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A B S T R A C T   

In many decision-making situations, we are not restricted to two kinds of aspects, such as 
membership degree or nonmembership degree, and sometimes we need to include the abstinence 
degree (AD). However, many fuzzy set theories fail to cover issues, such as an intuitionistic fuzzy 
soft set, Pythagorean fuzzy soft set and q-rung orthopair fuzzy soft set. All the above notions can 
only consider membership degree and a nonmembership degree in their structures. The spherical 
fuzzy soft set compensates for these drawbacks in its structure. Moreover, the Dombi t-norm and 
Dombi t-conorm are the fundamental apparatuses to generalize the basic operational laws of sum 
and product. Therefore, in this article, based on the dominant features of spherical fuzzy soft sets 
and valuable features of the Dombi t-norm and Dombi t-conorm, we initially developed the basic 
Dombi operational laws for spherical fuzzy soft numbers. Moreover, based on these newly 
developed operational laws, we introduced aggregation operators called spherical fuzzy soft 
Dombi average (weighted, ordered weighted, hybrid) aggregation operators. We discussed the 
basic properties of these aggregation operators. Additionally, we have developed a multiple 
criteria decision making (MCDM) approach using an explanatory example via our approach to 
show its effective utilization. Furthermore, a comparative study of our approach shows the su-
periority of our introduced notions.   

1. Introduction 

The concept of the fuzzy set (FS) suggested by Zadeh [1] is a foundation of fuzzy set theory (FST) that generalizes crisp set theory in 
an improved way. FST is an interesting apparatus to discuss linguistic terms. However, defining a membership degree (MD) for an 
element of a set is a major difficulty due to the lack of a parameterization tool in the study of FS. To manage the problem, the design of a 
soft set (SftS) [2] proved to be a very interesting tool by considering the parameterization mechanism. In recent years, SftS theory has 
received more attention for solving ambiguous data. Currently, SftS has an extensive scope, and many researchers have used this 
structure in several directions [3,4]. The theoretical study of SftS and its utilization in decision-making (DM) issues are provided in 
Ref. [5]. After the invention of the soft set, numerous scholars have studied the combined form of the soft set along with the fuzzy set to 
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initiate the notion of a fuzzy soft set (FSftS) [6]. The invention of the FSftS is a hybrid tool that can handle fuzzy information in an 
improved way; thus, numerous scholars have begun working on this notion, and an algorithm for a FSftS based on DM for a multi-
observer input parameter data set is presented by Alcantud [7]. Jun et al. [8] applied a FSftS approach to BCK/BCI algebra. The concept 
of a FSftS has numerous uses in medical diagnosis [9] and medical science [10]. FSftS theory has limitations in its structure because 
human judgment is not only limited to the positive factors but also to the negative aspects. Thus, FSftS is unidirectional, and to 
overcome this issue, some extensions have been made in the form of an intuitionistic FSftS (IFSftS) set established by Maji et al. [11] 
Evidently, IFSftS uses the MD and nonmembership degree (NMD) in one frame. 

Additionally, IFSftSs have been widely utilized in many research directions. Since the entropy of FS shows the fuzziness degree of 
FSs, entropy based on IFSftS and interval-valued IFSftS was initiated by Jiang et al. [12]. Additionally, generalized IFSftS [13] with 
executions in DM was proposed. Moreover, Muthukumar and Krishnan [14] established the notion of a similarity measure based on 
IFSftS and utilized it to address DM issues. Additionally, IFSft Bonferroni aggregation operators (AOs) have been established by Garg 
and Arora [15]. Some robust AOs using the concept of IFSftS were established by Arora and Garg [16]. Moreover, some new AOs on 
group-based generalized IFSftS have been shown by Hayat et al. [17]. Additionally, Khan et al. [18] proposed a generalized IFSftS and 
provided its applications to decision support systems. Furthermore, Yaqoob et al. [19] showed the interval-valued intuitionistic (S, 
T)-fuzzy ideals of ternary semigroups. 

The design of IFSftS was modified into a Pythagorean fuzzy soft set (PyFSftS) by Peng et al. [20]; the various operations of PyFSftS 
were deliberated and utilized to profitably address DM issues. Since PyFSftS uses the constraint that sum (MD2,NMD2) must belong to 
[0, 1], PyFSftS has an extensive scope due to its more generalized structure. Athira et al. [21] established a novel entropy measure 
based on PyFSftS and used it in DM scenarios. Naeem et al. [22] initiated PyFSft TOPSIS and VIKOR methods. Moreover, Zulqarnain 
et al. [23] established some AOs by using PyFSftS and developed their applications. Additionally, Shahzadi et al. [24] developed the 
DM methodology for PyFSft graphs. Hussain et al. [25] noted that PyFSftS is a limited structure and presented the notion of the q-rung 
orthopair fuzzy soft set (q − ROFSftS). Additionally, based on q − ROFSftS and the Dombi t-norm and Dombi t-conorm, some Dombi 
AOs were established by Ref. [26]. Moreover, Chinram et al. [27] initiated the idea of q − ROFSft geometric AOs. Furthermore, Hayat 
et al. [28] presented the concept of group generalized q − ROFSft and proposed new AOs and their applications. 

Note that FSftS, IFSftS,PyFSftS and q − ROFSftS can either discuss MD or both MD and NMD in their structures, and they have no 
concept to discuss AD in their structure. Thus, if the given data involves AD, then these above structures have no concept to tackle this 
type of data. To resolve this issue, the notion of picture fuzzy soft set (PFSftS) [29] has been presented. PFSftS can use the setting that 
sum(MD,AD,NMD) ∈ [0,1]. Recently, many researchers have started working on this idea, and some PFSft robust VIKOR methods and 
their utilization are provided by Khan et al. [30]. Additionally, Jan et al. [31] invented the concept of multivalued PFSftSs and their 
execution to group DM scenarios. Moreover, a hybrid notion of picture fuzzy N-soft set (PFN − SftS) [32] has been introduced, and they 
have presented their applications to DM problems. Moreover, Dhurmas and Bajaj [33] introduced modified EDAS techniques based on 
PFSft Dombi aggregation operators utilized these notions in robotic agri-farming. 

With time, researchers have noted the limitation of PFSftS in its constraint. They note that when decision-makers provide 0.5 as the 
MD, 0.3 as the NMD and 0.6 as the AD, then the necessary condition for PFSftS fails to cope with this type of data; thus, the notion of a 
spherical fuzzy soft set (SFSftS) [34] was introduced to address this difficulty. Moreover, dealing with uncertainty and ambiguous data 
is a very difficult task in many real-life problems, and this has become a popular topic for researchers. To address imprecise and 
complex data, SFSftS plays a very important role in this regard. When there are several human opinions such as “Yes,” “abstain” and 
“refusal,” then the SFSftS can effectively model that situation. For instance, examine the case of voting. In this situation, we notice that 
a person can vote in support of someone, vote against someone, abstain from voting or refuse to vote. In this situation, we can say that 
all the above theories of FSftS, IFSftS,PyFSftS and q − ROFSftS fail to handle this situation, while PFSftS and SFSftS can handle that 
situation. Therefore, all the above theories have some drawbacks in their structures. Additionally, SFSftS has an advantage on PFSftS in 
terms of its constraint that sum(MD2,AD2,NMD2) ∈ [0, 1]. Thus, SFSftS provides more space for decision-makers. Therefore, we can say 
that SFSftS is more dominant in all the above existing theories. 

As SFSftS is a more general tool to deal with uncertain and ambiguous data, AOs are very valuable mechanisms to change the input 
data into a single number. Therefore, Ahmmad et al. [35] proposed some average AOs based on SFSftNs. Moreover, Guner and Aygun 
[36] introduced the theory and AOs based on SFSftS. 

SFSftS is a more general notion because of the following:  

1. When a power 1 is used in the basic condition for SFSftSs, then the notion of SFSftS degenerates into a PFSftS.  
2. Additionally, by disregarding the abstinence degree in the basic notion of the spherical fuzzy soft set, we can obtain the notion of 

PyFSftS.  
3. Moreover, by disregarding the abstinence degree and using power 1 in the main condition for SFSftS, SFSftS is reduced to IFSftS.  
4. By using one parameter in SFSftS, SFSftS degenerates into a spherical fuzzy set.  
5. By using one parameter and power 1 in the basic definition of SFSftS, SFSftS degenerates into a picture fuzzy set. 

Therefore, based on the dominant feature for SFSftS and the Dombi t-norm and Dombi t-conorm, in this article, we initially 
established Dombi operational laws for SFSftNs and then effectively applied this theory to initiate some new aggregation operators, 
such as SFSft Dombi weighted average, SFSft Dombi ordered weighted average and SFSft Dombi hybrid average AOs. Moreover, some 
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basic results for these newly developed AOs were introduced, and supportive examples were provided to define the reliability of our 
initiated work. Additionally, an algorithm along with an example was established, and a comparative study of the established algo-
rithm was carried out to show the primacy of the introduced work. 

The article’s remaining sections are organized as follows: Section 2 covers the basic definition of a soft set, SFSftS and their basic 
operating rules; in Section 3, we have initiated the basic Dombi operating rules for SFSftNs; Section 4 elaborates on the SFSft Dombi 
weighted average AOs; Section 5 provides the MCDM problem to support our work; Section 6 carries out a comparative study of the 
invented work along with some existing theories; and Section 7 provides the concluding remarks. 

2. Preliminaries 

We addressed the key concepts of soft sets and SFSftSs in this section of the article. Additionally, the basic operating rules, score 
function (SF) and accuracy function (AF) of these concepts are discussed. 

Definition 1. [2]: Let U be a general set and E be a set of parameters. The soft set is a pair (f ,M) and M ⊆ E,where f is the map given 
by f : M→P(U), and P(U) denotes the power set of U. 

Definition 2. [34]: A SFSftS on a universal set U is the pair of the form (q,N) where N ⊆ E and q : N→SFSU defined as follows: 

§ê(l̂ı)= {〈ll , €b (ll ),℘b (ll ),L b (ll )〉|ll ∈U}

where SFSU present a collection of spherical fuzzy sets. Here €b (ll ),℘b (ll ), and L b (ll ) denote the MD, AD and NMD, respectively with 
0 ≤ (€b (ll ))2

+ (℘b (ll ))
2
+ (L b (ll ))2

≤ 1. For clarity, the triplet {〈€b (ll ),℘b (ll ),L b (ll )〉} is called SFSftN. Moreover, a refusal de-

gree is given as follows: Refqêl b
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ((€b (ll ))2
+ (℘b (ll ))

2
+ (L b (ll ))2

)

√

. 

Definition 3. [35]: Let §ê l b = (€l b ,℘l b ,L l b ), §ê
,
l b = (€,

l b ℘,
l b L

,
l b ) be two SFSftNs and þ > 0. The fundamental laws are given as 

follows:  

1) §ê l b ⊆ §ê
,
l b iff €l b ≤ €,

l b ℘l b ≤ ℘,
l b and L l b ≥ L

,
l b .  

2) §ê l b = §ê
,
l b iff §ê l b ⊆ §ê

,
l b and §ê

,
l b ⊆ §ê l b .  

3) §ê l b ∪ §ê
,
l b = 〈max(€l b ,€,l b ),min(℘l b ,℘

,
l b ),min(L l b ,L

,
l b )〉.  

4) §ê l b

⋂
§ê

,
l b = 〈min(€l b ,€,l b ),min(℘l b ,℘

,
l b ),max(L l b ,L

,
l b )〉.  

5) §ê l b
c = (L l b ,℘l b ,€l b ).  

6) §ê l b ⊕ §ê
,
l b = (

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(€l b )
2
+ (€,l b )

2
− (€l b )

2
(€,l b )

2
√

,℘l b ℘,
l b L l b L

,
l b ).  

7) §ê l b ⨂§ê
,
l b = (€l b €,

l b ℘l b ℘,
l b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(L l b )
2
+ (L

,
l b )

2
− (L l b )

2
(L

,
l b )

2
√

).  

8) þ§ê l b = (

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (1 − €l b
2)

þ
√

,℘l b
þ,L l b

þ
)..  

9) §ê l b
þ = (€l b

þ,℘l b
þ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (1 − L l b
2
)

þ
√

). 

Definition 4. [35]: For a family of SftNs §ê l b = (€l b ,℘l b ,L l b ), the SF and AF are given by the following: 
Sc(§ê l b ) =

(2+€l b − ℘l b − L l b )

3 and 

Ac(§ê l b )= €l b − L l b .

Note that Sc(§ê l b ) ∈ [ − 1,1]. 

3. Dombi operations for spherical fuzzy soft numbers 

In this section, the fundamental laws for SFSftS based on the Dombi t-norm and Dombi t-conorm suggested by Dombi [37] are 
discussed. 

Definition 5. [37]: For two arbitrary real numbers ƒ, g and ∝ ≥ 1., Dombi operations for real numbers are given by the following: 

ÕÐ(ƒ, g)=
1

1 +

{(
1− ƒ

ƒ

)∝

+

(
1− g

g

)∝}1
∝  

Õl
Ð(ƒ, g)= 1 −

1

1 +

{(
ƒ

1− ƒ

)∝
+

(
g

1− g

)∝}1
∝ 
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Now, fundamental laws based on the above-given definition are defined. 

Definition 6. Suppose §ê11 = (€11,℘11,L 11) and §ê12 = (€12,℘12,L 12) are two arbitrary SFSftNs,∝ ≥ 1 and þ > 0. Then, using 
Dombi t-norms and Dombi t-conorm, the Dombi operations for SFSftNs are defined by the following:  

1) §ê11
⨁§ê12

=

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 1

1+

{(
€112

1− €112

)∝

+

(
€122

1− €122

)∝}1
∝

√
√
√
√

, 1

1+

{(
1− ℘11

℘11

)∝

+

(
1− ℘12

℘12

)∝}1
∝
, 1

1+

{(
1− L 11

L 11

)∝

+

(
1− L 12

L 12

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

2) §ê11 ⨂§ê12 =

⎛

⎜
⎜
⎜
⎜
⎝

1

1+

{(
1− €11

€11

)∝

+

(
1− €12

€12

)∝}1
∝
,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 1

1+

{(
℘112

1− ℘112

)∝

+

(
℘122

1− ℘122

)∝}1
∝

√
√
√
√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 1

1+

{(
L 11

2

1− L 11
2

)∝

+

(
L 12

2

1− L 12
2

)∝}1
∝

√
√
√
√
√

⎞

⎟
⎟
⎟
⎟
⎠

3) þ§ê11 =

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 1

1+

{

þ

(
€112

1− €112

)∝}1
∝

√
√
√
√

, 1

1+

{

þ

(
1− ℘11

℘11

)∝}1
∝
, 1

1+

{

þ

(
1− L 11

L 11

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

4) §ê11
þ =

⎛

⎜
⎜
⎜
⎜
⎝

1

1+

{

þ

(
1− €11

€11

)∝}1
∝
,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 1

1+

{

þ

(
℘112

1− ℘112

)∝}1
∝

√
√
√
√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 1

1+

{

þ

(
L 11

2

1− L 11
2

)∝}1
∝

√
√
√
√
√

⎞

⎟
⎟
⎟
⎟
⎠

Theorem 1. For any two arbitrary SFSftNs §ê11 = (€11,℘11,L 11) and §ê12 = (€12,℘12,L 12) and þ, þ1, þ2 > 0, the following results hold:  

1) §ê11 ⨁§ê12 = §ê12 ⨁§ê11  

2) §ê11
⨂§ê12

= §ê12
⨂§ê11  

3) þ(§ê11 ⨁§ê12 ) = (þ§ê11 ⨁þ§ê12 )

4) þ1§ê11 ⨁þ2§ê11 = (þ1 + þ2)§ê11  

5) §ê11
þ⨂§ê12

þ = (§ê11 ⨂§ê12 )
þ  

6) §ê11
þ1 ⨂§ê11

þ2 = §ê11
(þ1+þ2)

Proof: The proofs are straightforward. 

4. Spherical fuzzy soft Dombi average aggregation operators 

In this part, some Dombi average AOs based on SFSftNs known as SFSftDWA, SFSftDOWA, SFSftHA are debated. Furthermore, the 
basic characteristics of these AOs are elaborated. 

4.1. Spherical fuzzy soft Dombi weighted average operators 

Definition 7. Consider the family of SFSftNs, i.e., §êl b
= (€l b ,℘l b ,L l b ) for l = 1,2,…,m and b = 1,2,…, ñ. Let à = (à1, à2,…, àm)

denote the weight vector (WV) for experts ðl and o = {o1, o2,…, o ñ} denote the WVs for ̂eb parameters with the condition that àl , ob ∈

[0,1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. Now, the SFSftDWA operator can be defined as SFSftDWA : ©ñ→©, where © represents the family 
of SFSftNs, as follows: 

SFSftDWA(§ê11
, §ê12

,…, §êmn
)=⨁ñ

b =1ob

(
⨁m

l =1àl §êl b

)
(1) 

Now, using equation (1), we can define SFSftDWA AOs, as follows: 

Theorem 2. Suppose the family of SFSftNs §êl b
= (€l b ,℘l b ,L l b ) where l = 1, 2,…,m and b = 1,2,…,ñ. Let ̀a = (à1, à2,…, àm) present 

the WV of experts ðl and o = {o1, o2,…, o ñ} denote the WVs of êb parameters such that àl , ob ∈ [0, 1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. Then, 
the aggregated outcome for the SFSftDWA operator is defined as follows: 

SFSftDWA(§ê11
, §ê12

,…, §êmn )=⨁ñ
b =1ob

(
⨁m

l =1àl §êl b

)
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
€l b

2

1− €l b
2

)∝)}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− ℘l b

℘l b

)∝)}1
∝
,

1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− L l b

L l b

)∝)}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(2) 

Proof: Here, the mathematical induction method is used, as follows: 

§ê11
⨁§ê12

=

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{(
€11

2

1− €11
2

)∝

+

(
€12

2

1− €12
2

)∝}1
∝

√
√
√
√
√
√

,
1

1 +

{(
1− ℘11

℘11

)∝

+

(
1− ℘12

℘12

)∝}1
∝
,

1

1 +

{(
1− L 11

L 11

)∝

+

(
1− L 12

L 12

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

And 

þ§ê =

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{

þ
( €

§ê

2

1− €
§ê

2

)∝}1
∝

√
√
√
√
√
√

,
1

1 +

{

þ
(1− ℘

§ê
℘
§ê

)∝}1
∝
,

1

1 +

{

þ
(1− L

§ê
L
§ê

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

First, we prove that the results are valid for m = 2 and ñ = 2, as follows: 

SFSftDWA(§ê11
, §ê12

)=⨁2
b =1ob

(
⨁2

l =1àl §êl b

)
= o1(à1§ê11

⨁à2§ê21
)⨁o2(à1§ê12

⨁à2§ê22
)

= o1

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{

à1

(
€11

2

1− €11
2

)∝

+ à2

(
€21

2

1− €21
2

)∝}1
∝

√
√
√
√
√
√

,
1

1 +

{

à1

(
1− ℘11

℘11

)∝

+ à2

(
1− ℘21

℘21

)∝}1
∝
,

1

1 +

{

à1

(
1− L 11

L 11

)∝

+ à2

(
1− L 21

L 21

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

⨁  

o2

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{

à1

(
€12

2

1− €12
2

)∝

+ à2

(
€22

2

1− €22
2

)∝}1
∝

√
√
√
√
√
√

,
1

1 +

{

à1

(
1− ℘12

℘12

)∝

+ à2

(
1− ℘22

℘22

)∝}1
∝
,

1

1 +

{

à1

(
1− L 12

L 12

)∝

+ à2

(
1− L 22

L 22

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

= o1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑2

l =1
àl

(
€l 1

2

1− €l 1
2

)∝}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑2

l =1
àl

(
1− ℘l 1

℘l 1

)∝}1
∝
,

1

1 +

{
∑2

l =1
àl

(
1− L l 1

L l 1

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⨁  

o2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑2

l =1
àl

(
€l 2

2

1− €l 2
2

)∝}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑2

l =1
àl

(
1− ℘l 2

℘l 2

)∝}1
∝
,

1

1 +

{
∑2

l =1
àl

(
1− L l 2

L l 2

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1+

{

o1

(
∑2

l =1
àl

(
€l 1

2

1 − €l 1
2

)∝
)

+ o2

(
∑2

l =1
àl

(
€l 2

2

1 − €l 2
2

)∝
)}1

∝

√
√
√
√
√
√

,
1

1+

{

o1

(
∑2

l =1
àl

(
1 − ℘l 1

℘l 1

)∝
)

+ o2

(
∑2

l =1
àl

(
1 − ℘l 2

℘l 2

)∝
)}1

∝
,

1

1+

{

o1

(
∑2

l =1
àl

(
1 − L l 1

L l 1

)∝
)

+ o2

(
∑2

l =1
àl

(
1 − L l 2

L l 2

)∝
)}1

∝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑2

b =1
ob

(
∑2

l =1
àl

(
€l b

2

1 − €l b
2

)∝
)}1

∝

√
√
√
√
√
√

,
1

1 +

{
∑2

b =1
ob

(
∑2

l =1
àl

(
1 − ℘l b

℘l b

)∝
)}1

∝
,

1

1 +

{
∑2

b =1
ob

(
∑2

l =1
àl

(
1 − L l b

L l b

)∝
)}1

∝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Therefore, this outcome is true for m = 2 and ñ = 2. 
Now, we assume that the outcome is valid for m = K1 and ñ = K2, as follows: 

SFSftDWA
(
§ê11

, §ê12
,…, §êK1 K2

)
=⨁K2

b =1ob

(
⨁K1

l =1àl §êl b

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
€l b

2

1− €l b
2

)∝)}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
1− ℘l b

℘l b

)∝)}1
∝
,

1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
1− L l b

L l b

)∝)}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Next, we prove that the outcome is true for m = K1 + 1 and ñ = K2 + 1, as follows: 

SFSftDWA
(
§ê11

, §ê12
,…, §êK1 K2

, §ê(K1+1)(K2+1)

)
=
(
⨁K2

b =1ob

(
⨁K1

l =1àl §êl b

))
⨁
(

oK2+1

(
àK1+1§ê(K2+1)(K1+1)

))

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
€l b

2

1− €l b
2

)∝)}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
1− ℘l b

℘l b

)∝)}1
∝
,

1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
1− L l b

L l b

)∝)}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⨁  

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{

oK2+1

(

àK1+1

(
€l b

2

1− €l b
2

)∝)}1
∝

√
√
√
√
√
√

,
1

1 +

{

oK2+1

(

àK1+1

(
1− ℘l b

℘l b

)∝)}1
∝
,

1

1 +

{

oK2+1

(

àK1+1

(
1− L l b

L l b

)∝)}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
€l b

2

1 − €l b
2

)∝
)

+ oK2+1

(

àK1+1

(
€l b

2

1 − €l b
2

)∝)
}1

∝

√
√
√
√
√
√

,

1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
1 − ℘l b

℘l b

)∝
)

+ oK2+1

(

àK1+1

(
1 − ℘l b

℘l b

)∝)
}1

∝
,

1

1 +

{
∑K2

b =1
ob

(
∑K1

l =1
àl

(
1 − L l b

L l b

)∝
)

+ oK2+1

(

àK1+1

(
1 − L l b

L l b

)∝)
}1

∝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Table 1 
Spherical fuzzy soft data  

Ð ê1 ê2 ê3 

ð1 (0.7,0.3,0.3) (0.7,0.3,0.4) (0.8,0.3,0.3)
ð2 (0.8,0.3,0.3) (0.6,0.2,0.3) (0.8,0.4,0.3)
ð3 (0.7,0.4,0.3) (0.7,0.5,0.4) (0.7,0.4,0.3)
ð4 (0.6,0.4,0.3) (0.7,0.4,0.4) (0.6,0.3,0.4)
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑K2+1

b =1
ob

(
∑K1+1

l =1
àl

(
€l b

2

1− €l b
2

)∝)}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑K2+1

b =1
ob

(
∑K1+1

l =1
àl

(
1− ℘l b

℘l b

)∝)}1
∝
,

1

1 +

{
∑K2+1

b =1
ob

(
∑K1+1

l =1
àl

(
1− L l b

L l b

)∝)}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Therefore, the outcome is valid for m = K1 + 1 and ñ = K2 + 1. Hence, the result is true for all m, ñ ≥ 1.. 
It is clear from the above expression that the aggregated results established for SFSftDWA operators are again SFSftN.. 

Example 1. Let ð = {ð1, ð2, ð3, ð4} be the family of experts who evaluate the progress of football player ′F ′ using the parameter set 
given as F = {ê1 = Technique, ê2 = Fitness, ê3 = Mindset}. Let à = (0.22,0.31,0.24,0.23) be the WV for experts ðl and o =

{0.36,0.27,0.37} denote the WVs for êb parameters and ∝ = 2. Suppose decision-makers provide their assessment information as 
SFSftNs given in Table 1. Now, we use the established operator to evaluate the result by using equation (2), and we have the following: 

SFSftDWA
(
§ê11

, §ê12
,…, §ê43

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑3

b =1
ob

(
∑4

l =1
àl

(
€l b

2

1− €l b
2

)2
)}1

2

√
√
√
√
√
√

,
1

1 +

{
∑3

b =1
ob

(
∑4

l =1
àl

(
1− ℘l b

℘l b

)2
)}1

2
,

1

1 +

{
∑3

b =1
ob

(
∑4

l =1
àl

(
1− L l b

L l b

)2
)}1

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Therefore, the following is obtained: 

SFSftDWA
(
§ê11

, §ê12
,…, §ê43

)
=(0.4628, 0.0441, 0.3970)

Remark 1. 1) If we change the power 2 by 1 in SFSftDWA AOs, then the proposed SFSftDWA AOs are converted into a PFSft Dombi 
weighted average (PFSftDWA) operator.  

2) If we use only one parameter ê1 (m = 1), then the presented SFSftDWA operator degenerates into spherical fuzzy Dombi weighted 
average (SFDWA) AOs. 

Theorem 3. Let §êl b
= (€l b ,℘l b ,L l b ) be the family of SFSftNs, where l = 1,2,…,m and b = 1,2,…, ñ. Let à = (à1, à2,…, àm) and 

o = {o1, o2,…, o ñ} represent the WV of ðl experts êb parameters, respectively such that àl , ob ∈ [0,1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. 
Then, SFSftDWA AO satisfies the following properties:  

1) (Idempotency): Let §êl b
= Q ê for all (l = 1, 2,…,m) and b = 1, 2,…, ñ where Q ê = (¢, ϱ, û). Then, the following is obtained: 

SFSftDWA(§ê11
, §ê12

,…, §mn)=Q ê.

2) (Boundedness): Let §−êl b
=

(

min
b

min
l

(€l b ),max
b

max
l

(℘l b ),max
b

max
l

(L l b )

)

and §+êl b
=

(

max
b

max
l

(€l b ),min
b

min
l

(℘l b ),min
b

min
l

(L l b )

)

, 

then, the following is obtained: 

§−êl b
≤ SFSftDWA(§ê11

, §ê12
,…, §mn) ≤ §+êl b

.

3) (Monotonicity): Suppose another collection of SFSftNs Q êl b
= (¢l b , ϱl b , ûl b ) for (l = 1.2,…,m) and b = 1, 2,…, ñ such that €l b ≤

¢l b ,℘l b ≥ ϱl b and L l b ≥ ûl b . Then, the following is obtained: 

SFSftDWA(§ê11
, §ê12

,…, §mn) ≤ SFSftDWA
(
Q ê11 ,Q ê12 ,…,Q mn

)
.

4) (Shift Invariance): Let Q ê = (¢, ϱ, û) be a SFSftNs. Then, the following is obtained: 

SFSftDWA(§ê11
⨁Q ê, §ê12

⨁Q ê,…, §mn⨁Q ê)= SFSftDWA(§ê11
, §ê12

,…, §mn)⨁Q ê.

5) (Homogeneity): For any þ > 0, the following applies: 

SFSftDWA(þ§ê11
, þ§ê12

,…, þ§mn)= þSFSftDWA(§ê11
, §ê12

,…, §mn).

Proof: Straightforward 
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4.2. Spherical fuzzy soft Dombi ordered weighted average operators 

This section is committed to the construction of SFSft Dombi-ordered weighted average (SFSftDOWA) AOs. Furthermore, we analyze 
the basic properties related to SFSftDOWA AOs. 

Definition 8. Consider the family of SFSftNs, i.e., §êl b
= (€l b ,℘l b ,L l b ) for l = 1,2,…,m and b = 1,2,…, ñ. Let à = (à1, à2,…, àm)

denote the WV for experts ðl and o = {o1, o2,…, o ñ} denote the WVs for êb parameters such that àl , ob ∈ [0,1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. Now, SFSftDOWA AO can be defined as SFSftDOWA : ©ñ→©, where © represents the family of SFSftNs such that the 
following applies: 

SFSftDOWA(§ê11
, §ê12

,…, §êmn )=⨁ñ
b =1ob

(
⨁m

l =1àl §ê≎l b

)
(3)  

where §ê≎l b
= (€≎l b ,℘≎l b ,L ≎l b ) is the permutation of the l th row and b th largest elements of the collection for l × b SFSftNs §êl b

=

(€l b ,℘l b ,L l b ) for l = 1,2,…,m and b = 1,2,…, ñ. 
Now, using equation (3), we can define SFSftDOWA AOs, as follows: 

Theorem 4. Suppose the set of SFSftNs §êl b
= (€l b ,℘l b ,L l b ) where l = 1,2,…,m and b = 1, 2,…, ñ. Let à = (à1, à2,…, àm)

represent the WV of experts ðl and o = {o1, o2,…, o ñ} denote the WVs of êb parameters such that àl , ob ∈ [0, 1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. Then, the aggregated outcome for the SFSftDOWA operator is defined as follows: 

SFSftDOWA(§ê11
, §ê12

,…, §êmn )=⨁ñ
b =1ob

(
⨁m

l =1àl §ê≎l b

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
€≎l b

2

1− €≎l b
2

)∝)}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− ℘≎l b

℘≎l b

)∝)}1
∝
,

1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− L ≎l b

L ≎l b

)∝)}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

where §ê≎l b
= (€≎l b ,℘≎l b ,L ≎l b ) is the permutation of the l th row and b th largest elements of the collection for l × b SFSftNs §êl b

= (€l b ,

℘l b ,L l b ) for l = 1, 2,…,m and b = 1,2,…, ñ. Proof: The proof of the Theorem is straightforward, similar to Theorem 2. 

Example 2:. Let SFSftNs §êl b
= (€l b ,℘l b ,L l b ) for l = 1, 2,…,4 and b = 1, 2,3 be the family of SFSftNs as given in Table 1 of 

example 1. Now, by definition (4) of the SF for SFSftNs, the tabular representation of §ê≎l b
= (€≎l b ,℘≎l b ,L ≎l b ) is provided in Table 2. 

SFSftDOWA
(
§ê11

, §ê12
,…, §ê43

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑3

b =1
ob

(
∑4

l =1
àl

(
€≎l b

2

1− €≎l b
2

)2
)}1

2

√
√
√
√
√
√

,
1

1 +

{
∑3

b =1
ob

(
∑4

l =1
àl

(
1− ℘≎l b

℘≎l b

)2
)}1

2
,

1

1 +

{
∑3

b =1
ob

(
∑4

l =1
àl

(
1− L ≎l b

L ≎l b

)2
)}1

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Therefore, the following is obtained; 

SFSftDOWA
(
§ê11

, §ê12
,…, §ê43

)
=(0.4389, 0.04916, 0.3963)

Remarks 2:  

1) If we change power 2 by 1 in SFSftDOWA AOs, then the proposed SFSftDOWA operator is reduced to PFSft Dombi ordered weighted 
average (PFSftDOWA) AO. 

Table 2 
Tabular representation of §ê≎l b

= (€≎l b ,℘≎l b ,L ≎l b ) for ∝ = 2.  

Ð ê1 ê2 ê3 

ð1 (0.7,0.3,0.3) (0.7,0.3,0.4) (0.8,0.3,0.3)
ð2 (0.6,0.4,0.3) (0.7,0.5,0.4) (0.7,0.4,0.3)
ð3 (0.8,0.3,0.3) (0.7,0.4,0.4) (0.8,0.4,0.3)
ð4 (0.7,0.4,0.3) (0.6,0.2,0.3) (0.6,0.3,0.4)
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2) If we use only one parameter ̂e1 (m = 1), then the presented SFSftDOWA operator degenerates into an SF Dombi-ordered weighted 
average (SFDOWA) operator. 

Theorem 5. Let §êl b
= (€l b ,℘l b ,L l b ) be the family of SFSftNs, where l = 1, 2,…,m and b = 1,2,…, ñ. Let à = (à1, à2,…, àm) and 

o = {o1, o2,…, o ñ} represent the WV of ðl experts êb parameters such that àl , ob ∈ [0, 1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. Then, SFSftDOWA 
AOs satisfy the following properties:  

1) (Idempotency): Let §êl b
= Q ê for all (l = 1.2,…,m) and b = 1, 2,…, ñ where Q ê = (¢, ϱ, û). Then, the following is obtained: 

SFSftDOWA(§ê11
, §ê12

,…, §mn)=Q ê.

2) (Boundedness): Let §−êl b
=

(

min
b

min
l

(€l b ),max
b

max
l

(℘l b ),max
b

max
l

(L l b )

)

and §+êl b
=

(

max
b

max
l

(€l b ), min
b

min
l

(℘l b ), min
b

min
l

(L l b )

)

, 

then, the following is obtained: 

§−êl b
≤ SFSftDOWA(§ê11

, §ê12
,…, §mn) ≤ §+êl b

.

3) (Monotonicity): Suppose another collection of SFSftNs Q êl b
= (¢l b , ϱl b , ûl b ) for (l = 1.2,…,m) and b = 1, 2,…, ñ such that €l b ≤ ¢l b ,

℘l b ≥ ϱl b and L l b ≥ ûl b . Then, the following is obtained: 

SFSftDOWA(§ê11
, §ê12

,…, §mn) ≤ SFSftDOWA
(
Q ê11 ,Q ê12 ,…,Q mn

)
.

4) (Shift Invariance): Let Q ê = (¢, ϱ, û) be a SFSftNs. Then, the following is obtained: 

SFSftDOWA(§ê11
⨁Q ê, §ê12

⨁Q ê,…, §mn⨁Q ê)= SFSftDOWA(§ê11
, §ê12

,…, §mn)⨁Q ê.

5) (Homogeneity): For any þ > 0, then, the following applies: 

SFSftDOWA(þ§ê11
, þ§ê12

,…, þ§mn)= þSFSftDOWA(§ê11
, §ê12

,…, §mn).

4.3. Spherical fuzzy soft Dombi hybrid average aggregation operators 

In this subsection, we introduce SFSft Dombi hybrid average (SFSftDHA) AOs and their basic properties. 

Definition 9. Consider the family of SFSftNs, i.e., §êl b
= (€l b ,℘l b ,L l b ) for l = 1, 2,…,m and b = 1,2,…, ñ, and let τ = {τ1, τ2,… 

, τm}, ∂ = {∂1, ∂2,…, ∂ñ} be the WVs of §êl b
= (€l b ,℘l b ,L l b ) using the condition that τl , ∂b ∈ [0,1] with 

∑m
l =1τl = 1 and 

∑ñ
l =1∂b =

1. Let ̀a = (à1, à2,…, àm) denote the WV for experts ðl and o = {o1, o2,…, o ñ} denote the WVs for ̂eb parameters such that ̀al , ob ∈ [0,1]
and 

∑m
l =1àl = 1,

∑ñ
b =1ob = 1. Now, the SFSftDHA operator can be defined as SFSftDHA : ©ñ→©, where © represents the family of 

SFSftNs as follows: 

SFSftDHA(§ê11
, §ê12

,…, §êmn )=⨁ñ
b =1ob

(
⨁m

l =1àl §ê≎l b

)
(4)  

where §ê≎l b
= nτl ∂b §êl b 

is the permutation of the l th row and b th largest elements of the collection for l × b SFSftNs §êl b
= (€l b ,℘l b ,

L l b ) and ’n’ is the balancing coefficient. Now, using equation (4), we can define the SFSftDHA operator given as follows: 

Theorem 6. Suppose the family of SFSftNs §êl b
= (€l b ,℘l b ,L l b ) where l = 1,2,…,m and b = 1,2,…,ñ. Let ̀a = (à1, à2,…, àm) denote 

the WV of experts ðl and o = {o1, o2,…, o ñ} denote the WVs of êb parameters such that àl , ob ∈ [0, 1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. Then, 
the aggregated result for SFSftDHA AOs is defined as follows: 

Table 3 
Tabular description of §ê≎l b

= nτl ∂b §êl b 
for ∝ = 2.  

Ð ê≎1 ê≎2 ê≎3 

ð1 (0.5107,0.5384,0.5882) (0.5107,0.4829,0.5922) (0.6285,0.4929,0.4929)
ð2 (0.6700,0.4832,0.5338) (0.4527,0.3040,0.4281) (0.6700,0.5479,0.4379)
ð3 (0.5420,0.6062,0.5479) (0.5420,0.6490,0.5521) (0.5420,0.5619,0.4519)
ð4 (0.4558,0.5883,0.5295) (0.5562,0.5336,0.5336) (0.4558,0.4336,0.5436)
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SFSftDHA(§≎ê11
, §≎ê12

,…, §≎êmn )=⨁ñ
b =1ob

(
⨁m

l =1àl §ê≎l b

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
€≎l b

2

1− €≎l b

2

)∝)}1
∝

√
√
√
√
√
√

,
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− ℘≎l b

℘≎l b

)∝)}1
∝
,

1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− L ≎l b

L ≎l b

)∝)}1
∝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

where §ê≎l b
= nτl ∂b §êl b 

is the permutation of the l th row and b th largest elements of the collection for l × b SFSftNs §êl b
= (€l b ,℘l b ,L l b )

with τ = {τ1, τ2,…, τm}, ∂ = {∂1, ∂2,…, ∂ñ} being the WVs and ’n’ is the balancing coefficient. 
Proof: The proof of the Theorem is straightforward, similar to Theorem 2. 

Example 3. Let SFSftNs §êl b
= (€l b ,℘l b ,L l b ) for l = 1, 2,…,4 and b = 1,2, 3 be the family of SFSftNs as provided in Table 1 of 

example 1. Let τ = {0.18,0.28,0.25,0.29}, ∂ = {0.25,0.39,0.36} be the WVs of ðl experts and parameters êb . Let their corresponding 
associated WVs à = (0.22,0.31,0.24,0.23) for ðl experts and o = {0.36,0.27,0.37} for parameters êb . Now, we use equation (5), and 
their results are listed in Table 3. Additionally, by using definition (4) of SF, we obtain a new ordering of §ê≎l b

= nτl ∂b §êl b 
given in Table 4. 

þ§ê =

⎛

⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{

þ
( €

§ê

2

1− €
§ê

2

)∝}1
∝

√
√
√
√
√
√

,
1

1 +

{

þ
(1− ℘

§ê
℘
§ê

)∝}1
∝
,

1

1 +

{

þ
(1− L

§ê
L
§ê

)∝}1
∝

⎞

⎟
⎟
⎟
⎟
⎠

(5)  

Now, we use the following: 

SFSftDHA
(
§ê11

, §ê12
,…, §ê43

)
=⨁3

b =1ob

(
⨁4

l =1àl §ê≎l b

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
€≎l b

2

1− €≎l b

2

))2
}1

2

√
√
√
√
√
√

,
1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− ℘≎l b

℘≎l b

))2
}1

2
,

1

1 +

{
∑̃n

b =1
ob

(
∑m

l =1
àl

(
1− L ≎l b

L ≎l b

))2
}1

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

SFSftDHA
(
§ê11

, §ê12
,…, §ê43

)
=(0.003565, 0.4590, 0.4829)

Remark 3:  

1) If we change the power 2 by 1 in SFSftDHA AOs, then the proposed SFSftDHA operator is reduced to the PFSft Dombi hybrid average 
(PFSftDHA) operator.  

2) If we use only one parameter ê1 (m = 1), then the presented SFSftDHA operator degenerates into a spherical fuzzy Dombi hybrid average 
(SFDHA) operator. 

Theorem 7. Let §êl b
= (€l b ,℘l b ,L l b ) be the family of SFSftNs, where l = 1,2,…,m and b = 1, 2,…, ñ with τ = {τ1, τ2,…, τm}, ∂ =

{∂1, ∂2,…, ∂ñ} be the WVs of §êl b
= (€l b ,℘l b ,L l b ) such that τl , ∂b ∈ [0,1] and 

∑m
l τl = 1 and 

∑ñ
l ∂b = 1. Let ̀a = (à1, à2,…, àm) and o =

{o1, o2,…, o ñ} present the WV of ðl experts êb parameters such that àl , ob ∈ [0, 1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. Then, SFSftDHA AOs 
satisfy the following properties:  

1) (Idempotency): Let §êl b
= Q ê for all (l = 1.2,…,m) and b = 1, 2,…, ñ where Q ê = (¢, ϱ, û). Then, the following is obtained: 

SFSftDHA(§ê11
, §ê12

,…, §mn)=Q ê.

Table 4 
Tabular description of §ê≎l b

= nτl ∂b §êl b 
for ∝ = 2.  

Ð ê≎1 ê≎2 ê≎3 

ð1 (0.6700,0.4832,0.5338) (0.4527,0.3040,0.4281) (0.6700,0.5479,0.4379)
ð2 (0.5420,0.6062,0.5479) (0.5562,0.5336,0.5336) (0.6285,0.4929,0.4929)
ð3 (0.5107,0.5384,0.5882) (0.5107,0.4829,0.5922) (0.5420,0.5619,0.4519)
ð4 (0.4558,0.5883,0.5295) (0.5420,0.6490,0.5521) (0.4558,0.4336,0.5436)

X. Yang et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16816

11

2) (Boundedness): Let §−êl b
=

(

min
b

min
l

(€l b ),max
b

max
l

(℘l b ),max
b

max
l

(L l b )

)

and §+êl b
=

(

max
b

max
l

(€l b ), min
b

min
l

(℘l b ), min
b

min
l

(L l b )

)

, 

then, the following is obtained: 

§−êl b
≤ SFSftDHA(§ê11

, §ê12
,…, §mn) ≤ §+êl b

.

3) (Monotonicity): Suppose another collection of SFSftNs Q êl b
= (¢l b , ϱl b , ûl b ) for (l = 1.2,…,m) and b = 1, 2,…, ñ such that €l b ≤ ¢l b ,

℘l b ≥ ϱl b and L l b ≥ ûl b . Then, the following is obtained: 

SFSftDHA(§ê11
, §ê12

,…, §mn) ≤ SFSftDHA
(
Q ê11 ,Q ê12 ,…,Q mn

)
.

4) (Shift Invariance): Let Q ê = (¢, ϱ, û) be a SFSftNs. Then, the following is obtained: 

SFSftDHA(§ê11
⨁Q ê, §ê12

⨁Q ê,…, §mn⨁Q ê)= SFSftDHA(§ê11
, §ê12

,…, §mn)⨁Q ê.

5) (Homogeneity): For any þ > 0, the following applies: 

SFSftDHA(þ§ê11
, þ§ê12

,…, þ§mn)= þSFSftDHA(§ê11
, §ê12

,…, §mn).

5. MCDM approach using the spherical fuzzy soft Dombi aggregation operators 

This section is devoted to determining the MCDM technique by using the introduced operators. Additionally, the stepwise general 
algorithm is given as follows: 

Let Ω = {Ω1,Ω2,…,Ωl} denote the family of alternatives. The target is to evaluate the best alternative by the family of decision- 
making experts z = {z1, z2,…, zm} corresponding to their parameter set given as E = {ê1, ê2,…, êñ}. Let ̀a = (à1, à2,…, àm) and o = {o1,

o2,…, o ñ} presents the WV of ðl experts êb parameters such that àl , ob ∈ [0, 1] and 
∑m

l =1àl = 1,
∑ñ

b =1ob = 1. The team of m experts 
assesses each object Ωl corresponding to their parameters êñ. The experts provide their assessment in the form of SFSftNs §êl b

= (€l b ,

℘l b ,L l b ). The overall evaluation of the experts is provided in a decision matrix M = [§êl b
]m×ñ. Using the preferences values of senior 

experts, the aggregated results G J for alternatives ΩJ (J = 1,2,…, l) is G J = (€J ,℘J ,L J ) by using the SFSftDW averaging oper-
ators that are given in equations (2), (4) and (6). Finally, definition 4 is applied to each aggregated result G J , and G J values are 
ranked to obtain the optimal choice. 

5.1. Algorithm 

The algorithm for our established work to solve MCDM problems is summarized by the following: 

Step 1. The overall data of senior experts proposed for each alternative corresponding to their parameter as M = [§êl b
]m×ñ are 

collected, as follows: 

M=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(€11,℘11,L 11) (€12,℘12,L 12) … (€1ñ,℘1ñ,L 1ñ)

(€21,℘21,L 21) (€22,℘22,L 22) … (€2ñ,℘2ñ,L 2ñ)

⋮

(€m1,℘m1,L m1)

⋮

(€m2,℘m2,L m2)

…

…

⋮

(€mn,℘mn,L mn)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Step 2. SFSftNs §êl b
is aggregated for alternative ΩJ (J = 1,2,…, l) into an overall decision matrix G J = (€J ,℘J ,L J ) by using the 

SFSftDWA AOs. 

Step 3. The score values for each G J = (€J ,℘J ,L J ) are evaluated for each alternative ΩJ (J = 1,2,…, l).

Table 5 
Tabular representation of SFSftNs for ∝ = 2.  

Ω ê1 ê2 ê3 

Ω1 (0.91,0.3,0.5) (0.3,0.9,0.3) (0.2,0.8,0.6)
Ω2 (0.2,0.4,0.6) (0.6,0.6,0.4) (0.3,0.9,0.4)
Ω3 (0.5,0.5,0.5) (0.3,0.8,0.5) (0.5,0.7,0.3)
Ω4 (0.6,0.4,0.5) (0.2,0.9,0.42) (0.4,0.5,0.4)
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Step 4. If the score values obtained from the above step are the same, then the formula of the accuracy function as given in definition 
4 is applied to evaluate score values. 

Step 5. Finally, the score values are ranked to select the optimal choice. 

5.2. Numerical example 

In this section, we will verify the validity and applicability of the introduced work. To do this, we have provided the numerical 
example of introduced work. 

Let X be a company that wants to invest its money in the best alternative from a set of four alternatives 
Ω = {Ω1 = Car company,Ω2 = computer company,Ω3 = TV company and Ω4 = Food company}. Let z = {z1, z2, z3, z4, z5} be the set of 
experts with WVs à = {0.21,0.12,0.27,0.20,0.17} and E = {ê1 = Strong leadership, ê2 = Encourage a healthy work environment,
ê3 = Gaols and strategies, ê4 = Clear and defined purpose} be the set of parameters with WVs o = {0.28,0.21,0.27,0.24}. The experts 
provide their opinion for each alternative corresponding to their parameters in the form of SFSftNs. Now following steps are used for 
the selection of the most suitable company for investment. 

By using the SFSftDWA operator 

Step 1. The overall expert data based on SFSftNs are provided in Tables 5–8. 

Step 2. The SFSftNs §êl b 
is aggregated for alternatives ΩJ (J = 1,2,…, l) by using the introduced SFSftDW A AOs for ∝ = 2 are given 

as follows: 

G 1 =(0.6179, 0.4499, 0.4348),G 2 =(0.63330, 0.1703, 0.4191)

G 3 =(0.6521, 0.3314, 0.4176),G 4 =(0.6702, 0.4152, 0.4064)

Step 3. The score values are determined for each G J = (€J ,℘J ,L J ) for each alternative ΩJ (J = 1,2,…, l), as follows: 

Sc(G 1)= 0.5762, Sc(G 2)= 0.6812,

Sc(G 3)= 0.6342, Sc(G 4)= 0.6161  

Step 4. Since all score values in step 3 are different, there is no need to apply the formula of the accuracy function. 

Step 5. The prime choice is selected by ranking the score values, as follows: 

Table 6 
Tabular representation of SFSftNs for ∝ = 2.  

Ω ê1 ê2 ê3 

Ω1 (0.3,0.3,0.3) (0.5,0.7,0.3) (0.91,0.3,0.5)
Ω2 (0.6,0.6,0.4) (0.4,0.5,0.4) (0.2,0.4,0.6)
Ω3 (0.3,0.4,0.5) (0.2,0.8,0.6) (0.5,0.5,0.5)
Ω4 (0.2,0.3,0.4) (0.3,0.9,0.4) (0.6,0.4,0.5)

Table 7 
Tabular representation of SFSftNs for ∝ = 2.  

Ω ê1 ê2 ê3 

Ω1 (0.6,0.6,0.4) (0.5,0.7,0.3) (0.2,0.8,0.6)
Ω2 (0.4,0.5,0.4) (0.91,0.3,0.5) (0.5,0.5,0.5)
Ω3 (0.3,0.4,0.6) (0.3,0.5,0.4) (0.6,0.4,0.5)
Ω4 (0.3,0.4,0.3) (0.2,0.8,0.6) (0.6,0.6,0.4)

Table 8 
Tabular representation of SFSftNs for ∝ = 2.  

Ω ê1 ê2 ê3 

Ω1 (0.2,0.8,0.6) (0.3,0.9,0.3) (0.3,0.4,0.6)
Ω2 (0.6,0.4,0.5) (0.6,0.6,0.4) (0.6,0.6,0.4)
Ω3 (0.91,0.3,0.5) (0.2,0.8,0.6) (0.4,0.5,0.4)
Ω4 (0.5,0.5,0.5) (0.5,0.7,0.3) (0.3,0.9,0.4)
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Sc(G 2) > Sc(G 3)> Sc(G 4)> Sc(G 1)

Hence, it is clear that ′′Ω2′′ is the optimal result. 
By using the SFSftDOWA operator 

Step 1. Same as above. 

Step 2. The SFSftNs §êl b 
is aggregated for alternatives ΩJ (J = 1,2,…, l) by using the introduced SFSftDOWA operators for ∝ = 2, as 

follows: 

G 1 =(0.6182, 0.4421, 0.4458),

G 2 =(0.6357, 0.1703, 0.4359),

G 3 =(0.4758, 0.4101, 0.4189),

G 4 =(0.6251, 0.4012, 0.4623)

Step 3. The score values are calculated for each G J = (€J ,℘J ,L J ) for each alternative ΩJ (J = 1,2,…, l), as follows: 

Sc(G 1)= 0.5767, Sc(G 2)= 0.67464,

Sc(G 3)= 0.5489, Sc(G 4)= 0.5868  

Step 4. As all score values in step 3 are different, there is no need to apply the formula of the accuracy function. 

Step 5. The prime choice is selected by ranking the score values, as follows: 

Sc(G 2) > Sc(G 4)> Sc(G 1)> Sc(G 3)

Therefore, ′′Ω2′′ is the optimal outcome. 

6. Comparative study of the introduced approach 

In this section, we initiate a comparative assessment of the given operators with some available theories to show the effectiveness 
and authenticity of our initiated methods. 

We differentiate our methods from the Jana et al. [38] method, Aydemir and Gunduz [39] method, Sheikh and Mandal [40] 
method, Zhang et al. [41] method, Ashraf et al. [42] method and Hussian et al. [26] method. For collective information, different 
parameters of SFSftNs are aggregated by using the weighted average operators corresponding to ̀a = {0.22,0.33,0.17,0.28} as WVs of 
experts and o = {0.20,0.35,0.19,0.26} as WVs of parameters to determine the aggregated SFSft decision matrix for different alter-
natives Ωl = {l = 1,…,4} and obtain the collective decision matrix in Table 9. The results are provided in Table 10 by comparing our 
initiated method with some other existing methods to show the effectiveness and primacy of our initiated work. From the analysis of 
information presented in Table 10, although the results are marginally different, the overall optimal alternative is the same, that is, Ω1.  

1. Note that the Sheikh and Mandal [40] method, Jana et al. [38] method and Aydemir and Gunduz [39] method are based on 
intuitionistic fuzzy data, Pythagorean fuzzy data and q-rung orthopair fuzzy data, respectively. Moreover, all the above existing 
methods can only discover the MD and NMD in their structures. The data given in Table 9 consist of spherical fuzzy soft information 
that contains not only the MD and NMD but also the AD in its structure. Thus, all the above existing methods cannot deal with that 
kind of information due to their limited structures. Therefore, these existing theories fail to cover the data provided in Table 9, 
which is why no result is obtained in these cases.  

2. Additionally the Sheikh and Mandal [40] method, Jana et al. [38] method and Aydemir and Gunduz [39] method cannot discuss 
the parameterization tool, while our developed notions use the parameterization tool. Therefore, the extra feature of the developed 
notions causes the introduced notions to be superior to the existing notions. 

Table 9 
Tabular representation of SFSftNs for ∝ = 2.  

Z Ω1 Ω2 Ω3 Ω4 

z1 (0.4994,0.4333,0.6012) (0.5043,0.5972,0.5209) (0.3469,0.4658,0.5760) (0.2676,0.6020,0.6141)
z2 (0.3248,0.5554,0.6289) (0.3455,0.5794,0.6276) (0.4819,0.5897,0.6380) (0.3987,0.6690,0.6145)
z3 (0.3419,0.7115,0.5693) (0.3069,0.6597,0.6981) (0.3365,0.6548,0.6670) (0.5031,0.5584,0.6515)
z4 (0.3417,0.6243,0.6208) (0.32670,0.5909,0.6137) (0.3290,0.6797,0.5540) (0.3358,0.5802,0.5670)
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Table 10 
Tabular representation of SFSftNs for ∝ = 2.  

Methods Score values Ranking results 

(Jana et al. [38] method Failed Failed 
Aydemir and Gunduz [39] method Failed Failed 
Sheikh and Mandal [40] method Failed Failed 
(Hussian et al. [26] method Failed Failed 
Zhang et al. [41] method Failed Failed 
Ashraf et al. [42] method Sc(Ω1) = 0.2569 

Sc(Ω2) = 0.1954 
Sc(Ω3) = 0.1793 
Sc(Ω4) = 0.1689 

Ω1 > Ω2 > Ω3 > Ω4 

SFSftDWA operator proposed work Sc(Ω1) = 0.2306 
Sc(Ω2) = 0.1904 
Sc(Ω3) = 0.1753 
Sc(Ω4) = 0.1907 

Ω1 > Ω4 > Ω2 > Ω3 

SFSftDOWA operators proposed work Sc(Ω1) = 0.2367 
Sc(Ω2) = 0.1974 
Sc(Ω3) = 0.1830 
Sc(Ω4) = 0.1668 

Ω1 > Ω2 > Ω3 > Ω4 

SFSftDHA operators proposed work Sc(Ω1) = 0.2206 
Sc(Ω2) = 0.1874 
Sc(Ω3) = 0.1923 
Sc(Ω4) = 0.1701 

Ω1 > Ω3 > Ω2 > Ω4  

Fig. 1. A pictorial presentation of data provided in Table 10.  

Table 11 
Characteristic assessment of our developed approach with existing notions.  

Methods Consider the fuzzy information Consider the parameterization tool 

Jana et al. [38] method Yes No 
Aydemir and Gunduz [39] method Yes No 
Sheikh and Mandal [40] method Yes No 
(Hussian et al. [26] method Yes Yes 
Zhang et al. [41] method Yes No 
Ashraf et al. [42] method Yes No 
SFSftDWA operator proposed work Yes Yes 
SFSftDOWA operators proposed work Yes Yes 
SFSftDHA operators proposed work Yes Yes  
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3. Note that the method given by Hussian et al. [26] is based on q − ROFSft information and uses the parameterization tool as well. 
However, q − ROFSft data cannot discuss the AD, while our developed approach can discuss the AD in its structure; thus, in this 
regard, our introduced work is superior to the existing notion.  

4. When we compare our work with the Zhang et al. [41] method, the Zhang et al. [41] method consists of picture fuzzy data and uses 
the condition that sum(MD,AD,NMD) ∈ [0,1], while the existing notions use the condition that sum(MD2,AD2,NMD2) ∈ [0,1]. From 
Tables 9 and if we use the term in the third row and first column that is (0.3419,0.7115,0.5693), then the Zhang et al. [41] method 
fails to handle this information because sum(0.3419,0.7115,0.5693) ∕∈ [0, 1]. Thus, the Zhang et al. [41] method fails to handle 
these data, and no result can be found in this case. Moreover, the Zhang et al. [41] method cannot discuss the parameterization tool, 
while our existing notions can. Therefore, the developed approach is more dominant than the existing notions.  

5. The structure provided in the Ashraf et al. [42] method consists of T-spherical fuzzy information and can handle the data given in 
Table 9. The results are provided in Table 10. From Tables 10 and in all cases the optimal alternative is the same, showing the 
reliability of the developed approach. 

Additionally, the pictorial presentation of the data given in Table 10 is presented in Fig. 1. 
Moreover, the characteristic analysis of our introduced work with some existing notions is provided in Table 11. 

7. Conclusion 

A spherical fuzzy soft set is stronger than other fuzzy structures for handling the uncertainty of data. It can provide more space for 
decision-makers to handle fuzzy information. By being able to discuss the MD, NMD and AD in one structure, SFSftS has the ability to 
show all three aspects in one structure. Moreover, the Dombi t-norm and t-conorm are two fuzzy logic operators and are great sub-
stitutes for the sum and product. Therefore, in this article, based on the dominant features of SFSftS and valuable features of the Dombi 
t-norm and Dombi t-conorm, we have established the Dombi operational laws for SFSft numbers. After, we introduced SFSft Dombi 
average AOs called SFSftDWA, SFSftDOWA, and SFSftDHA AOs. Moreover, the basic properties of these introduced AOs were estab-
lished. Additionally, an algorithm along with a numerical example was explored to show the advantages of our developed work. A 
comparative assessment of the initiated work along with literature was provided to produce the benefit and significance of our initiated 
work. 

From the complexity of our introduced notions, our study is also limited because if the decision makers use 0.7 as MD, 0.8 as AD and 
0.5 as NMD, then our proposed approach cannot handle that kind of information because the sum (0.72,0.82,0.52) ∕∈ [0,1]. Therefore, 
our developed approach is limited. 

In the future, this work can be extended to spherical fuzzy sets [43], complex picture fuzzy N-soft sets [44], bipolar soft sets [45] 
and rough fuzzy bipolar soft sets [46]. Moreover, this concept can be extended to other concepts provided in Refs. [47,48]. In addition, 
we can extend these notions to the 3,4-quasiring fuzzy sets [49] and quasiring orthopair fuzzy set theory [50]. Based on the Frank 
t-norm and t-conorm, we can develop some Frank aggregation operators as provided in Refs. [51,52]. We can extend these notions to 
the T-spherical fuzzy set theory introduced by Guleria and Bajaj [53]. Additionally, we can define some correlation measures based on 
the developed approach provided in Ref. [54]. 
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