressing Yki. (l) ykiB5 mutant clones co-expressing YkiDC.
doi:10.1371/journal.pone.0031994.g002

YAP: A Flexible Transcription Co-activator Protein
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YAP-F: CCGGATCCACCATGGACTACAAAGACGAT-

GACGACAAGATGGACCCCGGGCAGCAG

YAP-DC-R: CCGAATTCCTAAGCACTCTGACTGATTCTC

YAP-DTA-R: CCGAATTCCTATAACCATGTAAGAAAG-

CTTTCTGGGCTCTGGGGAGCCAG

CCGAATTCCTATAACCATGTAAGAAAGCTTTCAGCA-

CTCTGACTGATTCTC

Yki-Myc-F: CCGAATTCATGGAACAAAAACTCATCTCA-

GAAGAGGATCTGTGCGCGTGCCTAATC

Yki-DC-R: CCTCTAGATTATTGCATTCTGGGATCATTCC

Results

The carboxyl terminus of Yorkie is dispensable for its
ability to stimulate tissue growth in Drosophila
melanogaster

Homologues of YAP are present in many species from

holozoans to humans [30,31]. Among the most conserved domains

in YAP homologues are the WW domains, the N-terminal TEAD-

binding domain and regions of the C-terminus [30,31], which

have been posited to constitute YAP’s transactivation domain [29].

Surprisingly, whilst D. melanogaster Yki displays strong conservation

of the WW and TEAD-binding domains, it is bereft of the

majority of C-terminal sequences found in YAP and has only 55

amino acids following the second WW domain compared with 242

amino acids in YAP2L. Despite this, it is still formally possible that

the shorter Yki C-terminus possesses the ability to regulate

transcription factor activity and tissue growth.

To investigate this possibility, we generated two UAS-inducible

yki transgenes; one encoding a full length Yki protein and one

encoding a Yki protein lacking the last 51 amino acids (Yki-DC)

(Figure 1). Each transgene was inserted into the same genomic

locus on chromosome II to ensure comparable overexpression.

When overexpressed in the developing D. melanogaster eye using

GMR-Gal4, each transgene caused strong overgrowth (Figures 2a–

c). To verify these findings in another tissue, each transgene was

overexpressed in the developing wing using 71B-Gal4. Overex-

pression of UAS-Yki or UAS-Yki-DC increased wing size relative to

the control by 16.2% and 9.9%, respectively, showing that each

transgene caused tissue overgrowth in a different tissue type

(Figures 2d–g). Yki drives expression of genes such as DIAP1 and

expanded (ex). To determine whether the C-terminus of Yki was

required for Yki to regulate ex transcription, we assessed ex levels

using a lacZ enhancer-trap in the ex locus in the posterior

Figure 3. YAP does not require its transactivation domain to transform cells. (a and b) Quantitation of the number of colonies expressing
vector alone (CON) or the indicated YAP plasmids in MCF10A (a) or NIH-3T3 (b) cells grown in soft agar. (c) Representative pictures of soft agar assays
from (b). (d) Quantitation of the size of colonies expressing the indicated plasmids in NIH-3T3 cells grown in soft agar. Data in a, b and d are
presented as mean +/2 SD, n = 3.
doi:10.1371/journal.pone.0031994.g003

YAP: A Flexible Transcription Co-activator Protein
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compartment of the wing. In the presence of either yki transgene,

lacZ levels were elevated to similar degrees, showing that Yki does

not require its C-terminus to regulate transcription from the ex

locus (Figures 2h–i9). Finally, we investigated the ability of yki-DC

to overcome growth and survival deficiencies associated with yki

loss of function clones [5] by expressing each transgene in ykiB5

clones using the MARCM technique [32]. Both the yki and yki-DC

transgenes rescued the size of yki clones to similar degrees

(Figures 2j–l). Collectively, this data conclusively demonstrates that

Yki does not require is C-terminus to promote tissue growth and

survival, or transcription of a well-characterized Yki target gene.

YAP does not require its transactivation domain to
transform cells

The ability to induce anchorage-independent cell growth is a

hallmark of oncogenes; this includes YAP, which has been shown

to promote anchorage-independent growth of both MCF10A and

NIH-3T3 cells [10,11,12,36]. To investigate the functional role of

the YAP C-terminus, we first sought to determine whether it is

required for YAP to induce anchorage-independent growth. All of

the following experiments were performed with YAP2L or

derivatives of the YAP2L gene, but for simplicity, are referred to

as YAP. Two mutants lacking either the entire C-terminal domain

following the second WW domain, YAP-DC (deletion of residues

278 to 504 in YAP2L), or the region previously defined as the YAP

transactivation domain [29], YAP-DTA (deletion of residues 291

to 497 in YAP2L), were constructed in either wild type YAP2L or

in YAP2L-S127A, a hyperactive YAP where the major LATS1/

LATS2 phosphorylation site has been mutated from S to A

(Figure 1). Stably infected MCF10A or NIH-3T3 cells were

generated that exhibited robust expression of wild type YAP or

mutant YAP proteins (Figure S1).

To assess the ability of different YAP mutants to confer

anchorage-independent cell growth, each cell line was plated in

soft agar assay and incubated for 7 (NIH-3T3) or 14 (MCF10A)

days. Consistent with previous reports, YAP induced robust colony

growth in soft agar compared with the vector control. By contrast,

YAP-DC failed to induce growth in soft agar (Figure 3a). Similarly,

YAP-S127A-DC induced minimal colony growth in soft agar

compared to YAP-S127A (Figure 3a). Unexpectedly, we observed

no significant difference in colony number between cells

expressing either YAP-DTA or YAP. In addition, YAP-S127A-

DTA stimulated growth of a greater number of colonies in soft

agar than YAP-S127A (Figure 3a). Similar results were obtained

when the described YAP proteins were expressed in NIH-3T3 cells

with respect to colony number in soft agar, however colony size

was reduced in cells expressing YAP-S127A-DTA compared with

YAP-S127A (Figures 3b–d). These results show that, unexpectedly,

the YAP TA domain is not required for its ability to induce

anchorage-independent growth and instead implicate the TA

domain in mediating negative regulation of YAP activity.

Transactivation domain-deficient YAP requires TEAD
transcription factors to transform cells

TEAD1-4 transcription factors are major effectors of the oncogenic

activity of YAP [20]. Therefore, we sought to determine whether

YAP-DTA and YAP-S127A-DTA-mediated cell transformation was

reliant on TEAD transcription factors. Given that S94 of YAP

mediates interaction with TEAD1-4 and mutation of S94 to A

abolishes YAP’s transformation potential [20], we investigated

whether S94 was also required for YAP-DTA to transform cells.

Stably transfected MCF10A and NIH-3T3 cells were generated that

expressed YAP-S127A-DTA-S94A. When these cell lines were plated

in soft agar, the S94A mutation was found to almost completely revert

the ability of YAP-DTA to induce growth in soft agar of both

MCF10A cells (Figure 4a) and NIH-3T3 cells (Figure 4b). These

results show that, despite the deletion of the TA domain, YAP retains

the ability to transform cells in a TEAD-dependent fashion.

YAP-mediated cell transformation requires either the WW
domains or its transactivation domain

Previously, we discovered that the WW domains of YAP and its

D. melanogaster orthologue, Yki, played cell-specific roles with

respect to induction of cell transformation and tissue growth,

Figure 4. Hyperactivated YAP requires WW domains and TEAD transcription factors to stimulate cell transformation. Quantitation of
number of colonies expressing vector alone (CON) or the indicated YAP plasmids in MCF10A cells (a) or NIH-3T3 cells (b). Data is presented as mean
+/2 SD, n = 3.
doi:10.1371/journal.pone.0031994.g004

YAP: A Flexible Transcription Co-activator Protein
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respectively [11]. Mutation of the YAP WW domains increased

the ability of YAP to transform MCF10A cells, but reduced YAP’s

ability to transform NIH-3T3 cells. WW domain mutations also

blocked Yki’s ability to stimulate tissue growth [11]. These results

suggested that the YAP/Yki WW domains interact with a

protein(s) that is required for its ability to promote gene

transcription in a cell-specific manner. Based on these earlier

findings and our discovery that in MCF10A cells the TA domain

of YAP is not required to induce growth in soft agar, we

hypothesized that YAP activates transcription factors either by its

TA domain or by proteins that interact with its WW domains.

Therefore, we reasoned that mutation of both the TA domain and

the WW domains would render YAP unable to transform

MCF10A cells. Consistent with previous results, WW domain

mutant YAP (YAP-WW1+2*) induced growth in soft agar with

similar potency as YAP-S127A (Figure 4a) [11]. Deletion of the

TA domain increased the ability of YAP-S127A to induce growth

in soft agar even further. By contrast, when both the WW domains

were mutated and the TA domain was deleted (YAP-WW1+2*-

DTA), YAP’s transforming potential was abolished (Figure 4a).

This shows that in MCF10A cells, YAP can tolerate mutation of

either the WW domains or the TA domain and in fact, each of

these mutations alone causes YAP hyperactivation. However, YAP

requires at least one of these domains to be intact to transform

cells, which suggests inherent flexibility in YAP’s ability to

transform cells and activate TEAD transcription factors.

The transactivation domain is not required for YAP to
promote cell proliferation

In previous studies, YAP was shown to enhance the prolifer-

ation rate of both NIH-3T3 cells grown in a two-dimensional (2D)

culture, as well as MCF10A cell colony size grown in a three

dimensional (3D) matrigel assay [11,12,22]. To investigate the role

of different YAP protein domains for YAP’s ability to increase

proliferation rates, we assessed NIH-3T3 cells expressing different

YAP variants plated in 0.5% serum. As shown in Figure 5a, the

proliferation curve of stably infected NIH-3T3 cell lines could be

Figure 5. YAP’s transactivation domain is dispensable for its ability to stimulate cell proliferation. (a) Proliferation rate of NIH-3T3 cells
expressing vector alone (CON) or the indicated YAP plasmids when cultured in medium containing 0.5% serum. (b) Quantitation of the number of
colonies expressing vector alone (CON) or the indicated YAP plasmids in MCF10A cells grown in soft agar for 14 days. Data in (a) and (b) is presented
as mean +/2 SD, n = 3. (c) Representative pictures of acini of MCF10A cells quantified in (b).
doi:10.1371/journal.pone.0031994.g005

YAP: A Flexible Transcription Co-activator Protein
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classified into two groups: YAP-S127A and YAP-S127A-DTA

both exhibited increased proliferation rates, whereas YAP-DC and

YAP-S127A-DTA-S94A proliferated at a similar rate as vector

control cells, and began to die after three days in 0.5% serum

medium. This shows that deletion of the TA hyperactivates, rather

than impedes, YAP’s ability to increase rates of NIH-3T3 cell

proliferation in low serum medium.

In addition, we assessed the size of acini formed by MCF10A

cells that expressed different YAP variants, in 3D matrigel. As

shown in Figures 5b and c, acini were larger when cells expressed

YAP-S127A compared with vector control cells. However,

additional deletion of the C-terminus reduced acini size of cells

expressing YAP-S127A-DC, showing that the YAP C-terminus is

required for this phenotype. Acini formed by cells expressing YAP-

S127A-DTA were even larger than cells expressing YAP-S127A,

further enforcing that the TA domain normally inhibits YAP

function, consistent with our earlier results. In addition, the ability

of YAP-S127A-DTA to stimulate MCF10A cell acini size was

dependent on TEAD transcription factors, as introduction of the

S94A mutation into YAP-S127A-DTA substantially reduced acini

size (Figures 5b and c).

The transactivation domain is essential for YAP to
stimulate cell migration and invasion

To investigate the role of the TA domain of YAP in other

functional settings, we assessed the ability of each YAP mutant to

promote invasive growth in a 3D matrigel assay. Consistent with

previous reports, overexpression of YAP-S127A in MCF10A cells

cultured in matrigel caused spike-like protrusions, which is defined

as an invasive phenotype [data not shown and [11]]. The number

of invasive acini in matrigel was almost completely abolished in

each of the YAP mutants (Figure 6a). We also assessed the ability

of each YAP mutant to promote cell migration in a two-

dimensional scratch assay. Cells were grown to confluence,

scratched with a pipette tip and wound closure assessed 24 hours

later. Cells expressing each mutant version of YAP migrated far

less efficiently than cells expressing YAP-S127A, which exhibited

enhanced migratory properties, consistent with our previous

findings (Figure 6b) [11]. Taken together, these results show that

the TA domain is required for YAP’s ability to stimulate MCF10A

cell invasion and migration, which contrasts with the requirement

of this domain for anchorage-independent growth, colony growth

and proliferation in low-serum media.

Discussion

The Yorkie and YAP transcriptional co-activator proteins are

conserved regulators of tissue growth in flies and mammals,

respectively. Given the high degree of functional conservation

between these proteins and the mechanism by which they are

regulated, we were intrigued by the lack of conservation in the C-

termini of these proteins, particularly because the C-terminus of

YAP contains a transactivation domain that is necessary for its

ability to activate transcription factors in vitro [29]. To investigate

this apparent conundrum, we generated various YAP and Yki

mutant proteins and assessed their activity using an array of

functional assays.

Based on the previous finding that YAP possessed a potent TA

domain that was required for YAP to activate the pEBP2a
transcription factor [29], we predicted that it would be required

for YAP to transform cells. Surprisingly, this was not the case as we

found the TA domain to be dispensable for YAP’s ability to induce

transformation and proliferation of cells. In fact, this version of

YAP displayed increased activity, pointing to the existence of YAP

inhibitors that act via this domain. One such candidate is LATS1/

2, which phosphorylates YAP S381 and primes it for ubiquitin-

mediated degradation [8], although other inhibitors might also act

via the TA domain.

By contrast, the TA domain was required for YAP to stimulate

cell migration and invasive properties in cells cultured in 3D. This

suggests that the YAP TA domain has context-specific roles: it is

Figure 6. YAP requires its transactivation domain to promote cell migration and invasion. (a) Quantitation of acini with invasive
protrusions in MCF10A cells expressing vector alone (CON) or the indicated YAP plasmids. (b) Quantitation of enclosed area after a scratch was
introduced for 20 hours in confluent MCF10A cells expressing vector alone (CON) or the indicated YAP plasmids. Data are presented as mean +/2 SD,
n = 3.
doi:10.1371/journal.pone.0031994.g006

YAP: A Flexible Transcription Co-activator Protein
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required for YAP to regulate genes that stimulate migratory

behaviour, but not proliferation and survival. We previously

observed a similar relationship when studying WW domain

mutant versions of YAP in NIH-3T3 cells. A hyperactive version

of YAP required its WW domains to stimulate cell migration, but

not to promote growth in soft agar [11]. Alternatively, YAP might

require different activity thresholds to regulate transcription of

different classes of genes: e.g. a low threshold for genes that control

cell survival and proliferation, and a high threshold for genes that

control cell migration and invasion. The absence of the TA

domain in Yki, might explain why, at least to date, Yki has not

been found to regulate cell migration or motility in D. melanogaster.

Interestingly, when either the WW domains or TA domain were

mutated, YAP’s transformation potential increased substantially,

but when both domains were mutated, YAP activity was lost. This

suggests that YAP is a flexible transcription co-activator and that it

can regulate transcription of genes that transform cells by

complexing with proteins either through its WW domain or its

TA domain. In either scenario, we found that YAP stimulates

transformation via TEAD transcription factors. Our finding that

the TA domain is not required to mediate transformation via

TEAD transcription factors is supported by our study of Yki. The

WW domains and the TEAD-binding domain are conserved

between Yki and YAP, but the Yki and YAP C-termini are poorly

conserved. The fact that a Yki protein that lacked the C-terminus

could rescue loss of the wild-type protein shows that Yki activates

its partner transcription factors independently of its C-terminus.

Based on several recent studies, Yki most likely interacts with

transcriptional regulatory proteins via its WW domains [37,38].

This mechanism appears to have been conserved in mammalian

YAP, with an additional layer of complexity, whereby YAP can

promote transcription by interacting with proteins either via its

WW domains or the TA domain.

The SWH pathway has been reported to be frequently

subverted in human cancer, largely based on the observation that

YAP is localized to the nucleus in a high percentage of solid

tumours. Based on these findings and YAP’s potent pro-tissue

growth and pro-transformation activity, it has been touted as a

candidate for therapeutic intervention. This study highlights a

remarkable degree of complexity in both the regulation of YAP

activity and the mechanism by which YAP regulates gene

transcription. It also suggests redundant mechanisms by which

YAP can regulate expression of genes that promote cell

transformation, and that the same YAP domains mediate both

positive and negative regulatory interactions. Therefore, great care

will be required when designing therapies aimed at disabling YAP

function in transformed cells.

Supporting Information

Figure S1 Expression of wild-type and mutant YAP
proteins in MCF10A and NIH-3T3 cells. Expression levels

of YAP in cells stably expressing vector alone (CON) or various

YAP proteins in either MCF10A or NIH-3T3 cells. Actin levels

were determined to ensure even loading. Molecular mass markers

in kDa are shown on the left.
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