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Abstract

Precise segmentation of infant brain magnetic resonance (MR) images into gray mat-

ter (GM), white matter (WM), and cerebrospinal fluid (CSF) are essential for studying

neuroanatomical hallmarks of early brain development. However, for 6-month-old

infants, the extremely low-intensity contrast caused by inherent myelination hinders

accurate tissue segmentation. Existing convolutional neural networks (CNNs) based

segmentation models for this task generally employ single-scale symmetric convolu-

tions, which are inefficient for encoding the isointense tissue boundaries in baby

brain images. Here, we propose a 3D mixed-scale asymmetric convolutional segmen-

tation network (3D-MASNet) framework for brain MR images of 6-month-old infants.

We replaced the traditional convolutional layer of an existing to-be-trained network

with a 3D mixed-scale convolution block consisting of asymmetric kernels (MixACB)

during the training phase and then equivalently converted it into the original net-

work. Five canonical CNN segmentation models were evaluated using both T1- and

T2-weighted images of 23 6-month-old infants from iSeg-2019 datasets, which con-

tained manual labels as ground truth. MixACB significantly enhanced the average

accuracy of all five models and obtained the most considerable improvement in the

fully convolutional network model (CC-3D-FCN) and the highest performance in the

Dense U-Net model. This approach further obtained Dice coefficient accuracies of

0.931, 0.912, and 0.961 in GM, WM, and CSF, respectively, ranking first among

30 teams on the validation dataset of the iSeg-2019 Grand Challenge. Thus, the pro-

posed 3D-MASNet can improve the accuracy of existing CNNs-based segmentation

models as a plug-and-play solution that offers a promising technique for future infant

brain MRI studies.
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1 | INTRODUCTION

The accurate tissue segmentation of infant brain magnetic resonance

(MR) images into gray matter (GM), white matter (WM), and cerebro-

spinal fluid (CSF) are essential for researchers to chart the normal and

abnormal early brain development of cortical regions, white matter

connections, and wiring topologies (Cao et al., 2017; Hazlett

et al., 2017; Wang, Lian, et al., 2019; Wen et al., 2019; Xu et al., 2019;

Zhao et al., 2019). Notably, the tissue segmentation of 6-month-old

infants is the biggest challenge in baby brain segmentation tasks due

to the isointense phase in which the intensity distributions of GM and

WM voxels become dramatically overlapped in the cortical regions

(Figure 1). The effective manual annotation, which is guided by longi-

tudinal tracking of brain images with high tissue contrast in the latter

children period (Wang, Nie, et al., 2019), is limited by the extremely

high labor costs, the requirement of specialized expert knowledge

(almost 1 week per image for an experienced neuroradiologist) and

high inter- and intra-rater variations (Makropoulos et al., 2018).

Developing fast, automatic, and accurate brain segmentation

approaches is a crucial and ongoing goal for MR images of infants at

6 months of age (Sun et al., 2021; Wang, Nie, et al., 2019).

1.1 | Convolutional neural networks based
methods become the mainstream

In the past years, many efforts have been made for the segmentation

task of 6-month-old infant brain MR images. Generally, emerging con-

volutional neural networks (CNNs)-based segmentation methods that

exhibiting faster computational speed and higher accuracy than con-

ventional atlas-based (Wang et al., 2012, 2014) or machine learning

based methods (Sanroma et al., 2018; Wang et al., 2014, 2015; Wang,

Li, Adeli, et al., 2018) become the mainstream. A typical example is

that seven of the eight top teams in iSeg-2017 challenge has utilized

CNNs to segment infant brain tissues.

Current CNNs-based approaches for infant brain segmentation

are usually variants of canonical FCN (Long et al., 2015) and U-Net

(Ronneberger et al., 2015) architecture. By adjusting or adding specific

connectional pathways within or across neural layers on classical

CNNs models, these approaches enhance the extraction and fusion of

the semantic information in multimodal features to counteract the

noisy and isointense tissues boundaries in 6-month-old infant brain

images (Bui et al., 2019; Dolz et al., 2019, 2020; Nie et al., 2016,

2019; Wang et al., 2020; Wang, Li, Shi, et al., 2018; Zeng &

Zheng, 2018; Zhang et al., 2015). Specifically, Bui et al. improved

densely connected network (DenseNet) (Huang et al., 2017) by

concatenating fine and coarse feature maps from multiple densely

connected blocks and won the iSeg-2017 competition (Bui

et al., 2019). Dolz et al. (2020) proposed a semi-dense network by

directly connecting all of the convolutional layers to the end of the

network and further extended it into a HyperDenseNet by adding

dense connections between multimodal network paths (Dolz

et al., 2019). Similarly, Zeng and Zheng (2018) modified the classical

U-Net network by constructing multi-encoder paths for each modality

to effectively extract targeted high-level information. Wang et al.

(2020) designed a global aggregation block in the U-Net model to con-

sider global information in the decoder path of feature maps. Interest-

ingly, inspired by the superiority of DenseNet and U-Net, the densely

connected U-Net (DU-Net) model with a combination of these two

types of networks was proposed for both tissue segmentation and

autism diagnosis (Wang, Li, Shi, et al., 2018).

1.2 | Improvements from fine-grained convolution
kernel designs are underestimated

Although great efforts have been made, the above CNN-based seg-

mentation models have several limitations. First, the image appear-

ance of 6-month-old infant brain MR images is quite noisy (Li

et al., 2019; Mostapha & Styner, 2019) which makes the effective

feature extraction difficult for the traditional convolution kernel

design in previous works. Adopting enhanced convolution kernel

designs (Ding et al., 2019; Li et al., 2020; Zhang et al., 2022) that

emphasizes key features in the skeleton center of kernels may facili-

tate feature extractions throughout the network. Second, the voxel-

wise fuzzy tissue boundaries in infant brain images are constrained by

F IGURE 1 Data of a 6-month-old infant from the training set in iSeg-2019. The isointense brain appearance of an axial slice in T1-weighted
(T1w) and T2-weighted (T2w) images. An axial view of the manual segmentation label (ground truth) and the corresponding brain tissue intensity
distribution of the T1w image (distribution).

1780 ZENG ET AL.



the anatomical morphology of gyrus at large spatial scales (Wang, Li,

Adeli, et al., 2018). Although previous infant segmentation

approaches try to fuse multi-scale features by skip-connections in

variants of FCN and U-Net, they overlook capturing rich multi-scale

features in kernel space, which contains more stable and homoge-

neous semantic information than features between layers (Fan

et al., 2019). Third, all these studies focused on modifications of net-

work layouts which need seasoned expertise experience, time-

consuming hyperparameter tuning, and may also bring excessive

graphics processing unit (GPU) burdens (Dolz et al., 2019; Wang

et al., 2020) and architecture incompatibility. Recent CNN studies

move eyes on building architecture-independent designs such as SE

blocks (Hu et al., 2018), or automatically configuring models such as

nnU-net (Isensee et al., 2021), which requires neither rare expert

knowledge nor expensive manual interventions.

1.3 | Our contribution

Our goal is to obtain a CNN-based building block for 6-month-old

infant brain image segmentation which is (1) with fine-grained ker-

nel designs to enhance the representation and abundance of fea-

tures; (2) transplantable in up-to-date segmentation models in a

plug-and-play way; (3) without much additional hyperparameter

tuning or computational burden. To this end, we construct a 3D

mixed-scale asymmetric segmentation network (3D-MASNet)

framework by embedding a well-designed 3D mixed-scale asymmet-

ric convolution block (MixACB) into existing segmentation CNNs for

6-month-old infant brain MR images (Figure 2). The MixACB design

is comprised by (1) four parallel 3D convolutional layers including a

symmetric kernel (d�d�d) and three asymmetric 2D kernels

(1�d�d, d�1�d, d�d�1) (Figure 3a), respectively; (2) multiple

groups on input feature maps with different kernel sizes (Figure 3b)

independently; (3) parameter fusion for each MixACB after the train-

ing process to lower inference-time computations compare to the

original network. We first evaluated the effectiveness of the MixACB

on five canonical CNN networks using the iSeg-2019 training dataset.

We next compared the performance of our method with that of top-4

approaches proposed in the MICCAI iSeg-2019 Grand Challenge on

the iSeg-2019 validation dataset. The experimental results revealed

that the MixACB significantly improved the segmentation accuracy of

various CNNs, among which DU-Net (Wang, Li, Shi, et al., 2018) with

MixACB achieved the best-enhanced average performance and

obtained the highest Dice coefficients of 0.931 in GM, 0.912 in WM,

and 0.961 in CSF, ranking first in the iSeg-2019 Grand Challenge. All

codes are publicly available at https://github.com/RicardoZiTseng/

3D-MASNet.

2 | METHODS AND IMPLEMENTATIONS

2.1 | Mathematical formulation of basic 3D
convolution

Consider a feature map I�ℝU�V�S�C with a spatial resolution of

U�V�S as input and a feature map O�ℝR�T�Q�K with a spatial reso-

lution of R�T�Q as output of a convolutional layer with a kernel size

of H�W�D and K filters. Then, each filter's kernel is denoted as

F�ℝH�W�D�C , and the operation of the convolutional layer with a

batch normalization (BN) layer can be formulated as follows:

F IGURE 2 Overview of the 3D-
MASNet framework. For a candidate
network, we replace its traditional
convolutional layers with MixACB during
the training phase. Once the training
process is complete, we fuse the
parameters of MixACB to obtain an
enhanced model containing fewer
parameters after equivalent fusion.
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O:,:,:,j ¼
XC

k¼1
I:,:,:,k �F jð Þ

:,:,:,k�μj

� �
� γj
σj
þβj

¼
XC

k¼1
I:,:,:,k �

γj
σj
F jð Þ
:,:,:,k

� �
�μjγj

σj
þβj

ð1Þ

where � is the 3D convolution operator, I:,:,:,k is the kth channel of the

input feature map I, F jð Þ
:,:,:,k is the kth channel of the jth filter's kernel, μj

and σj are the channel-wise mean value and standard deviation value,

respectively, γj and βj are the scaling factor and bias term to restore

the representation ability of the network, respectively.

2.2 | Design of 3D asymmetric convolutions (3D-
AC) during training and inference phases

3D-AC was designed behaving differently during training and infer-

ence phases (Figure 3a). Concretely, for each kernel of each layer in

the network during the training phase, a 3D-AC contains four parallel

convolutional branches, namely one standard 3D convolution layer

and three orthogonal 2D asymmetric convolutional layers (1�d�d,

d�1�d, d�d�1) at kernel center for the enhancement of features

along axial, sagittal, and coronal directions, respectively. The input fea-

ture maps are fed into these four branches, and the outputs of these

branches are summed to fuse the knowledge learned by these four

independent branches. During the inference phase, 3D-AC contains

one standard convolutional layer with equivalently fused kernel of the

training-time 3D-AC (described in Section 2.4), thus the input feature

maps only need feed into this single branch which brining low infer-

ence computations.

2.3 | Constructing MixACB by multiple 3D-ACs
with varying kernel scales

To process the input feature map at different scales of detail, we pro-

pose the MixACB by mixing multiple 3D-ACs with different kernel

sizes, as illustrated in Figure 3b. Notably, since we used the 3D-AC to

strength the core skeleton part of the convolutional kernel, thus the

kernel size of 3D-AC must be odd, such as 3, 5, and 7. Since directly

adopting multiple 3D-ACs on all feature maps then concatenating out-

puts will dramatically increase the models' parameters and computa-

tions, we leverage the grouped convolution approach by splitting

original input feature maps into groups and apply 3D-AC indepen-

dently in each input feature map's group. Assume that we split the

input feature maps into g groups of tensors such that their total num-

ber of channels is equal to the original feature maps' channels:

C1þC2þ…þCg ¼C with C1 ≥C2 ≥…≥Cg; similarly, the output fea-

ture maps also have g groups: K1þK2þ…þKg ¼K with

K1 ≥K2 ≥…≥Kg . We denote I< i> �ℝU�V�S�Ci as the ith group of input,

O
_ < i>

�ℝR�T�Q�Ki as the MixACB's ith group output, and

F0< i> �ℝHi�Wi�Di�Ci as the equivalent kernel of the ith group of the

3D-AC whose equivalent kernel size is Hi�Wi�Di. Thus, we have

following equations:

O
_ < i>

:,:,:,j ¼
XCi

q¼1
I< i>:,:,:,q �F0< i> jð Þ

s

� �
þb0< i>j

s:t:1≤ i≤ g,1≤ j ≤Ki

ð2Þ

The final output of MixACB is the concatenation of all groups'

outputs:

F IGURE 3 (a) Diagram of 3D-AC (taking a kernel size of 3 as an example), which has four convolutional layers during the training phase and
one convolutional layer once kernel parameters have been fused during the inference phase. (b) Diagram of MixACB, which is composed of
multiple 3D-ACs with different kernel sizes. MixACB splits input feature maps into several groups, applies asymmetric convolution on each group
of feature maps, and then concatenates each group's output as the output feature maps.
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O
_ ¼ concat O

_ <1>
, O

_ <2>
, …, O

_ < g >
� �

ð3Þ

We define the mix ratio mr1:i as the ratio between C1 and

Ci 1< i≤ gð Þ. For simplicity, the ratio between K1 and Ki 1< i≤ gð Þ
should be set to be equal to the mr1:i , let mr1:2 ¼mr1:3 ¼…¼mr1:g ,

and the kernel size of the ith group of 3D-AC as 2iþ1. In this study,

we particularly split the input and out feature maps into two groups,

and set mix ratio mr1:i as 3:1. In Section 3.3.3, we further discussed

the choice of group number g and mix ratio mr1:i.

2.4 | Equivalently fusing kernel of each 3D-AC
inside MixACB

Once the training process of 3D-MASNet is completed, we equivalently

fused the kernels of each 3D-AC inside the MixACB to retain the same

output results as the original network. Due to the additivity of convolu-

tional kernels, the kernels of 3D-AC's four branches can be fused to

obtain an equivalent kernel in a 3D convolutional layer to produce the

same output, which can be formulated as the following equation:

I�Fþ I� ~Fþ I� F̂þ I�F¼ I� F⊕~F⊕F̂⊕F
� �

ð4Þ

where I is an input feature map, F, ~F, F̂, and F are the four branches'

kernels of 3D-AC. ⊕ is an elementwise operator that performs param-

eter addition on the corresponding positions, and F0 is the equivalent

fused kernel of the four branches' kernels.

Here, we took a kernel size of 3 as an example. We first fused the

BN parameters into the convolutional kernel term and bias term

following Equation (1). Then, we further fused the four parallel kernels

by adding the asymmetric kernels onto the skeletons of the cubic ker-

nel. Formally, we denote F0 jð Þ as the jth filter at the 1�3�3, 3�1�3

and 3�3�1 layer, respectively. Hence, we obtain the following

formulas:

F0 jð Þ ¼ γj
σj
F jð Þ⊕

~γj
~σj
~F

jð Þ
⊕
γ̂j
σ̂j
F̂

jð Þ
⊕
γj
σj
F

jð Þ ð5Þ

b0j ¼�μjγj
σj

�~μj~γj
~σj

� μ̂jγ̂j
σ̂j

�μjγj
σj

þβjþ~βjþ β̂jþβj ð6Þ

Then, we can write any output of jth filter as:

O:,:,:,jþ ~O:,:,:,jþ Ô:,:,:,jþO:,:,:,j ¼
XC

k¼1
I:,:,:,k �F0 jð Þ:,:,:,kþb0j ð7Þ

where O:,:,:,j, ~O:,:,:,j, Ô:,:,:,j and O:,:,:,j are the outputs of the original

3�3�3, 1�3�3, 3�1�3, and 3�3�1 branch, respectively.

2.5 | Candidate CNNs for the evaluation of the
MixACB on 6-month-old infant brain image
segmentation

We choose five representative networks to evaluate the effective-

ness of the 3D-MixACB in improving the segmentation perfor-

mance, including BuiNet (Bui et al., 2019), 3D-UNet (Çiçek

et al., 2016), convolution and concatenate 3D fully convolutional

network (CC-3D-FCN) (Nie et al., 2019), non-local U-Net (NLU-

Net) (Wang et al., 2020), and DU-Net (Wang, Li, Shi, et al., 2018).

TABLE 1 Training strategy of each candidate network

Candidate network Training batch size
Training/inference
patch size Learning rate schedule

BuiNet 4 64 Train for 20,000 iterations. The initial learning rate is

set to 2 e � 4 and is decreased by a factor of 0.1

every 5000 iterations.

3D-UNet 10 32 Train for 80 epochs for a total of 5000 patches that

are randomly extracted per epoch. The learning rate

is decreased every 20 epochs and is set to 3 e � 4,

1 e � 4, 1 e – 5, and 1 e � 6. Train for 80 epochs for

a total of 5000 patches that are randomly extracted

per epoch. The learning rate is decreased every 20

epochs and is set to 3 e � 4, 1 e � 4, 1 e – 5, and

1 e � 6.

CC-3D-FCN 10 32 The same as 3D-UNet.

NLU-Net 5 32 Train for 80 epochs for a total of 5000 patches that

are randomly extracted per epoch. The learning rate

is set to 1 e � 3.

DU-Net 16 32 The cosine annealing strategy with a maximum learning

rate of 3 e � 4 and a minimum learning rate of

1 e � 6 is adopted. The model is trained for 500

epochs and a total of 1000 patches are randomly

extracted at each epoch.
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Notably, these five networks are either variants of the U-type

architecture (3D U-Net, NLU-Net, and DU-Net) or the FCN-type

architecture (BuiNet and CC-3D-FCN) and encompass major CNN

frameworks in infant brain segmentation. After replacing their

original convolution layers with the 3D-MixACB design, we fol-

lowed the training configurations set in the candidate CNN's

release codes (Table 1) and adopted the Adam optimizer to

update these models' parameters. Except for the CC-3D-FCN,

which used the Xavier algorithm (Glorot & Bengio, 2010) to ini-

tialize network weights, all other networks adopted the He initiali-

zation method (He et al., 2015). The configuration parameters are

as follows:

(1) BuiNet adopted four dense blocks consisting of four 3�3�3

convolutional layers for feature extraction. Transition blocks were

applied between every two dense blocks to reduce the feature map

resolutions. 3D up-sampling operations were used after each dense

block for feature map recovery, and these upsampled features were

concatenated together. (2) 3D-UNet has four levels of resolution, and

each level adopts one 3�3�3 convolution, which is followed by BN

and a rectified linear unit (ReLU). The 2�2�2 max pooling and the

2�2�2 transposed convolution, each with a stride of 2, are

employed for resolution reduction and recovery. Feature maps of the

same level of both paths were summed. (3) CC-3D-FCN used six

groups of 3�3�3 convolutional layers for feature extraction, in

which the 2�2�2 max pooling with a stride of 2 was adopted

between two groups of layers. The 1�1�1 convolution with a

stride of 1 was added between two groups with the same resolution

for feature fusion. (4) DU-Net used seven dense blocks to construct

the encoder–decoder structure with four levels of resolution and

leveraged transition down blocks and transition up blocks for

down-sampling and up-sampling, respectively. Unlike the imple-

mentations in (Wang, Li, Shi, et al., 2018), the bottleneck layer is

introduced into the dense block to constrain the rapidly increasing

number of feature maps, and the transition down block consisted of

two 3�3�3 convolutions, each followed by BN and ReLU. In addi-

tion, we used the 1�1�1 convolution followed by a softmax activa-

tion function in the last layer. (5) NLU-Net leveraged five different

kinds of residual blocks to form the U-type architecture with three

levels of resolution. BN with the ReLU6 activation function was

adopted before each 3�3�3 convolution. The global aggregation

block replaced the two convolutional layers of the input residual block

to form the bottom residual block for the integration of global

information.

We fed the same multimodal images into these five networks and

employed the same inference strategy. We extracted overlapping

patches of the same size as that used during the training phase. The

overlapping step size had to be smaller than or equal to the patch

length size to form the whole volume. Following the common practice

in (Bui et al., 2019; Nie et al., 2019; Wang et al., 2020; Wang, Li, Shi,

et al., 2018), we set the step size to 8. Since the effect of the overlap-

ping step size in the proposed framework remains unknown, we fur-

ther evaluated it in Section 3.3. Voxels inside the overlapping regions

were averaged.

3 | EXPERIMENTS AND RESULTS

3.1 | iSeg-2019 dataset and image preprocessing

Twenty-three isointense phase infant brain MRIs, including T1w and

T2w images, were offered by the iSeg-2019 (http://iseg2019.web.

unc.edu/) organizers from the pilot study of the Baby Connectome

Project (BCP) (Howell et al., 2019). All the infants were term-born (40

± 1 weeks of gestational age) with an average scan age of 6.0

± 0.5 months. All experimental procedures were approved by the Uni-

versity of North Carolina at Chapel Hill and the University of Minne-

sota Institutional Review Boards. Detailed imaging parameters and

preprocessing steps that were implemented are listed in (Sun

et al., 2021). Before cropping the MR images into patches, we normal-

ized the T1w and T2w images by subtracting the mean value and

dividing by the standard deviation value.

The iSeg-2019 organizers offered the ground truth labels, which

were obtained by a combination of initial automatic segmentation

using the infant brain extraction and analysis toolbox (iBEAT) (Dai

et al., 2013) on follow-up 24-month scans of the same baby and man-

ual editing using ITK-SNAP (Yushkevich et al., 2006) under the guid-

ance of an experienced neuroradiologist. The MR images of 10 infants

with manual labels were provided for model training and validation.

The images of 13 infants without labels were provided for model test-

ing. The testing results were submitted to the iSeg-2019 organizers

for quantitative measurements.

3.2 | Evaluation metrics

We employed the Dice coefficient (DICE), modified Hausdorff dis-

tance (MHD), and average surface distance (ASD) to evaluate the

model performance on segmenting 6-month-old infant brain MR

images.

3.2.1 | Dice coefficient

Let A and B be the manual labels and predictive labels, respectively.

The DICE can be defined as:

DICE A, Bð Þ¼ 2jA\Bj
jAjþ jBj ð8Þ

where j�j denotes the number of elements of a point set. A higher

DICE indicates a larger overlap between the manual and predictive

segmentation areas.

3.2.2 | Modified Hausdorff distance

Let C and D be the sets of voxels within the manual and predictive

segmentation boundary, respectively. MHD can be defined as:
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MHD C, Dð Þ¼ max h C, Dð Þ, h D, Cð Þf g ð9Þ

where h C, Dð Þ¼ 1
Nc

P
c � Cd c, Dð Þ, and d c, Dð Þ¼ min

d � D
c�dk k with �k k

representing the Euclidean distance. We follow the calculation described

in Wang et al. (2020) by computing the average MHD based on the

three different vectorization directions to obtain a direction-independent

evaluation metric. A smaller MHD coefficient indicates greater similarity

between manual and predictive segmentation contours.

3.2.3 | Average surface distance

The ASD is defined as:

ASD C, Dð Þ¼1
2
�

P
vi � SC

min
vj � SD

vi�vj
�� ��

P
vi � SC

1
þ
P

vj � SD
min
vi � SC

vj�vi
�� ��

P
vj � SD

1

0
@

1
A ð10Þ

where SC and SD represent the surface meshes of C and D, respec-

tively. A smaller ASD coefficient indicates greater similarity between

cortical surfaces reconstructed from manual and predictive

segmentation maps.

3.3 | Exploring the effectiveness of the MixACB

We performed several experiments to evaluate the effectiveness of

the MixACB, including (1) ablation tests on five representative seg-

mentation networks (Section 2.2); (2) comparisons with state-of-the-

art approaches in iSeg-2019; (3) component analysis of MixACB and

rotation simulation tests; (4) validation of the impact of the overlap-

ping step size; and (5) investigating the numeric values of MixACB's

kernels and visualizing feature maps.

3.3.1 | Performance improvement on five
representative CNN architectures

For a given network architecture without the MixACB design, we

regarded it as the baseline model and further transformed it into a

3D-MASNet design. All pairs of the baseline models and their corre-

sponding 3D-MASNet followed the training strategies described in

Table 1. To balance the training and testing sample sizes, we adopt

a two-fold cross-validation (one fold with five random selected par-

ticipants for training and the left for testing) for model evaluation

on the iSeg-2019 training dataset. Tables 2 3 and Figure 4 show

that the performance of all the models was significantly improved

across almost all tissue types in terms of the DICE and MHD, which

demonstrates the effectiveness of the MixACB on a wide range of

CNN layouts. Specifically, DU-Net with the MixACB achieved the

highest average DICE of 0.928 and the lowest average MHD value

of 0.436; CC-3D-FCN with the MixACB gained the most consider-

able DICE improvement and reached a higher average DICE than

that attained by BuiNet, which was a champion solution in the MIC-

CAI iSeg-2017 grand challenge, indicating that a simple network

could reach excellent performance by advanced convolution

designs. Figure 5 further provides a visual segmentation comparison

between networks with and without the MixACB. The MixACB

could effectively correct misclassified voxels which are indicated by

red squares.

3.3.2 | Comparison with state-of-the-art methods
on iSeg-2019

Since DU-Net, which was combined with MixACB, has achieved the

highest accuracy among all candidate models, we compared it with

methods developed by the 29 remaining teams that participated in

the iSeg-2019 challenge. We employed a majority-voting strategy on

10 trained networks' outputs to improve the model generalization.

Table 4 reports the segmentation results achieved by our pro-

posed method and those of other teams' methods that ranked in the

top 4 on the validation dataset of the iSeg-2019. The mean DICE,

MHD value, and ASD value are presented for CSF, GM, and WM, rep-

resentatively. Compared with other teams, our method yielded the

highest DICE and lowest ASD value for the three brain tissues in the

validation test of iSeg-2019, with comparable MHD values. The supe-

rior average value of the three types of brain tissues also indicates

that our method has the best overall performance.

TABLE 2 Ablation study performed by comparing the segmentation accuracy between different models and their corresponding 3D-MASNet
in terms of DICE by two-fold cross validation

Network

CSF GM WM Avg

Baseline MixACB Baseline MixACB Baseline MixACB Baseline MixACB

BuiNet 0.938 ± 0.010 0.938 ± 0.011 0.905 ± 0.007 0.908* ± 0.007 0.888 ± 0.014 0.892* ± 0.013 0.910 ± 0.007 0.912* ± 0.007

3D-UNet 0.940 ± 0.010 0.942* ± 0.008 0.907 ± 0.007 0.909* ± 0.007 0.889 ± 0.014 0.892* ± 0.015 0.912 ± 0.007 0.914* ± 0.008

CC-3D-FCN 0.923 ± 0.010 0.942* ± 0.008 0.910 ± 0.006 0.911 ± 0.007 0.892 ± 0.013 0.894* ± 0.013 0.908 ± 0.006 0.915* ± 0.006

NLU-Net 0.947 ± 0.009 0.949* ± 0.008 0.918 ± 0.007 0.919 ± 0.006 0.903 ± 0.012 0.904 ± 0.014 0.922 ± 0.006 0.924* ± 0.006

DU-Net 0.951 ± 0.008 0.953* ± 0.008 0.922 ± 0.007 0.923* ± 0.007 0.907 ± 0.015 0.907 ± 0.015 0.927 ± 0.007 0.928* ± 0.008

Note: The best values are highlighted in bold font. “Baseline” denotes that the corresponding model adopted the standard convolutional operation;

“MixACB” denotes that the corresponding model was transformed into 3D-MASNet; “*” denotes that the difference between baseline and 3D-MASNet is

statistically significant (p < .05) .
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3.3.3 | Component analysis of MixACB and rotation
simulation tests

To choose the group number g, we made an ablation experiment by

gradually increasing g from 2 to 4. The maximum kernel size (which

was defined as 2gþ1) varied from 5 to 7 and 9 and the kernel used

varied from (3, 5) to (3, 5, 7) and (3, 5, 7, 9), respectively. For simplic-

ity, the mix ratio of kernels with different lengths was set to an equal

proportion. All other parameters were kept unchanged except that

the number of parameters of model increased with the number and

TABLE 3 Ablation study performed by comparing the segmentation accuracy between different models and their corresponding 3D-MASNet
in terms of MHD by two-fold cross validation

Network

CSF GM WM Avg

Baseline MixACB Baseline MixACB Baseline MixACB Baseline MixACB

BuiNet 0.308 ± 0.024 0.307 ± 0.023 0.659 ± 0.048 0.649* ± 0.045 0.493 ± 0.043 0.485* ± 0.042 0.487 ± 0.035 0.480* ± 0.034

3D-UNet 0.299 ± 0.022 0.293* ± 0.020 0.658 ± 0.050 0.651* ± 0.046 0.490 ± 0.046 0.485* ± 0.042 0.483 ± 0.036 0.476* ± 0.033

CC-3D-FCN 0.348 ± 0.022 0.292* ± 0.023 0.649 ± 0.047 0.645* ± 0.048 0.485 ± 0.046 0.480* ± 0.046 0.494 ± 0.034 0.473* ± 0.034

NLU-Net 0.278 ± 0.022 0.270* ± 0.020 0.619 ± 0.043 0.615* ± 0.040 0.461 ± 0.040 0.460 ± 0.037 0.453 ± 0.032 0.448* ± 0.030

DU-Net 0.261 ± 0.021 0.254* ± 0.022 0.605 ± 0.046 0.601* ± 0.047 0.452 ± 0.041 0.452 ± 0.043 0.439 ± 0.032 0.436* ± 0.034

Note: The best values are highlighted in bold font. “Baseline” denotes that the corresponding model adopted the standard convolutional operation;

“MixACB” denotes that the corresponding model was transformed into 3D-MASNet; “*” denotes that the difference between baseline and 3D-MASNet is

statistically significant (p < .05).

F IGURE 4 Box plot of the
segmentation performance
improvement on five candidate
CNN architectures in the 3D-
MASNet framework. The first

column shows the measurement
of DICE to represent the
segmentation accuracy for each
tissue type. The second column
shows the results of MHD. In
each subgraph, we use two
neighbor box plots to represent a
candidate model (first bar) and its
corresponding 3D-MASNet
(second bar). The significance of
model comparison is evaluated by
two-fold cross-validation. “*”
denotes that .01 ≤ p < .05, “**”
denotes that .001 ≤ p < .01, and
“***” denotes that p < .001.

1786 ZENG ET AL.



size of kernels (Table 5). We found that with the increase of g, the

segmentation accuracy was not improved. For facilitating multiple

models' ensemble and reducing GPU memory usage, we set g as

2. Then we analyzed the effect of the mix ratio on model segmenta-

tion performance when g is set to 2. Table 6 shows that segmentation

accuracy reaches the highest value when the mix ratio is set to 3:1.

We next performed an ablation test to verify the effectiveness of

each part of the proposed MixACB, as shown in Table 7. The segmen-

tation accuracy was improved with large variations when using differ-

ent 3D-ACs alone. Moreover, when these 3D-ACs were mixed in

scales for a MixACB design, the model was able to achieve the best

performance in both DICE and MHD metrics.

To explore the segmentation robustness of 3D-MASNet when

facing residual rotation distortions, we conducted a simulation analy-

sis by rotating the input brain images to a series of degrees in the test-

ing set. Obviously, the accuracies were significantly reduced

compared with that of non-rotation images (0�), but the network with

MixACB presented higher accuracy than the baseline in most of rota-

tion degrees (Table 8). This is consistent with previous findings that

asymmetric convolutional designs are robust to image rotation distor-

tions (Ding et al., 2019).

3.3.4 | Impact of overlapping step sizes

We further performed experiments to evaluate the effectiveness of

the MixACB on overlapping step sizes, which controls the trade-off

between accuracy and inference time. Based on two-fold cross-val-

idation, which has been done previously, we tested the overlapping

impact when the step size is set to 4, 8, 16, and 32 on the DU-

Net in the proposed 3D-MASNet framework. Figure 6a,b presents

the changes in the segmentation performance in terms of DICE

and MHD, respectively, for different overlapping step sizes.

Figure 6c presents the changes in the average number of inference

patches for different overlapping step sizes. We found that a step

size of 8 is a reasonable choice for achieving fast and accurate

results.

3.3.5 | Investigating the numeric values of
MixACB's kernels and visualizing feature maps

Following the strategy described by Ding and colleagues (Ding

et al., 2019), we calculated the average kernel magnitude matrix for

DU-Net with MixACB and without MixACB to visualize the impor-

tance pattern of kernel parameters. We showed the magnitude matrix

in Figure 7, where a darker color and a larger value at each grid indi-

cated higher importance of the parameter in the corresponding posi-

tion across all the convolutional layers. Similar to previous

observations in (Ding et al., 2019), the parameters were distributed in

an imbalanced manner in both with or without MixACB designs where

the central part exhibited larger values than corner part (the second

rows of Figure 7a,b). Meanwhile, MixACB aggravated such imbalance

of parameter distribution (the first rows of Figure 7a,b). We also

F IGURE 5 Visualization of
the segmentation results on
different models with (w) and
without (w/o) the MixACB. The
ground truth map is shown in
color, and CNNs-based
segmentation maps are shown in
the gray scale. The regions in the
red square are magnified in the

middle row following an order
from with MixACB to without
MixACB.

TABLE 4 Comparison of segmentation performance of the proposed method and the methods of the top-4 ranked teams on the 13
validation infant MRI images of iSeg-2019

Method (Top 5)

CSF GM WM AVG

DICE MHD ASD DICE MHD ASD DICE MHD ASD DICE MHD ASD

Brain_Tech 0.961 8.873 0.108 0.928 5.724 0.300 0.911 7.114 0.347 0.933 7.237 0.252

FightAutism 0.960 9.233 0.110 0.929 5.678 0.300 0.911 6.678 0.341 0.933 7.196 0.250

OxfordIBME 0.960 8.560 0.112 0.927 5.495 0.307 0.907 6.759 0.353 0.931 6.938 0.257

QL111111 0.959 9.484 0.114 0.926 5.601 0.307 0.908 7.028 0.353 0.931 7.371 0.258

Proposed 0.961 9.293 0.107 0.931 5.741 0.292 0.912 7.111 0.332 0.935 7.382 0.244

Note: The best values are highlighted in bold font.
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visualized the feature maps produced from DU-Net with MixACB and

without MixACB (Figure 8). We found that the feature maps with

MixACB contained more meaningful response patterns and precise

morphological details than those observed without MixACB (such as

the 6th, 9th, and 14th maps).

4 | DISCUSSION

Instead of designing a new network architecture to segment the brain

images of 6-month-old infants, we proposed a 3D-MASNet frame-

work by replacing the standard convolutional layer with MixACB on

TABLE 5 Ablation study performed by comparing the segmentation accuracy in different groups g by two-fold cross validation

g

CSF GM WM AVG
Number of
parametersDICE MHD DICE MHD DICE MHD DICE MHD

2 0.953 ± 0.008 0.258 ± 0.023 0.921 ± 0.007 0.605 ± 0.045 0.905 ± 0.013 0.455 ± 0.040 0.926 ± 0.007 0.439 ± 0.033 3,907,593

3 0.952 ± 0.008 0.258 ± 0.022 0.921 ± 0.007 0.606 ± 0.046 0.905 ± 0.014 0.456 ± 0.042 0.926 ± 0.007 0.440 ± 0.033 4,861,949

4 0.952 ± 0.008 0.260 ± 0.022 0.920 ± .007 0.608 ± 0.045 0.905 ± 0.013 0.457 ± 0.040 0.926 ± 0.007 0.442 ± 0.033 5,642,547

Note: The best values are highlighted in bold font.

TABLE 6 Ablation study performed by comparing the segmentation accuracy in different mix ratios with group g¼2 by two-fold cross
validation

Mix ratio

CSF GM WM AVG

DICE MHD DICE MHD DICE MHD DICE MHD

1:0 0.952 ± 0.010 0.261 ± 0.024 0.922 ± 0.008 0.604 ± 0.045 0.906 ± 0.014 0.453 ± 0.041 0.927 ± 0.008 0.440 ± 0.033

1:1 0.953 ± 0.008 0.258 ± 0.023 0.921 ± 0.007 0.605 ± 0.045 0.905 ± 0.013 0.455 ± 0.040 0.926 ± 0.007 0.439 ± 0.033

3:1 (proposed) 0.953 ± 0.008 0.254 ± 0.022 0.923 ± 0.007 0.601 ± 0.047 0.907 ± 0.015 0.452 ± 0.043 0.928 ± 0.008 0.436 ± 0.034

5:1 0.953 ± 0.009 0.257 ± 0.025 0.922 ± 0.008 0.601 ± 0.047 0.907 ± 0.015 0.452 ± 0.042 0.926 ± 0.008 0.437 ± 0.034

Note: The best values are highlighted in bold font.

TABLE 7 Component analysis of MixACB by two-fold cross validation

CSF GM WM AVG

DICE MHD DICE MHD DICE MHD DICE MHD

CONV_3 0.951 ± 0.008 0.261 ± 0.021 0.922 ± 0.007 0.605 ± 0.046 0.907 ± 0.015 0.452 ± 0.041 0.927 ± 0.007 0.439 ± 0.032

AC_3 0.952 ± 0.010 0.261 ± 0.024 0.922 ± 0.008 0.604 ± 0.045 0.906 ± 0.014 0.453 ± 0.041 0.927 ± 0.008 0.440 ± 0.033

CONV_5 0.947 ± 0.012 0.276 ± 0.023 0.918 ± 0.008 0.619 ± 0.047 0.903 ± 0.016 0.463 ± 0.043 0.922 ± 0.008 0.453 ± 0.034

AC_5 0.952 ± 0.008 0.261 ± 0.022 0.920 ± 0.008 0.610 ± 0.046 0.904 ± 0.016 0.460 ± 0.043 0.925 ± 0.008 0.443 ± 0.033

MixACB 0.953 ± 0.008 0.254 ± 0.022 0.923 ± 0.007 0.601 ± 0.047 0.907 ± 0.015 0.452 ± 0.043 0.928 ± 0.008 0.436 ± 0.034

Note: The best values are highlighted in bold font. “CONV_3” denotes that the 3D convolution with a kernel size of 3; “AC_3” denotes that the 3D-AC with a kernel

size of 3; “CONV_5” denotes that the 3D convolution with a kernel size of 5; “AC_5” denotes that the 3D-AC with a kernel size of 5.

TABLE 8 The segmentation accuracy in terms of DICE with different rotation degrees between baseline (DU-Net) and the corresponding
3D-MASNet

Rotation degree

CSF GM WM Avg

Baseline MixACB Baseline MixACB Baseline MixACB Baseline MixACB

0� 0.951 ± 0.008 0.953 ± 0.008 0.922 ± 0.007 0.923 ± 0.007 0.907 ± 0.015 0.907 ± 0.015 0.927 ± 0.007 0.928 ± 0.008

15� 0.682 ± 0.023 0.685 ± 0.024 0.842 ± 0.021 0.840 ± 0.028 0.849 ± 0.025 0.849 ± 0.027 0.791 ± 0.020 0.792 ± 0.023

30� 0.678 ± 0.024 0.683 ± 0.024 0.831 ± 0.022 0.830 ± 0.030 0.837 ± 0.026 0.837 ± 0.027 0.782 ± 0.021 0.783 ± 0.024

45� 0.672 ± 0.026 0.678 ± 0.026 0.819 ± 0.025 0.816 ± 0.032 0.823 ± 0.027 0.822 ± 0.028 0.772 ± 0.023 0.772 ± 0.025

Note: The best values are highlighted in bold font.
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an existing mature network and reduced model parameters and com-

putations by equivalently performing fusion during the inference

phase. The experimental results revealed that the MixACB signifi-

cantly improved the performance of several CNNs by a considerable

margin, in which DU-Net with MixACB showed the best average

segmentation accuracy. The proposed framework obtained the high-

est average DICE of 0.935 and lowest ASD of 0.244, which ranked

first among all 30 teams on the validation dataset of the iSeg-2019

Grand Challenge. In addition, the CC-3D-FCN model showed the larg-

est improvement, which indicates that a simple model could achieve

F IGURE 6 Changes in segmentation performance in terms of DICE (a) and MHD (b) with respect to different overlapping step sizes on
10 subjects during inference, where two-fold cross-validation is used. (c) Changes of the average number of the 10 subjects' patches with respect
to different overlapping step sizes during inference.

F IGURE 7 We split the 3D
convolutional kernels into multiple 2D
slices for visualization. (a) The first and
second rows are the average magnitude
matrixes of kernel size of 3 for
convolutional layer in MixACB and
conventional convolutional layer,
respectively. (b) The first and second rows
indicate the average magnitude matrixes
of kernel size of 5 for convolutional layer
in MixACB and conventional
convolutional layer, respectively.
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relatively better performance by implementing our convolution

design.

4.1 | Effectiveness of the MixACB on improving
segmentation accuracy

The wide improvement in the segmentation accuracy of different

models by the MixACB is derived from several aspects. First, the

mixed-scale design of MixACB enables the network to collect multi-

scale details of local features with different receptive fields, facilitat-

ing the integration of coarse-to-fine information inside the input

patches at low-to-high semantic levels. Second, the isointense inten-

sity distribution and heterogeneous tissue contrasts hamper effective

feature extraction in baby brain images. The feature maps with multi-

scale kernel size enriches small receptive fields with enough detail fea-

tures while enabling large receptive fields for capturing coarse global

features. We also employed the 3D-AC inside the MixACB by adding

multiple orthogonal 3D asymmetric convolutional layers to emphasize

informative feature patterns in the central place (Figure 3). Mean-

while, the asymmetric design showed robustness to image rotational

distortions (Table 8), which can help the network to deal with the

residual rotational differences of infant brain positions, even though

these images have been linearly aligned to standard space. Third, the

significant improvable performance of MixACB on various segmenta-

tion networks (Table 2, 3) indicates that inter-layer architecture design

may not be sufficient for multi-scale information fusion. Notably,

besides providing better performance than the previous networks,

3D-MASNet is also more efficient than the baseline models, requiring

fewer model parameters once its parameters were fused in the infer-

ence phase. For example, the baseline DU-Net's number of parame-

ters is 2,492,795, while the corresponding 3D-MASNet's number of

parameters is reduced from 3,117,549 to 2,341,141 after parameter

fusion process during the inference phase. The average inference time

was reduced from 110 to 57 s, without performance loss.

4.2 | Well-designed convolution operations

In recent years, researchers have begun to shift their interests from

macro network layout to micro neuron units by studying specific con-

volution operators rather than touching the overall network. Previous

works have proposed several advanced convolution operators by

combining well-designed filters, such as pyramidal convolution

(PyConv), dynamic group convolution (DGC), and asymmetric convo-

lution block (ACB). PyConv employs multiple kernels in a pyramidal

way to capture different levels of image details (Duta et al., 2020);

DGC equips a feature selector for each group convolution condi-

tioned on the input images to adaptively select input features (Su

et al., 2020); ACB introduces asymmetry into 2D convolution to

power up the representational power of the skeleton part of the ker-

nel (Ding et al., 2019). Due to the “easy-to-plug-in” property, such

convolutional designs could be conveniently adopted in various

advanced CNNs and avoid high costs of network re-designing. Such

implantations have achieved better performance or increased compu-

tational efficiency in natural image classification tasks (Ding

et al., 2019; Duta et al., 2020; Su et al., 2020). Of note, none of these

three methods has yet been applied on the infant brain MR image seg-

mentation task. Due to blurred image appearance, large individual var-

iation of brain morphology, and limited labeled sample sizes, we

emphasize that effective and robust feature extraction by re-

designing convolution kernels, especially in a plug-and-play form, is

essential for the infant brain segmentation task. Therefore, we

designed a novel 3D convolution block by combining two convolution

F IGURE 8 (a) The input patches
(patch size = 32) of T1w image, T2w
image, and corresponding ground truth
segmentation label. (b) The entire
16 feature maps of DU-Net with MixACB
and without (w/o) MixACB. The feature
maps are the outputs of the last dense
block of DU-Net. The number in the
lower right corner of each feature map

indicates the sequence number of the
feature map.
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operations including asymmetry convolution (ACB) and mixed-scale

kernels (pyramidal-like convolution designs). The effectiveness of ACB

was shown in the ablation experiment in Table 7 (CONV_3 vs. AC_3,

and CONV_5 vs. AC_5). The effectiveness of pyramidal-like kernel

designs was shown in the ablation experiment in Tables 6 and 7 (1:0

vs. 3:1 in Table 6, MixACB vs. AC_3 and AC_5 in Table 7). As for the

convolution operation of DGC, we only adopted a simple version by

manually setting the mix ratio of convolution groups into several pro-

portions and selecting the ratio with the highest segmentation accu-

racy (Table 6). Exhausting the combination of various convolution

designs is an interesting topic, which is beyond the scope of the article

and needs a future attention.

4.3 | Limitations and future directions

The current study has several limitations. First, the patching

approach may cause spatial consistency loss near boundaries.

Although we adopted a small overlapping step size to relieve this

issue, it is necessary to consider further integrating guidance from

global information. Second, the small sample sizes of infant-specific

datasets limit the generalizability of our method for babies across

MRI scanners and acquisition protocols. Further validation on large

samples is needed. Third, image indexes, such as the fractional

anisotropy derived from diffusion MRI, contain rich white matter

information (Liu et al., 2007), which could be beneficial for insuffi-

cient tissue contrast (Nie et al., 2019; Zhang et al., 2015). Impor-

tantly, determining how to leverage mixed-scale asymmetric

convolution to enhance specific model features needs to be further

explored. Fourth, we only explored the effectiveness of MixACB

when input feature maps are split into two to four groups. Further

combination configurations of convolutional kernel sizes and mix

ratios are warranted.

5 | CONCLUSION

In this paper, we proposed a 3D-MASNet framework for brain MR

image segmentation of 6-month-old infants, which ranked first in the

iSeg-2019 Grand Challenge. We demonstrated that the designed Mix-

ACB could easily migrate to various network architectures and enable

performance improvement without extra inference-time computa-

tions. This work shows great adaptation potential for further improve-

ment in future studies on brain segmentation.
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