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ABSTRACT: Herein, we present a general electrochemical method to access
unsymmetrical 3,3-disubstituted oxindoles by direct C−H functionalization
where the oxindole fragment behaves as an electrophile. This Umpolung
approach does not rely on stoichiometric oxidants and proceeds under mild,
environmentally benign conditions. Importantly, it enables the functionaliza-
tion of these scaffolds through C−O, and by extension to C−C or even C−N
bond formation.

■ INTRODUCTION

3-Oxa and 3-hydroxy-2-oxindoles constitute privileged classes of
aromatic alkaloids that are encountered in numerous natural
products and pharmaceuticals.1 This is particularly true for 3,3-
disubstituted oxindole derivatives, which possess a documented
broad range of biological and pharmacological activities that are
intrinsically tied to that structural feature (Scheme 1A).2 For
Convoluamydine A, a naturally occurring example, the bio-
logical activity mostly results from substitution at C-3.3

Given the valuable properties of these structures, significant
effort has been devoted to the development of synthetic
methods to access 3-oxygenated 2-oxindoles.2b,c While manifold
methods for the synthesis of hydroxy derivatives exist,4 there is a
dearth of methods to directly access the 3 alkoxy congeners.5

Recently, Liu and Zhou described an efficient thermal
substitution of 3-halooxindoles (Scheme 1B, eq 1),6 relying on
the in situ formation of a dearomatized Michael acceptor as an
intermediate, followed by an SN1 reaction using various alcohols.
The direct functionalization of unsubstituted, “naked”

oxindoles represents an attractive approach to afford such
motifs. Relevant transformations of the C-3 position, invariably
employing the oxindole fragment as a nucleophile, include
arylation,7 alkynylation,8 alkylation,9 fluorination,10 trifluoro-
methylation,11 nitration,12 azidation,13 amination,14 and thio-
lation.15 When it comes to its use as an electrophilic synthon,
Kotagiri has described the stoichiometric use of an hypervalent
iodine reagent [PhI(OCOCF3)2] for the oxidative alkoxylation
of oxindoles (Scheme 1B, eq 2),16 and more recently, the
oxidative intramolecular α-oxygenation and α-amination of
oxindoles was reported by Zhong, employing a micellar catalytic
system based on amphiphilic bifunctional iodide salts in water
(Scheme 1B, eq 3),17 featuring H2O2 as the terminal oxidant.
Few methods were also reported for the direct CH-
functionalization of oxindoles using electrochemistry.18 In
particular, a wide range of dimeric 2-oxindoles were recently
prepared by an oxidative C−C coupling reaction (Scheme 1B,
eq 4).18b

As part of a research program focused on novel approaches to
design drugs and given our interest in the development of
umpoled synthons, we became interested in the sustainable
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Table 1. Optimization of Reaction Conditionsa

entry deviation from above yieldb (%)

1 Pt cathode 40
2 none 57 (72% brsm)
3 nBu4NOTs instead of Et4NOTs 50
4 nBu4NPF6 instead of Et4NOTs 39
5 nBu4NClO4 instead of Et4NOTs 22
6 AcOH (1 equiv.) as an additive 46
7 AgPF6 (1 equiv.) as an additive 32
8 maintained at 0−10 °C 43
9 3 mA, 12 h instead of 10 mA, 3 h 29
10 15 mA instead of 10 mA 10
11 constant potential of 1.8 V for 28 h 53
12 3 Å MS 37
13 no electricity NRc

aStandard conditions: undivided cell, C-SK50 anode and cathode
constant current = 10 mA, 1a (0.4 mmol), Et4NOTs (1.0 equiv),
ACN/EtOH 1:1 (0.08 M), rt, 3 h. bIsolated yield. cNR = no reaction.
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preparation of 3,3-disubstituted oxindole derivatives, envisaging
electrochemistry as a powerful tool to tackle this problem. The
appeal of electrosynthesis lies mainly on its eco-friendly nature
and generally mild reaction conditions, therefore, unsurpris-
ingly, its use has gained significant traction in recent years.19

■ RESULTS AND DISCUSSION
Initial studies of the redox behavior of 3-methylindolin-2-one 1a
using cyclic voltammetry (CV) revealed an irreversible anodic
oxidation peak at 1.8 V (see Supporting Information, Figure S1).

This immediately hinted at the possibility of using electro-
chemistry for the direct C(sp3)−H functionalization of 2-
oxindoles and related compounds.20 Herein, we report the
synthesis of unsymmetrical 3,3-disubstituted oxindoles by direct
electrochemical Umpolung C−H functionalization.
We commenced our search for optimal reaction conditions

using 1a and relying on a simple undivided cell setup based on
the ElectraSyn 2.0 package with a graphite (C) anode and a
platinum (Pt) cathode (Table 1). These electrodes were initially
used under a constant current of 10 mA, in the presence of

Scheme 1. Context and Strategy for the Direct C−H Functionalization of Oxindoles
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tetraethylammonium p-toluenesulfonate (Et4NOTs) as the
electrolyte in a mixture of MeCN/EtOH. Under these initial

conditions, an ethoxylated product 2a was directly produced in
40% yield (entry 1). Replacing the platinum (Pt) cathode by an

Scheme 2. Scope of the Reaction
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inexpensive graphite (C) cathode had a positive impact on the
reaction outcome, yielding 2a in 57% or 72% based on recovered
1a (entry 2). On the other hand, the use of different electrolytes
led to a decreased yield (entries 5−7 and see Supporting
Information, Table S2). Neither the addition of stoichiometric
acids (entry 6) nor the use of different silver salts as sacrificial
oxidants (entry 7 and see Supporting Information, Table S3)
delivered improved results. Various well-established electro-
chemical mediators were also tested, but to no avail (see
Supporting Information, Table S3).21

Lowering the temperature of the reaction, hoping to prevent
potential deleterious decomposition of the precursor, proved
detrimental to the outcome, as did changing the intensity of the
current or the reaction time (entries 8−10). Working at a
constant potential of 1.8 V afforded the product in 53% yield
without recovering of the starting material (entry 11). A control
experiment in the absence of electricity led to no product being
detected (entry 13). It is noteworthy that the cyclic voltammo-
gram of 2a showed an oxidation peak at 2.0 V, very close to that
observed for 1a. In agreement with this, achieving full
conversion of 1a without notable decomposition of product
2a proved unattainable.22

With the optimized reaction conditions in hand, the scope of
this transformation was explored, as illustrated in Scheme 2. At
the onset, the tolerance of various substituents at the C-3
position of the oxindole core was evaluated using EtOH as the
nucleophile. Alkyl-substituted oxindoles were amenable to this
reaction, delivering products 2a−h. Diverse functional groups,
including an acetonide (2i), a nitrile (2j), and an ester (2k) were
compatible with the reaction conditions and we observed that
aryl substitution led to a slight increase of the yields (2i−s).
Further functional-group modifications on the aromatic portion
of the oxindole were tolerated under the standard conditions,
notably including halides (4a−b, 4e), methoxy (4c, 4d), and
nitro (4f) groups. In addition, the reaction is not limited to
unprotected oxindoles but can be expanded to include alkyl- and
aryl-substituted nitrogen atoms (6a−b), as well as an acid-labile
carbamate protecting group (6c).
The ability to use either unprotected (NH) or diversely N-

substituted oxindoles is a special feature of this method. In
addition, a range of aliphatic alcohol nucleophiles was employed,
affording products 7 in good to high yields. In particular,

benzylic (7c) and propargylic (7e) alcohols were well tolerated,
as well as alcohols bearing silyl (7g) and halide (7h) groups. It is
worth mentioning that for alcohols of higher molecular weight,
the amount of nucleophile could be reduced to 10−20
equivalents without any significant drop in the yield.
It should be noted that conditions were not reoptimized for

each product 2−4−7; this is reflected in the broad yield range
observed. We believe that the versatility of the process and the
unique character of this oxidative transformation are bound to
prove very useful to the synthetic practitioner.
Finally, extension of this electrochemical transformation to

the formation of C−C bonds and C−N bonds was also
investigated (Scheme 3). Gratifyingly, C−C bond formation
was well within reach of the reaction, proceeding when a silyl
enol ether was used as the nucleophile, affording the desired
product 8 in a 62% yield.23 It was also possible to carry out an
azidation reaction, leading to 9. Despite its low yield, this is an
appealing direct C−N bond formation.
To gain further insights into the reaction mechanism, several

control experiments were conducted (Scheme 4A). In the
presence of a radical scavenger such as 2,2,6,6-tetramethylpiper-
idine-1-oxyl (TEMPO), no product was formed, although all the
starting material was consumed. In the presence of butylated
hydroxytoluene (BHT), however, 2m was obtained in a low
yield alongside the coupling product 10 (9%; obtained in 54% in
the absence of ethanol) [Scheme 4A(1)]. These results suggest
the possibility of a radical mechanism being involved in our
transformation.24

Based on the above and previous reports,25 we proposed two
mechanistic scenarios depending on the nucleophilic source
used (Scheme 4B). One possibility is that the substrates undergo
a two-electron oxidation at the anode, forming the correspond-
ing carbocation which can be subsequently trapped [Scheme
4B(1)]. This could explain the need for excess amounts of the
nucleophile (in some cases used as a co-solvent), justified due to
its role of acting as a proton source for hydrogen evolution at the
cathode. We hypothesize that depending on the nucleophile and
its oxidation potential, a second possible pathway might become
available: single-electron oxidation at the anode leading to
formation of a radical cation followed by a loss of a proton would
generate a captodative radical intermediate [Scheme 4B(2)].
This radical’s competence for C−C bond formation is

Scheme 3. Extension to a Silyl Enol Ether and TMSN3 as Nucleophiles
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showcased by the products formed (vide supra) when even

comparably small amounts of BHT are employedwhereby we

surmise the transient formation of a BHT-derived p-

quinonemethide.

■ CONCLUSIONS

In conclusion, we have developed a general electrochemical

method to access unsymmetrical 3,3-disubstituted oxindoles by

direct C−H functionalization. This approach does not rely on

stoichiometric oxidants and proceeds under mild, environ-

mentally benign conditions. Importantly, it enables the

functionalization of these scaffolds through C−O, and by

extension to C−C or even C−N bond formation.

■ EXPERIMENTAL SECTION

General Procedure to Access 3,3-Disubstituted Oxindoles.
With no precautions to exclude air or moisture, the ElectraSyn vial (10
mL) was charged with 3-susbtituted indolin-2-one 1a−s, 3a−f or 5a−c
(0.40 mmol, 1.0 equiv), Et4NOTs (121.0 mg, 0.40 mmol, 1.0 equiv),
ROH (2.5 mL), and MeCN (2.5 mL). The ElectraSyn vial cap
equipped with the anode (graphite) and cathode (graphite) was
inserted into the mixture. The reaction mixture was electrolyzed at a
constant current of 10mA for 3 h. The ElectraSyn vial cap was removed,
and electrodes were rinsed with DCM (2.0 mL), which was combined
with the crude mixture. Then, the crude mixture was concentrated
under reduced pressure and purified by FC over silica gel (heptane/
ethyl acetate, 100/0 to 50/50, gradient) to furnish the desired products
2a−s, 4a−f, 6a−c or 7a−i.

We do not possess any electrochemical devices which would allow
for running these reactions in a scale larger than that reported herein.

Scheme 4. Mechanistic Experiments and Plausible Mechanism
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