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Abstract

The peptide repertoire that is presented by the set of HLA class I molecules of an individual is formed by the different
players of the antigen processing pathway and the stringent binding environment of the HLA class I molecules. Peptide
elution studies have shown that only a subset of the human proteome is sampled by the antigen processing machinery and
represented on the cell surface. In our study, we quantified the role of each factor relevant in shaping the HLA class I
peptide repertoire by combining peptide elution data, in silico predictions of antigen processing and presentation, and data
on gene expression and protein abundance. Our results indicate that gene expression level, protein abundance, and rate of
potential binding peptides per protein have a clear impact on sampling probability. Furthermore, once a protein is available
for the antigen processing machinery in sufficient amounts, C-terminal processing efficiency and binding affinity to the HLA
class I molecule determine the identity of the presented peptides. Having studied the impact of each of these factors
separately, we subsequently combined all factors in a logistic regression model in order to quantify their relative impact.
This model demonstrated the superiority of protein abundance over gene expression level in predicting sampling
probability. Being able to discriminate between sampled and non-sampled proteins to a significant degree, our approach
can potentially be used to predict the sampling probability of self proteins and of pathogen-derived proteins, which is of
importance for the identification of autoimmune antigens and vaccination targets.
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Introduction

Major histocompatibility complex (MHC) class I molecules play

a crucial role in the adaptive immune response of higher

vertebrates. These molecules, in humans referred to as human

leukocyte antigen (HLA) class I molecules, bind peptides derived

from endogenous proteins of host or, in the case of infected cells, of

pathogen origin and present them to circulating CD8+ T

lymphocytes and natural killer (NK) cells. The presentation of

self peptides by an individual’s HLA class I molecules has an

impact on positive and negative selection of CD8+ T lymphocytes

in the thymus [1,2], maintenance of naive T cells in the periphery

[3,4], and inhibition of NK cells through recognition of self

peptides in the context of HLA class I molecules by killer cell

immunoglobulin-like receptors (KIR) [5].

Generally, HLA class I ligands are derived from intracellular

proteins, which are degraded by the proteasome into peptide

fragments. These peptides are then translocated by the transporter

associated with antigen processing (TAP) into the lumen of the

endoplasmic reticulum (ER), where they may be loaded onto an

HLA molecule if the peptide sequence fits the HLA molecule’s

binding preference. The C-terminus of an HLA ligand is assumed

to be mainly determined by the proteasome (even though recently

a carboxypeptidase has been found to contribute to C-terminal

editing [6]), whereas the N-terminus may be trimmed by cytosolic

and endoplasmic aminopeptidases after proteasomal cleavage [7].

Finally, the HLA-peptide complexes are transported to the cell

surface for presentation to CD8+ T cells and NK cells.

Several studies analyzed peptide data sets obtained by peptide

elution from specific cell lines and peptide sequencing by mass

spectrometry to characterize the HLA peptide repertoire

[8,9,10,11]. Most of these studies focused on characterizing the

function and subcellular localization of source proteins and

suggested that HLA class I presented peptides are sampled from

functionally and compartmentally diverse proteins, with a

functional bias towards RNA-binding proteins [8]. In human

cells, a weak correlation has been found between the abundance of

HLA class I ligands presented and the corresponding mRNA levels

[10,11], whereas peptides eluted from murine thymocytes were

preferentially derived from highly abundant mRNAs [12].

Here, we take a different angle to the question of what fraction

of the human proteome is represented on the cell surface. We

studied two large HLA ligand data sets obtained by peptide elution

[13,14] with the aim to quantify the role of several factors shaping

the peptide repertoire of HLA class I molecules. We show that the

gene expression level, protein abundance, rate of potential binding

peptides in a protein and the processing quality of these peptides

all contribute to which proteins are sampled and which peptides

are chosen to be presented on the cell surface. Having studied the

impact of each of these factors separately, we subsequently
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combined all factors in a logistic regression model in order to

quantify their relative impact. This model can potentially be used

to predict the sampling probability of self proteins and of

pathogen-derived proteins.

Results

Elution data sets and procedure to determine HLA
binders

We studied two different peptide elution data sets. One large set,

which we will call the Johnson data, comprises 4717 human

peptides and 105 vaccinia peptides eluted from vaccinia infected

cells [13]. A second set of eluted peptides, the Ben Dror data,

comprises 569 human peptides eluted from soluble HLA-B*27:05

(see Materials and Methods for details) [14]. By mapping each

eluted peptide to the human proteome, we were able to uniquely

identify the source protein for 90% (4243 of 4717) of the Johnson

data and 81.9% (466 of 569) of the Ben Dror data. Peptides that

mapped to several human proteins (about 9%) or for which no

source protein could be identified (only 0.4–1.1%) were excluded

from further analysis.

The cell line used for the generation of the Johnson data was

homozygous for HLA-A*02:01, B*15:01 and C*03. In order to

assess which of these three HLA molecules each of the reported

peptides was eluted from, we employed NetMHC 3.2 [15,16], a

tool for HLA-peptide binding prediction. This tool is applicable

for peptides of 8 to 13 amino acids in length [15]. Of all eluted

peptides of appropriate length and that could be mapped uniquely

to a human source protein (4113 of 4243 peptides), we were able

to assign 86.4% (3552 of 4113) to either being eluted from A*02:01

or B*15:01. The remaining 561 peptides could potentially have

been eluted from C*03. Binding predictions, however, suggested

C*03 binding only for a minor fraction of these (28% for all

peptide lengths and 37% for 9mers), and therefore we decided to

exclude these peptides from further analysis. Surprisingly, we

identified twice as many potential B*15:01 binders as A*02:01

binders, originating from a larger number of source proteins

(Fig. 1). This observation is in agreement with the estimation given

by the original study [13], in which the assignment to the

restricting HLA molecule was solely determined based on the C-

terminal residues of the eluted peptides. Likewise, among the

vaccinia-derived peptides, a larger number of peptides (1.5-fold)

were eluted from B*15:01 than from A*02:01, mapping to a larger

number of vaccinia proteins, even though in this case the

difference was less pronounced (Fig. 1).

Of the 569 eluted peptides in the Ben Dror data, 466 peptides

(81.9%) mapped uniquely to 396 human source proteins. Among

these peptides, 420 (90.1%) were predicted to bind to HLA-

B*27:05, the soluble HLA molecule expressed by the cells studied.

For all three HLA alleles studied, the majority of sampled proteins

were represented by only a single peptide: 86.9% (457 of 526) of

the proteins sampled by A*02:01, 76.1% (981 of 1289) of the ones

Figure 1. Composition of the Johnson data. The pie charts depict the fractions of eluted peptides that were predicted to bind to HLA-A*02:01,
B*15:01, both, or neither of the two alleles. Predictions were only performed for peptides of 8–13 amino acids in length (n = 4113 for human-derived
peptides, n = 103 for vaccinia). The Venn diagrams indicate the number of source proteins these peptides originated from.
doi:10.1371/journal.pcbi.1002517.g001

Author Summary

HLA class I molecules are expressed on the cell surface of
almost all cells of the human body in complex with short
fragments (peptides) of cytosolic proteins, thereby provid-
ing a snapshot of the intracellular state of a cell to
circulating CD8+ T cells. Several processes are involved in
shaping the peptide ligand repertoire of an HLA class I
molecule, which generally represents only a small fraction
of the proteins available in the cytosol. In our work we
addressed protein sampling by HLA class I molecules to
answer two questions: 1) Which proteins are sampled by
the antigen processing pathway and why, and 2) which
peptides of a given protein are picked to represent the
source protein on the cell surface? To this end we
quantified the contribution of each process involved in
peptide processing and presentation individually and
combined them into a logistic regression model. This
simple model enabled us to predict the sampling
probability of self proteins and may aid in the identifica-
tion of autoimmune antigens.

Proteome Sampling by HLA Class I
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sampled by B*15:01, and 86.4% (342 of 396) of the proteins

sampled by B*27:05 gave rise to only one eluted peptide.

In total, the two elution data sets had 160 source proteins in

common. GO-term enrichment analysis (see Materials and

Methods) revealed that for this set of proteins biological processes

relating to the cell cycle and its regulation as well as nucleic acid

metabolic processes were overrepresented.

Eluted peptides are characterized by higher binding
affinity and more efficient processing

The observation that a protein is represented on the cell surface

by one or more peptides allows the assumption that the protein

must have been available in sufficient amounts or must have been

present at an accessible subcellular location to be available for the

antigen processing machinery. What factors then determine which

of the potential HLA binders of a given protein will be found on

the cell surface?

In order to characterize the obtained peptide set, we employed

prediction methods for HLA binding and antigen processing (see

Materials and Methods). For the identified source proteins, we

predicted all potential (9mer) binders to HLA-A*02:01, B*15:01,

and B*27:05 and compared the predicted binding affinity of the

eluted peptides (which form a subset of all potential binders) with

the predicted binders from the same source protein that were not

found in the elution. To ensure an unbiased comparison, the set of

eluted peptides was limited to 9mers that were predicted to bind to

the respective HLA molecule. We found that eluted peptides bind

their HLA molecule with a significantly higher (predicted) binding

affinity than other potential binders (Fig. 2A).

However, not all predicted high-affinity binders were found in

the elution. In order to investigate whether this observation may

be due to inefficient processing of these peptides, we predicted the

probability of C-terminal processing (using NetChop [17]) for all

eluted peptides and all predicted binders that were not found in

the elution data set. Based on these predictions, the set of eluted

peptides is indeed more likely to arise from antigen processing as

compared to the set of predicted binders (Fig. 2B). Possibly due to

co-evolution between HLA class I molecules and the immuno-

proteasome [18], predicted binding affinity and C-terminal

processing probability show a weak (but significant) correlation

(Kendall’s tau = 20.065, p-value,0.0001). Therefore, we investi-

gated the effect of processing without the influence of HLA

binding by comparing the eluted peptide set to an affinity-matched

subset of predicted binders to ensure that eluted and predicted

peptides show the same distribution of binding affinities (Fig. S1A).

Also for this subset of predicted binders we observed a significantly

lower C-terminal processing probability (Fig. S1B). NetChop was

trained on the C-termini of known HLA ligands and therefore

predicts the combined effect of proteasome and TAP. Investigating

the impact of these two processes separately (by employing

prediction methods that are part of mhc-pathway [19,20])

suggested that the C-termini of eluted peptides are more likely

to be produced by the immunoproteasome and that these peptides

are more efficiently transported by TAP (Fig. S2).

For non-self peptides, we observed the same characteristics.

Eluted peptides that originated from vaccinia proteins showed a

significantly higher binding affinity to the respective HLA allotype

than other potential binders derived from the same set of proteins

(Fig. S3A). A difference in predicted C-terminal processing

probability between eluted and other peptides was, however, only

found for A*02:01-binding vaccinia peptides (Fig. S3B). Interest-

ingly, we did not observe a difference in predicted HLA binding

affinity between the eluted peptides that originate from human

proteins and vaccinia proteins (results not shown). This is in line

with an earlier study, which showed that the HLA alleles analyzed

here do not show a preference for presentation of non-self over self

peptides, while others, foremost HLA-A alleles, do [21,22].

Protein abundance impacts protein sampling rate
After having investigated what factors determine which peptides

of a given protein are chosen to be presented, we turned to

investigate which features of a protein impact protein sampling

itself. In other words, why are some proteins sampled while others

are not? Previous studies have shown that proteins giving rise to

HLA ligands are foremost intracellular, distributed over various

intracellular compartments with a slight bias towards the cytosol

[8,23]. Predicting the subcellular localization of each of the

sampled proteins in the two data sets of our study, we found

similar results: Overall, the distribution of cellular compartments

for the sets of source proteins significantly differed from the

distribution for the complete human proteome (Fig. S4), and

specifically, extracellular proteins were significantly underrepre-

sented in both elution data sets (p,1e-09, Chi-squared test), while

proteins resident in the cytosol were overrepresented (p,2e-05). In

addition, we tested several protein characteristics for their ability

to discriminate source proteins from proteins that were not

sampled by the antigen processing pathway. For all three HLA

allotypes studied, source proteins are longer, more abundant, and

the corresponding genes are more highly expressed (Fig. 3). These

factors, however, are not independent. As expected, gene

expression level and protein abundance are moderately correlated

(Spearman’s rho = 0.3, p-value,2e-16). Additionally, we noticed

that protein length and abundance are inversely correlated to each

other, with shorter proteins being more abundant (rho = 20.41, p-

value,2e-16). Since we found that sampled proteins were longer

but at the same time more abundant, correcting for protein length

(by choosing a random subset of non-sampled proteins with the

same length distribution as the set of sampled proteins) enhanced

the difference in protein abundance even (Fig. S5). In addition,

proteins that were sampled in both elution studies (n = 160) were

found to be more abundant than source proteins that emerged

only in one of the data sets (median abundance = 17.54 ppm (parts

per million, see Materials and Methods) compared to 3.15 ppm,

p = 1e-10). Moreover, we found a significantly higher rate of

predicted binders (in the following referred to as the ‘‘predicted hit

rate’’) in sampled proteins, most pronounced for A*02:01-specific

source proteins (median hit rate = 0.3 for sampled proteins vs.

0.025 for non-sampled proteins, p = 7e-14). Interestingly, within

the same cell line, proteins that were sampled only by B*15:01

show a significantly lower predicted hit rate for A*02:01 than

proteins that have been sampled by A*02:01 (median hit

rate = 0.030 vs. 0.026, p = 7e-13), further emphasizing that the

relative number of potential binding peptides does have an

influence on sampling probability.

We do not have abundance data for vaccinia proteins available,

but Assarsson et al. [24] measured vaccinia gene expression at

several time points after infection. For each time point, we found a

positive correlation between the gene expression level and the

sampling frequency of the proteins when comparing single-

sampled and multiple-sampled source proteins with those that

did not give rise to eluted peptides (Fig. S6). Additionally, as for

human proteins, sampled vaccinia proteins are longer than the

remaining vaccinia proteins (p,0.01, data not shown).

Putting it all together - prediction of protein sampling
Overall, all tested factors - protein length, gene expression level,

protein abundance, and predicted hit rate - show differences

between the set of sampled proteins and the proteins that were not

Proteome Sampling by HLA Class I
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sampled. In order to quantify the contribution of each factor and

to determine which combination of factors best describes the data,

we performed a multiple logistic regression analysis. Starting from

a maximal model including all factors as explanatory variables, we

obtained a minimal model by iterative exclusion of non-significant

factors. Before running the regression, we first randomly picked a

subset of non-sampled proteins to form a ‘‘negative’’ set of equal

size as the positive set of sampled proteins. This balanced set of

negative and positive data points was then used to perform a

logistic regression and performance analysis (see Materials and

Methods), which was repeated 100 times with different random

negative subsets. The performance was measured as the Spearman

correlation coefficient between the known sampling status (i.e., a

binary value) and the predicted sampling probability. For all three

HLA allotypes, a regression model combining protein abundance,

protein length and predicted hit rate showed the best performance

(the best examples are given in Fig. 4A–C). Since we found that

eluted peptides are more efficiently processed than other HLA-

binding peptides, we tested whether we could improve the model

by filtering the set of predicted binders for processing efficiency.

For all three HLA allotypes, this filtering step improved the

prediction performance only to a minor extent (results not shown).

As gene expression and protein abundance are moderately

correlated, we tested which of these two factors would carry more

information for predicting protein sampling. We found that

protein abundance clearly outcompetes gene expression (Fig. 5).

Among the three HLA allotypes, the prediction performance of

the B*27:05 model was best (Fig. 4C), with an average AUC (area

Figure 2. Eluted peptides show higher binding affinity to HLA and more efficient C-terminal processing. The boxplots compare eluted
9mer peptides and predicted binders from the same set of source proteins in terms of (A) predicted binding affinity to A*02:01, B*15:01, and B*27:05,
respectively, and (B) predicted C-terminal processing probability. For the matter of correctness, we removed eluted peptides from the data set that
had also been part of the NetChop training set (n = 15).
doi:10.1371/journal.pcbi.1002517.g002
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under the receiver operating characteristic curve [25]) value of

0.74 compared to 0.70 for A*02:01 and 0.68 for B*15:01 (Fig. 4D).

Overall, the resulting logistic regression models were able to

discriminate between sampled and non-sampled proteins to a

significant degree (Fig. 4A–C).

Discussion

Only a small fraction of the human proteome is sampled by the

class I antigen processing pathway and presented on HLA class I

molecules. Previously it was suggested that the cellular localization

of a protein and its function play a role in this sampling process

[8,23]. Here we show that other protein characteristics like protein

length, abundance, and rate of predicted binders also largely

influence the sampling probability of a protein and thereby shape

the peptide repertoire of an HLA class I molecule.

We analyzed two large peptide elution datasets; one derived

from a vaccinia virus infected cell line, and one obtained from cells

transfected with a gene encoding a soluble HLA class I molecule.

Identification of the source protein of each peptide showed that, in

spite of the huge difference in proteome size between human and

vaccinia virus, a similar fraction of either proteome (10–12% of all

proteins) was sampled by the antigen processing pathway. We

characterized the set of eluted peptides in terms of antigen

processing and presentation and observed a significantly higher

binding affinity to the respective HLA molecule and more efficient

processing for the eluted peptides than for other potential binders

derived from the same set of source proteins. The predicted

median affinity of eluted peptides was 14 nM IC50 for A*02:01,

65 nM IC50 for B*15:01, and 107 nM IC50 for B*27:05. These

values are much lower than the 500 nM, which are often used as a

threshold to discriminate HLA-binding peptides from non-binders

[26]. This observation could reflect that high-affinity binders are

preferentially loaded onto the HLA molecule among others with

the help of the ER resident chaperone tapasin [27,28], or that they

have a longer ‘‘life span’’ on the cell surface because they form a

more stable complex with the HLA molecule, which increases

their chance of being eluted (even though this is rather related to

the off-rate of a peptide than to its affinity). Especially for the

elution studies involving soluble HLA molecules, it is not

surprising to identify foremost high-affinity binders after the long

affinity purification process [14]. A higher binding affinity of

eluted peptides has also been found for mouse MHC class I

molecules [12]. If high-affinity peptides are able to outcompete

lower affinity-peptides in binding to the HLA, this may result in a

higher copy number of these peptides on the cell surface which in

turn increases their chance to be detected by mass spectrometry.

The nature of the data sets we analyzed does not allow us to study

this because we do not have abundance data on the peptides.

Instead we merely know whether a peptide was present in the

eluate or not.

To our surprise, most proteins were represented by only a single

peptide in the elution data sets we studied. This is in line with the

observation by Hickman et al. [8] who found only 9 of 189 source

proteins (4.8%) to be represented by more than one peptide.

For the prediction of C-terminal processing, we employed a

method that has been trained on the C-termini of known HLA

Figure 3. Protein length, gene expression level, and protein
abundance impact protein sampling probability. The boxplots
compare sampled and non-sampled human proteins in terms of (A)
protein length, (B) gene expression level, and (C) protein abundance.
The difference in protein counts between plots is due to lack of (gene
expression or protein abundance) data for some of the proteins.
doi:10.1371/journal.pcbi.1002517.g003
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ligands [17]. Initially intended as a predictor of proteasomal

cleavage, the method automatically accounts for the contribution

of other potential peptidases that are able to further process the

carboxy terminus of proteasome products, as for example the

carboxypeptidase ACE [6]. It does, however, not account for the

activity of aminopeptidases in the cytosol and ER, which may

further trim the amino termini of peptides. There is some evidence

for the existence of N-terminal processing motives, which differ in

specificity between cytosol and ER [29,30]. However, the lack of

appropriate prediction methods prevented us from assessing the

effect of N-terminal trimming of peptides in our analysis.

For the data sets we studied, we observed that (i) source proteins

are longer and more abundant than non-source proteins, (ii) the

corresponding genes show higher expression levels, and (iii) source

proteins show a higher rate of predicted binders than proteins that

were not sampled. We combined these factors in a logistic

regression model and conclude that prediction of protein sampling

probability is possible to some degree. The best model made use of

protein length, abundance, and predicted hit rate to predict the

sampling probability of a protein. Fortier et al. [12] observed that

MHC-presented peptides are preferentially derived from highly

abundant mRNAs. Our analysis confirmed the impact of gene

expression reported earlier by Fortier et al., but in addition, our

results suggest that protein abundance carries more information

for the prediction of protein sampling than transcript levels do.

It has been argued that antigen processing should be correlated

with protein turnover rather than cellular abundance of proteins

[10]. In addition, a recent study suggested that the pioneer round

of mRNA translation, which serves as a ‘‘proof-reading’’ step

during mRNA maturation, might be a major source of HLA

ligands [31]. We believe that the model presented in this paper will

improve considerably when more data is available describing the

specificity and kinetics of peptide generation via these processes.

Finally, another source of antigenic peptides are so-called defective

ribosomal products (DRiPs), which are truncated and/or mis-

folded polypeptides that are directly targeted to proteasomal

degradation [32,33]. The DRiP hypothesis suggests that the set of

MHC-presented peptides reflects recent protein synthesis rather

than the protein content of the cell, which should manifest itself in

our analysis as a higher correlation with gene expression level than

with protein abundance. Even though this is not what we see, the

fact that HLA ligands are preferentially derived from long proteins

is in accordance with the DRiP hypothesis, because the chance of

incorporating errors and of misfolding increases with protein

length.

A limitation of our analysis is the presumably high noise in the

protein abundance and gene expression data. The abundance data

was derived through meta-analysis from a multitude of different

tissue types, even though there is considerable variation of protein

Figure 4. The regression model is able to distinguish sampled
from non-sampled proteins. (A–C) Predicted sampling probability
for A*02:01, B*15:01, and B*27:05 (best examples of 100 cross-validation
runs per allele; solid line: sampled proteins; dashed line: non-sampled
proteins). The sampling probability is calculated as f(z) = ez/(ez+1) where
z = c+cab log10(ab)+cpl pl+chr hr with ab the protein abundance, pl the
protein length, hr the predicted hit rate, and (A) c = 21.47, cab = 0.49,
cpl = 0.0009, chr = 17.7, p-value = 5e-15, (B) c = 21.42, cab = 0.46,
cpl = 0.001, chr = 16.5, p-value = 1e-14, and (C) c = 21.77, cab = 1.15,
cpl = 0.0005, chr = 47.4, p-value = 1e-10. (D) Receiver operating charac-
teristic (ROC) curve for A*02:01 (dashed), B*15:01 (solid), and B*27:05
(dash-dot) visualizing the performance of each of the regression models
as a mean over 100 runs. The dotted line represents the ROC curve for
random classification. Corresponding area under the curve (AUC): 0.70
for A*02:01, 0.68 for B*15:01, and 0.74 for B*27:05.
doi:10.1371/journal.pcbi.1002517.g004
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abundance between cells and tissues. However, as Weiss et al. [34]

report, the abundance data set consists mainly of house-keeping

genes whose tissue-to-tissue expression variability is limited.

Ideally, the analysis presented here should be repeated on a data

set where mRNA levels, protein abundance, and HLA peptide

presentation are measured simultaneously for a single cell type or

tissue sample to minimize noise. All the more striking it is,

however, that we see a clear signal for both gene expression and

protein abundance in their impact on protein sampling in spite of

the noise introduced by averaging over cell types.

In conclusion, the results presented in this paper demonstrate

that protein characteristics such as gene expression level, protein

abundance, and the rate of HLA ligands determine which protein

will be sampled for antigen presentation. Moreover, our results

suggest that sampling prediction may be extended to the

proteomes of pathogens, allowing us to identify promising targets

for vaccination studies.

Materials and Methods

Elution data sets
Johnson et al. [13] performed peptide elution and mass-

spectrometry analysis of vaccinia virus infected Epstein-Barr

virus-transformed B-cells, homozygous for HLA-A*02:01,

B*15:01, and C*03 (for details see [13]). With a false positive

rate (FPR) of 5%, they identified 4717 unique human-derived

peptides and 119 vaccinia derived peptides.

Ben Dror et al. [14] eluted peptides from cultured cartilage cells

and HeLa cells transfected with a soluble form of HLA-B*27:05.

Based on several criteria to assess the confidence in identified

peptides, they categorized eluted peptides into three subsets:

certain (569 peptides), probable (582 peptides), and possible (116

peptides). As the certain peptide set corresponds to a FPR of 4.7%,

we limited our analysis to this data set. Of note, in the original

publication, peptides were selected as correct only if they

contained the amino acids arginine or glutamine at their second

position [14], which according to the authors (personal commu-

nication) was necessary in order to filter out peptides that were

eluted from other HLA allotypes expressed by the cell line (which

may become soluble due to cellular stress).

Identification of source proteins
We obtained the human proteome from Ensembl Genomes

(ftp.ensembl.org/pub/, release 56) and used this collection of

proteins to identify the source protein for each peptide in our

elution data sets. Source protein identification required identical

mapping of a peptide to the source protein sequence. Peptides that

could not be uniquely mapped to one single protein were omitted

from further analysis. In the case of several splice variants of the

same protein (i.e., the peptide matched to several protein

sequences which all originate from the same gene), the longest

splice variant was chosen for sequence analysis. Likewise, the

longest splice variant was chosen for the set of non-sampled

proteins. We were able to map 105 of the vaccinia peptides to the

Vaccinia Western Reserve proteome (GenBank identifier:

AY243312).

Abundance and gene expression data
We had abundance data available for 12,021 human proteins

[34]. The abundance is expressed in parts per million (ppm),

relative to the molecule counts of all other proteins in the

proteome. The measured abundance for different proteins spans

several orders of magnitude. The protein abundance data covers

1986 (78.4%) of the 2533 Johnson source proteins and 340 (85.8%)

of the 396 Ben Dror source proteins.

We used gene expression data from Juncker et al. [23], who

provide the median of normalized mRNA levels of haematopoietic

tissues originally obtained from the GNF gene expression database

[35]. Expression levels of vaccinia virus genes were obtained from

Assarsson et al. [24].

Prediction methods
Throughout the study we used the method NetMHC 3.2

[15,16] to predict peptide-binding to the HLA molecules A*02:01,

B*15:01, and B*27:05. Binding predictions for C*03 were done

using NetMHCpan 2.4 [36]. We define predicted binders as

peptides that have a predicted binding affinity of ,500 nM IC50

for a particular HLA molecule. For the Ben Dror data, where all

identified peptides were eluted from a known HLA molecule

(namely, HLA-B*27:05), this proved to be a suitable threshold,

predicting 89.6% (510 of 569) of the eluted peptides as binders.

Figure 5. Protein abundance carries more information for the prediction of sampling probability than gene expression level.
Boxplots of the Spearman correlation coefficients resulting from one hundred 56cross-validation runs for regression models that either include gene
expression data or protein abundance data.
doi:10.1371/journal.pcbi.1002517.g005
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The NetChop version Cterm-3.0 [17,37] was used for the

prediction of C-terminal processing. Furthermore, we used weight

matrices provided by the mhc-pathway package [19,20] for the

prediction of cleavage probability by the immunoproteasome and

for TAP transport efficiency. We employed WoLF PSORT [38] to

predict subcellular localization of proteins and confirmed our

results by GO-term enrichment analysis using the Cytoscape [39]

plug-in Bingo [40].

Predicted hit rate
The predicted hit rate for a given protein is defined as the ratio of

the number of predicted binders for a particular HLA allotype to the

total number of unique 9mer peptides in this protein. Multiple

occurrences of the same peptide within one protein were counted as

a single occurrence, because they would also not be detected as

separate peptides in the elution analysis. The hit rate is calculated per

HLA allele and hit rates may differ between alleles, because we use a

fixed affinity threshold of 500 nM IC50 to define binders (instead of

assigning a fixed fraction of peptides, e.g. top 1%, as binders). For

this reason we did not directly compare hit rates between alleles, but

instead performed separate analyses per HLA allele.

Statistical analysis
Two-sided Mann-Whitney tests, correlation tests, Chi-squared

tests, and logistic regression analysis were performed using R

(http://www.R-project.org). We used a generalized linear model

with a binomial response distribution and a logit function for data

transformation to model the impact of various factors on sampling

probability. All figures were produced using R.

Supporting Information

Figure S1 Eluted peptides show a significantly higher C-

terminal processing probability than other predicted binders. (A)

In order to normalize the peptide data sets for predicted binding

affinity, for each HLA allotype, we picked an affinity-matched

subset of predicted binders so that the range of predicted binding

affinities was the same as the range for eluted peptides. (B) After

normalizing for the binding affinity, eluted peptides still show a

significantly higher C-terminal processing probability.

(TIF)

Figure S2 Eluted peptides are more likely to be produced by the

immunoproteasome and are more efficiently transported by TAP.

The boxplots compare eluted 9mer peptides and predicted binders

from the same set of source proteins in terms of (A) predicted C-

terminal cleavage probability by the immunoproteasome and (B)

predicted TAP transport efficiency. Here, the eluted peptides are

compared to all predicted binders originating from the same set of

source proteins. Similar results are obtained when using an

affinity-matched subset of predicted binders (cf. Fig. S1).

(TIF)

Figure S3 Eluted vaccinia peptides show a significantly higher

(A) predicted binding affinity to A*02:01 and B*15:01, respective-

ly, and (B) predicted C-terminal processing probability (for

A*02:01-eluted peptides) than other predicted binders from the

same set of vaccinia proteins.

(TIF)

Figure S4 Distribution of predicted cellular compartments for

all human proteins and the source proteins identified for the

Johnson data and the Ben Dror data. Subcellular localization as given

by WoLF PSORT (nucl = nucleus, mito = mitochondria, extr = ex-

tracellular, ER = endoplasmic reticulum, cyto_nucl = cytosol and

nucleus, cyto = cytosol, plas = plasma membrane). Proteins target-

ed to the extracellular compartment were underrepresented with

6% for the Johnson and 8% for the Ben Dror data compared to 20%

among all human proteins (p,2e-16 and p = 5e-10, respectively,

Chi-squared test), whereas cytosolic proteins were overrepresented

among the sampled proteins (27%–28% vs. 18%, p,2e-05). These

results were confirmed by a GO-term enrichment analysis

performed using the Cytoscape plug-in Bingo, which identified a

significant underrepresentation of GO-terms relating to the

plasma membrane (19% among sampled vs. 32% among all

human proteins) and the extracellular compartment (4.5% vs.

12.5%), while revealing an enrichment of intracellular proteins

(93% vs. 70%).

(TIF)

Figure S5 Comparison of sampled and non-sampled human

proteins in terms of protein abundance after normalization for

protein length. Normalization was achieved by choosing a random

subset of non-sampled proteins that show the same length

distribution as the set of sampled proteins.

(TIF)

Figure S6 The gene expression level of vaccinia genes is

correlated with the sampling state (none, one, or several peptides

found by elution). The gene expression level was measured at

indicated time points after infection by Assarsson et al. (2008).

(TIF)
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