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Abstract
In certain discrete models of populations of biological cells, the mechanical forces
between the cells are center based or vertex based on the microscopic level where
each cell is individually represented. The cells are circular or spherical in a cen-
ter based model and polygonal or polyhedral in a vertex based model. On a higher,
macroscopic level, the time evolution of the density of the cells is described by partial
differential equations (PDEs).We derive relations between the modelling on the micro
and macro levels in one, two, and three dimensions by regarding the micro model as
a discretization of a PDE for conservation of mass on the macro level. The forces in
the micro model correspond on the macro level to a gradient of the pressure scaled by
quantities depending on the cell geometry. The two levels of modelling are compared
in numerical experiments in one and two dimensions.

Keywords Biomechanics · Cell forces · Coarse-graining · Macroscale · Microscale

Mathematics Subject Classification 92C10 · 92C17 · 70-08 · 65M08

1 Introduction

Mathematical modelling for simulation of cell populations is a tool complementing
experimental studies to understand the complex biochemical and mechanical inter-
actions between the cells in aggregations of unicellular organisms in bacterial cell
colonies (Hellweger et al. 2016) and in multicellular organisms forming growing and
developing tissues (Liedekerke et al. 2015; Lowengrub et al. 2010).
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The mathematical models are either continuum models or discrete models. In con-
tinuummodels, the evolution of the cell population can be modelled by the solution of
time dependent, nonlinear partial differential equations (PDEs) for the cellular densi-
ties and concentrations of chemical compounds (Brodland et al. 2006; Frieboes et al.
2010; Humphrey 2003). In contrast, each cell, its internal state, and its motion are fol-
lowed in time dependent discretemodels (Liedekerke et al. 2015). There are techniques
for analysis of a macroscale, continuum PDEmodel, for inference of parameters from
experimental data on the population level, and established methods for the numerical
solution of it. The continuummodel is computationally efficient but it does not resolve
any cellular details and heterogeneities in the population. Amicroscale, discretemodel
incorporates details of the cell behavior such as local chemical and mechanical inter-
actions between cells, cell proliferation, and cell death. The number of cells can be a
few to billions (Byrne and Drasdo 2009; Kang et al. 2014). Large numbers of cells
may be necessary to bridge the gap between the individual cell level at the μm scale
and the population level at the mm or cm scale. The problem is that the computational
effort to simulate billions of individual cells may be prohibitive. By coarse-graining
(or upscaling) the microscopic forces to the macroscale, large savings in computing
time are possible.

In this paper, we derive novel continuum models from discrete models in one, two,
and three dimensions (1D, 2D, 3D) for the biomechanical forces between the cells
using the similarities between certain discrete models and discretizations of PDEs
by a finite volume method (FVM) and of a pressure gradient. The force terms in
the systems of ordinary differential equations (ODEs) governing the discrete models
are identified as spatial discretizations of PDEs by the FVM. For a complete cell
model we also need models for the motion in response to chemical gradients as in
chemotaxis and haptotaxis, equations for the evolution of chemical species internally
in the cells e.g. for the gene expression and cell metabolism, and externally e.g. for
the signalling between cells, and transport of nutrients and oxygen. These models can
also be continuous or discrete but are not addressed here.

Two different kinds of discrete models for the biomechanics of cells can be distin-
guished: on-lattice and off-latticemodels. The cells are constrained in space to a lattice
in on-lattice models. Each lattice point in a cellular automata (CA) model can host one
or more cells. The cells move by stochastic jumps between the lattice points. A cell
occupies several lattice sites in a cellular Potts (CP) model allowing greater geometric
flexibility (Liedekerke et al. 2015). The cells move off-lattice and continuously in
space and time in an agent based model (ABM) (Liedekerke et al. 2015; Osborne et al.
2017). Each individual cell can be modelled as an agent in an ABM and the motion
of the cell satisfies Newton’s equations of motion. The mechanical properties of the
cells can be described in more detail in an off-lattice model with separate moving cell
entities compared to the on-lattice CA and CP models but the latter are simpler and
faster to simulate. Other advantages and disadvantages of ABM compared to CA and
CP are discussed in Hellweger et al. (2016) and comparisons are made between CA,
CP, and ABM models in Osborne et al. (2017).

A center based model (CBM) and a vertex based model (VBM) are ABMs where
each cell is represented individually. The geometry of a cell in a CBM is a circle in
2D or a sphere in 3D in the overlapping spheres (OS) model (Drasdo and Höhme
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2005) or a polygonal Voronoi cell defined by Voronoi tesselation (VT) (Kennedy
et al. 2016). The forces due to the interactions between neighboring cells and external
forces are applied at the cell center in OS and VT models. The adhesion and repulsion
forces depend on the distance between the cell centers and parameters in various ways
in the models (Ghaffarizadeh et al. 2018; Liedekerke et al. 2019). A summary and
an evaluation of different CBM forces are found in Mathias et al. (2020). The cell
membrane is modelled by a polygon (2D) or a polyhedron (3D) obtained by Voronoi
tesselation in a VBM (Farhadifar et al. 2007; Fletcher et al. 2013, 2014; Honda et al.
2004; Murisic et al. 2015; Nagai and Honda 2001; Staple et al. 2010; Weliky and
Oster 1990). A motivation for the method is that the Voronoi polygon or polyhedron
resembles the cell shape in certain tissues (Schaller and Meyer-Hermann 2005). The
forces are applied at each vertex of the membrane and depend on the cell volumes
and the perimeters of the cells adjacent to the vertex. Some vertex models are derived
from an energy potential (Farhadifar et al. 2007;Murisic et al. 2015; Staple et al. 2010)
which is minimized for the stationary solution. A local minimum of the potential will
be reached depending on the initial state. All models have constant parameters and the
sensitivity to these parameters in a VBM is investigated in Kursawe et al. (2017). The
CBM and VBM are implemented in software such as Biocellion (Kang et al. 2014) ,
CellSys (Hoehme and Drasdo 2010), Chaste (Cooper et al. 2020; Mirams et al. 2013),
MecaGen (Delile et al. 2017), and PhysiCell (Ghaffarizadeh et al. 2018). CP models
are implemented in CompuCell3D (Swat et al. 2012) and Morpheus (Starruß et al.
2014).

The motion of the cells in CBM and VBM is overdamped in a viscous environment
with small intertial terms compared to the disspative terms (Danuser et al. 2013;
Fletcher et al. 2013) and the second derivatives in time in Newton’s equations can be
neglected. Thus, the CBM and the VBM are governed by a system of ODEs of first
order in time for the coordinates of the cell centers (CBM) or the cell vertices (VBM).

The above deterministicmodels can be extended in different directions.A stochastic
term models the micro-motility of a free cell as Brownian motion in the overview in
Earnest et al. (2018) and also in Buttenschön et al. (2018), Middleton et al. (2014).
The cells are ellipsoidal in Jin and Marshall (2020) with forces due to adhesion,
lubrication, and hair-like appendages and bacterial biofilms are simulated with the
model. Problems with growing domains are treated in Baker et al. (2010). Non-local
effects between the cells correspond to integro-differential equations on the macro
level (Buttenschön et al. 2018; Giniūnaite et al. 2020; Middleton et al. 2014).

The relation between the micro level ABMs and macro level ODEs and PDEs has
been studied in An et al. (2017), Byrne and Drasdo (2009), Drasdo (2005), Fozard
et al. (2010), Liedekerke et al. (2015), Osborne et al. (2010) aiming at finding a
direct correspondence between the models and their parameters at the two levels
of modelling. If an expensive micro model is replaced by a cheaper macro model,
then computational time and space can be saved. One approach is to first obtain an
equation for the probability density of finding a cell at a certain position and then
from that derive a PDE for the mean field of the cell density. Another approach is
to regard the cell model as a finite difference approximation of a PDE which will be
the macro model. The discrete micro level and the continuum macro level have been
coupled in a number of papers, mostly in 1D. A nonlinear diffusion PDE in 1D is
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derived from a spring model for the cell forces in Murray et al. (2009, 2012). The
diffusion coefficient is proportional to the spring constant and the viscosity coefficient
and inversely quadratically proportional to the cell density in Murray et al. (2009).
Another 1D continuum model is derived in Fozard et al. (2010) from an ABM with
linear spring forces between the cells and drag due to the ambient substrate. The
linear spring parameters in the discrete model in 1D in Murphy et al. (2019) are
space dependent. The analysis shows how the parameters on the macro and micro
levels are directly related. A mean field PDE in 1D for the motion and proliferation
of cells is derived from a stochastic individual-based model in Chaplain et al. (2020).
The resulting PDE is a diffusion equation with a source term. The CP model with
stochasticity is the micro model in 1D and 2D in Lushnikov et al. (2008). A PDE
with a nonlinear diffusion coefficient is derived there for the cellular density. A vertex
model for an epithelium is homogenized to arrive at a linear elastic thin plate model
in 2D at the PDE level which is valid on long length scales in Murisic et al. (2015). By
adding a term in the potential of the vertex model, deformations in 3D are possible.
A more elaborate cell geometry than that defined by Voronoi tesselation for a VBM
is proposed in Jensen et al. (2020) to obtain a planar stress model at the macro scale.

The tissue level and the cell level are merged in computational hybrid models
making them suitable for multiscale simulations of large aggregations of cells. Some
examples follow. A PDE model for elasticity on the macro level is combined with a
micromodel on the cell level inGhysels et al. (2009). Themodel for individual cells has
spring forces and cell volume preservation. The PDE is discretized by a finite element
method and the micro model is used at discrete points in space as in the heterogeneous
multiscale method (Weinan et al. 2007). The forces in the stochastic on-lattice method
in Engblom et al. (2018) are given by the solution of a PDE. A computational hybrid
model of a tumour with individual cells in a proliferating outer layer and a continuum
model in the interior of the tumour is proposed in Kim et al. (2007). In this way,
expensive cell simulations are avoided in the quiescent center of the tumour.

1.1 Outline of paper

Here we establish relations between the mechanical properties of biological cells
modelled by the CBM and the VBM on the discrete micro level and PDEs on the
continuum macro level in 1D, 2D (CBM, VBM), and 3D (CBM). A center of cell i in
a CBM with coordinates xi on the micro level is advanced in time by the ODE

dxi
dt

= vi =
∑

j

fi j , (1)

where vi is the velocity, fi j is the force between cell i and cell j , and the sum is over
all other cells in the neighborhood of cell i . The same type of equation is solved in the
VBM for the vertex coordinates. Then the sum in (1) is taken over all other vertices in
the neighborhood. The equations for the coordinates of the cell centers and vertices are
written in Lagrange coordinates following the flow. The spatial domain with the cells
is tiled by Voronoi tesselation with one cell center in each Voronoi element defining
the geometry of the cell as in the CBM-VT model.
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The PDE for the evolution of the cell density ρ on the macro level is

∂ρ

∂t
+ ∇ · (ρv) = 0, v = −μ∇ p, (2)

with a relation between the velocity and the pressure p according to Darcy’s law for
flow in a porous medium. It is written in Euler coordinates fixed in space. For closure
of (2), a constitutive relation between p and ρ is needed.

The space derivatives in (2) are discretized by a FVM on the Voronoi mesh. There
is one cell per interval (1D), area (2D), or volume (3D) element in the discretized PDE
and consequently, the cell density ρ is the reciprocal of the element size. By comparing
the expressions for the macroscale velocity of the discretization of the PDE in (2) with
the microscale velocity in (1) for the CBM, we find that the appropriately scaled
pressure agrees with the CBM forces. Similarly for the VBM, the pressure gradient in
(2) can be identified with microscale force terms in (1) after scaling. The scaling for
both CBMandVBMdepends on the cell geometry. Since it is not known in detail at the
PDE level in 2D and 3D, some geometrical assumptions are necessary to determine
the scaling of the forces between individual cells to obtain the pressure. The main
contribution of the paper is the derivation of the relation between the CBM and VBM
forces fi j on the micro level in (1) and the pressure p in the PDE (2) on the macro
level.

When the PDE has been obtained, it can be solved numerically on any mesh, not
only on the one defined by the geometry of the cells. If the variation of ρ is small,
then a much coarser mesh than the Voronoi mesh for the cells is possible with savings
in computational work and memory. In numerical experiments, ABM simulations of
distributions of cells of high and low density are compared with PDE solutions on
equidistant grids in 1D and Cartesian grids in 2D.

The paper is organized as follows. In the next section, the geometry of the cells
and the forces between them are specified. In Sect. 3, macro level pressure is derived
from the micro level descriptions by comparison with discretizations by FVM and
a pressure gradient on Voronoi meshes. The PDEs are discretized by FVM on an
arbitrary mesh in Sect. 4 using the pressure formulas. Section 5 contains the numerical
experiments with the discrete and continuummodels and conclusions are drawn in the
final section.

2 Cell geometry and forces

The geometry of a biological cell is determined by the Voronoi tesselation based on
the cell centers. The cell is an interval in 1D, a polygon in 2D, and a polyhedron in
3D. The cell centers are connected by the edges of the triangles (2D) or tetrahedra
(3D) in the associated Delaunay triangulation of the cell centers. The forces in the
CBM act along the Delaunay edges and in the VBM the forces act on the vertices of
the polygons along the Voronoi edges. This section is a summary of the notation, the
cell geometry, and the CBM and VBM forces. Vectors are written in boldface A and
x and ẋ denotes a time derivative dx/dt of x.
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Fig. 1 A configuration in 2D of four cells with the primal mesh (solid lines) with cell centers at i,j,k,l, and
cell corners at α, β, γ, δ, ε, ζ . The centers of two triangles in the dual mesh (dashed lines) are at α, β, with
corners at i,j,k,l

2.1 Cell geometry

The total number of cells in the system is N . Introduce in d dimensions (d = 1, 2, 3)
the coordinates xi = (xi1, . . . , xid)T , i = 1, . . . , N , of the center of the cell i . The
position of cell center j relative to cell center i is ri j , i, j = 1, . . . , N , the distance
between the centers is ri j , and the direction between the neighboring centers is r̂i j

ri j = x j − xi , ri j = ‖ri j‖2 =
(

d∑

k=1

(x jk − xik)
2

)1/2

, r̂i j = r−1
i j ri j . (3)

The full coordinate vector of all cells is denoted by xT = (xT1 , xT2 , . . . , xTN ). The
coordinates of the nodes or vertices α, β, . . . on the perimeter of the cell are xα, xβ, . . .

and their relative positions are as in (3)

rαβ = xβ − xα, rαβ = ‖rαβ‖2, r̂αβ = r−1
αβ rαβ. (4)

After Voronoi tesselation there are a primal mesh and a dual mesh in Fig. 1. The
primal mesh consists of the Voronoi elements representing the biological cells. The
Delaunay triangulation defines the dual mesh composed of triangles in 2D. There are
four primal elements with centers i, j, k, l, and two dual elements with centers α, β

in the figure. The vertices β, γ, δ are connected to node α in the primal mesh. The
three directions r̂αβ, r̂αγ , r̂αδ start in vertex α and go to vertex β, γ, and δ along edges
in the primal mesh. The three edges r̂i j , r̂ik, r̂il in the dual mesh connect the element
centers in the primal mesh, see Fig. 1. In an expanded mesh, γ, δ, ε, and ζ will also
be triangle centers in the dual mesh.

The interval length in 1D, the element area in 2D, and the element volume in 3D
of element i are denoted by Vi . The perimeter length of an element in 2D is ai and ai j
is the length of the edge separating elements i and j in 2D. Similarly, the area of the
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x
jαkδ βγ
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Fig. 2 A configuration in 1D with element centers at i,j,k, and boundaries at α, β, γ, δ

surface between elements i and j in 3D is denoted by ai j and the perimeter area is ai .
In Fig. 1, ai j = rαβ . Since each Voronoi element corresponds to one biological cell,
the cell density ρ is ρi = 1/Vi in element i and Vi is the specific volume. Let Ji be
the index set of all adjacent elements to i . Then the perimeter ai of element i in 2D
and 3D is

ai =
∑

j∈Ji

ai j . (5)

The elements are intervals in 1D. The element indices are i, j, k, in Fig. 2 and
the node indices are α, β, γ, and δ. The midpoint of cell i is xi and its length is
Vi = xα − xγ .

2.2 Center basedmodels

The cell defined by a Voronoi element in a CBM can be associated with a circle in 2D
or a sphere in 3D. Suppose that two circular (2D) or spherical (3D) cells are partly
overlapping each other in the OS model. Then there is a force between them repelling
the cell centers. There is an attraction force between two cells that are in the vicinity
of each other without touching. The force depends on the distance r between the cell
centers.

The strength of the force is denoted by g(r). Let g(r) be defined for r ≥ 0 with the
properties

0 ≤ r ≤ s : g(r) ≤ 0, s < r < rA : g(r) > 0, r > rA : g(r) = 0, (6)

where the parameters rA and s are positive. The cell centers are repelling each other
when r < s and attracting each other when s < r < rA. The force vanishes at r = s
and for r > rA. The following example of g satisfying (6) is from Mirams et al.
(2013):

g(r) =
{

μ(r − s) exp(−c(r − s)), 0 ≤ r ≤ rA,

0, r > rA.
(7)

There is a discontinuity in g(r) at r = rA. The parameter μ determines the strength
of the force and c > 0 the decay rate of the adhesion for r > s. Another example is
found in Ghaffarizadeh et al. (2018); Macklin et al. (2012):

g(r) =
⎧
⎨

⎩

−cr (1 − r
rR

)n+1 + ca(1 − r
rA

)n+1, r ≤ rR,

ca(1 − r
rA

)n+1, rR < r ≤ rA,

0, r > rA,

(8)
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This g(r) is continuous for r ≥ 0. The adhesion or attraction parameter is ca and the
repulsion parameter is cr . The force model in (8) also satisfies (6) if ca < cr and s is

s = rArR(c1/(n+1)
r − c1/(n+1)

a )

c1/(n+1)
r rA − c1/(n+1)

a rR
< rR .

In the Hertz model, the repulsion force depends on the cell overlap r − s with g(r) ∼
−(s − r)3/2 while the adhesion force has a more complicated dependence on r − s
(Liedekerke et al. 2015). The Johnson-Kendall-Roberts (JKR) model also depends
on r − s and requires the solution of nonlinear equations for g (Carpick et al. 1999;
Drasdo and Höhme 2005). Other examples of CBM forces are found in Mathias et al.
(2020).

The force on cell i caused by cell j has the magnitude g(ri j ) and the direction r̂i j

r̂i j g(ri j ). (9)

Since r̂i j = −r̂ j i and g(ri j ) = g(r ji ) the forcing on the cell centers i and j is of
equal strength but in opposite directions. Then the system of d ODEs for the center
coordinates of cell i is as in (1) given by Newton’s equations of motion with the
viscosity η, neglecting the accelerations because they are small (Danuser et al. 2013;
Fletcher et al. 2013),

ẋi = vi = 1

η

N∑

j=1, j �=i

r̂i j g(ri j ), (10)

and summarized for all cells

ẋ = F(x). (11)

The Lagrange coordinates x follow each cell center or how the mass moves in space.
This model has the same definition of the force in 1D, 2D, and 3D. There are a limited
number of g(ri j ) �= 0 in (10), see Sect. 3.4. Depending on rA and the cell size only
indices in Ji may contribute to the sum.

2.3 Vertex basedmodels

The forces are applied in the corners of the cell polygon in 2D in a VBM according
to Weliky and Oster (1990). Let the areas of the cells be V = (V1, V2, . . . , VN )T and
their perimeters be a = (a1, a2, . . . , aN )T . Then the force acting on node α due to
node β is

r̂αβ f (V, a), (12)
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with a direction r̂αβ and a magnitude f (V, a) depending on the surrounding Vi and
ai . The velocity of node α satifies

ẋα = vα = 1

η

∑

β∈Jα

r̂αβ f (V, a), (13)

where Jα = {β, γ, δ} in Fig. 1. This equation corresponds to (10) for the CBM.
The Lagrange coordinates xα for the nodes define the shape of the 2D cell. The
generalization to 3D and its implementation aremore complicated (Honda et al. 2004).

TheWeliky-Oster phenomenological force model (Fletcher et al. 2013; Weliky and
Oster 1990) at xα depends on the area and perimeter of cell k as follows (see Fig. 1)

ς

Vk
r̂αβ + κak(r̂αγ + r̂αδ). (14)

The area force coefficient is ς and κ is the perimeter force coefficient. Sum over all
three cells with a corner at xα for the velocity of node α

vα = 1

η

(
(

ς

Vk
+ κ(ai + a j ))r̂αβ + (

ς

Vi
+ κ(a j + ak))r̂αγ

+(
ς

Vj
+ κ(ak + ai ))r̂αδ

)
.

(15)

With the force function

f (V , a, b) = ς

V
+ κ(a + b) (16)

in (13), the velocity is

vα = 1

η

(
f (Vk, ai , a j )r̂αβ + f (Vi , a j , ak)r̂αγ + f (Vj , ak, ai )r̂αδ

)
. (17)

Another example is the Nagai-Honda model (Fletcher et al. 2013, App. A), (Nagai
and Honda 2001), which is derived by taking the gradient of an energy function. The
force at xα due to Vk and ak is almost a linearization of (14)

− λ(Vk − V0k)rαβ r̂αβ + (2β(ak − a0k) + γk)(r̂αγ + r̂αδ). (18)

Compared toNagai andHonda (2001), the force in (18) is slightly simplified here in the
factor rαβ in the first term. The parameter λ is a deformation energy coefficient, β is a
membrane surface energy coefficient, and γ is a cell-cell adhesion energy coefficient.
The ideal area is V0k and the ideal perimeter length is a0k . They are reached in an
equilibrium configuration when the forces vanish.

As in Nagai and Honda (2001), the forces in the VBMs in Farhadifar et al.
(2007), Murisic et al. (2015), Staple et al. (2010) resemble the force in (18) and
are derived from a potential.
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Consider a small perturbation from equilibrium in cell k (or i or j) in (14) and (18).
The perturbations in vα are equal with both models if

λrαβ = ς/V 2
0k, κ = 2β, γk = 0. (19)

3 Comparison of themicroscale models with amacroscale PDE

A macroscale PDE is derived for the cell density ρ in this section. The density is
transported by a pressure gradient. The PDE is discretized by a FVM on the Voronoi
mesh defining the biological cells. The discretized pressure gradient on the macro
level corresponds to the forces in the CBM and the VBM on the micro level. The
geometrical detail of the cells used in the CBM and the VBM on the microscale is
missing on the macroscale. The cell size is available as 1/ρ but, for example, the cell
perimeter is not known. By assuming a regular shape of the cell, the size of the edges
and the distance between the center and the vertices can be obtained as functions of
the cell size. The pressure will then be a function of ρ determined by the specific CBM
or VBM.

The viscosity coefficient in (10) and (13) is assumed to be η = 1 and is ignored in
the formulas. It can always be removed by including it in the force parameters.

3.1 The conservation law

A fluid parcel has volume V and surface S. The initial position at t = 0 is at x0 and
its velocity field is v. Lagrange coordinates x(t) follow the parcel. This parcel is small
on the macroscale and will later be identified as the specific volume V of a cell. Use
Gauss’s formula to arrive at a geometric conservation law for the time evolution of V
at x(x0, t) when t > 0

V̇ = d

dt

∫

V
dV =

∫

S
n · v dS =

∫

V
∇ · v dV . (20)

In Euler coordinates with fixed x in space we have with the total derivative D/Dt

DV
Dt

= ∂V
∂t

+ v · ∇V =
∫

V
∇ · v dV = V∇ · v. (21)

Introduce the density ρ = 1/V in (21) to obtain a PDE for conservation of mass in a
domain Ω

∂ρ

∂t
+ ∇ · (ρv) = 0. (22)

On the boundary of Ω with normal n, the boundary condition is n · ∇ρ = 0. Then
there is no flux of mass across the boundary and the total mass

∫
Ω

ρ dV is constant
in time. A 1D model in Fozard et al. (2010) adds an extra term in (22) for internal
viscosity in the cells resulting in a linear spring model for the force.
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The PDE (20) is discretized in space by a FVM for cell i with volume Vi and center
at xi in the Voronoi mesh defining the cell geometries, see Fig. 1. The time derivative
is approximated by the Euler forward method at discrete time points tn, n = 1, 2, . . . ,
starting at t0 = 0 with timestep Δt = tn+1 − tn . The equation for Vi at t = tn+1 is

V n+1
i = V n

i + Δt
∑

j∈Ji

ni j · vni j ai j . (23)

The sum is taken over Ji , the set of all indices of cells sharing a common boundary
with cell i (at least j, k, l in Fig. 1). The outward normal on the edge (2D) or surface
(3D) between cells i and j is ni j and vi j is also evaluated on that edge or surface.

For the conservation law (22), we consider any fixed Euler mesh with element (or
computational cell) area or volume ωi . The mesh here is fixed in space contrary to
the Voronoi mesh for the biological cells which is continuously deformed in time.
The elements i and j ∈ Ji have a common perimeter of size σi j with an outward
normal ni j from cell i to j . The time derivative is approximated by the Euler forward
method at discrete time points tn, n = 1, 2, . . . , starting at t0 = 0 with timestep
Δt = tn+1 − tn . With FVM discretization in space, the equation for ρ at tn+1 is

ρn+1
i = ρn

i − Δt

ωi

∑

j∈Ji

1

2
(ρn

i + ρn
j )ni j · vni jσi j , (24)

where vi j is evaluated on the edge or surface σi j . The sum is taken over Ji , the set of
all indices of elements sharing a common boundary with element i . The density at σi j
is approxmated by 0.5(ρi + ρ j ).

Now there are two alternatives: compute the cell density with the continuous model
(24) or first advance the cell centers with the discrete model (10) or (13) and then
compute Vi using (23) or the present geometry of the cell and ρi for each cell i . If the
elements can be chosen much larger than the cells, ωi 	 Vi , then the first alternative
will save computing time and memory. This is possible if ρ varies slowly in space.

We need a relation between v and ρ for closure of (22). In Darcy’s law, v is pro-
portional to the gradient of a pressure p

v = −μ∇ p. (25)

Inserted into (22) the PDE is

∂ρ

∂t
= μ∇ · (ρ∇ p). (26)

The equation is closed with a constitutive relation between p and ρ: p = p(ρ). This
is the macroscopic PDE for the evolution of ρ in Chaplain et al. (2020) where a source
term for injection of mass on the right hand side models cell proliferation on the macro
level (see also Byrne and Drasdo (2009)). One cell splits into two in cell division at
the micro level thus doubling the cell density gradually or instantaneously and very
locally in space. Then the numerical solution of (22) has to resolve a density peak in
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space and time requiring refinements in the temporal and spatial discretization. If the
proliferation occurs frequently in the domain, then an averaged, smooth source term
is preferred to model cell division.

The pressure p expressed in V or ρ will be determined by the CBM and the VBM
in the next two sections.

3.2 Center basedmodels

Apply FVM to (25) in a cell i . Then the discretized law is

vi = − μ

Vi

∑

j∈Ji

pi jni j ai j , (27)

where pi j is computed at the midpoint of the interface between cell i and j . With
the cell indices in the neighborhood of cell i in Ji , the equality (10) for the CBM is
rewritten in

vi =
∑

j∈Ji

r̂i j g(ri j ). (28)

A g with the properties (6) is nonzero for a limited number of j ∈ Ji . Since ni j = r̂i j ,
the same velocity is obtained in (27) and (28) if pi j is chosen as

pi j = − Vi
μai j

g(ri j ). (29)

This is the bridge between the macro and the micro levels but geometric relations
between Vi , ai j , and ri j are missing to obtain a macroscale pressure p(V ).

3.3 Vertex basedmodels

The relation (25) is discretized in 2D on the dual triangular mesh, see Fig. 1. The
triangle with center at xα has three edges between triangle α and three neighbors β, γ,

and δ. The normals of the edges are nαβ,nαγ , and nαδ and are equal to r̂αβ, r̂αγ , and
r̂αδ . By (25), the pressure and the velocity at the midpoint of the edge between triangle
α and β are assumed to satisfy

− μnαβ · ∇ p = nαβ · v = nαβ · (Fα + Fβ), (30)

where Fα and Fβ are the VBM forces at xα and xβ in (15). After discretization of (30),
the relation between the forces and the pressures pα and pβ at xα and xβ using (17) is
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−μ
pβ − pα

rαβ

≈ nαβ · (Fα + Fβ)

= r̂αβ · ( f (Vk, ai , a j )r̂αβ + f (Vi , a j , ak)r̂αγ + f (Vj , ak, ai )r̂αδ)

+r̂αβ · ( f (Vl , ai , a j )r̂βα + f (Vi , a j , al)r̂βε + f (Vj , al , ai )r̂βζ )

= f (Vk, ai , a j ) − f (Vl , ai , a j )

+ f (Vi , a j , ak)r̂αβ · r̂αγ + f (Vj , ak, ai )r̂αβ · r̂αδ

+ f (Vi , a j , al)r̂αβ · r̂βε + f (Vj , al , ai )r̂αβ · r̂βζ .

(31)

The pressures pα and pβ are functions of the microscopic forces in (31) and the inner
products involving r̂, Vi , and ai . They depend on properties of the geometry of the
cell polygons.

3.4 Geometry of the cells

We need relations for the cells in (29) and (31) between their area or volume V , their
perimeter a, a distance r , and the inner products such as r̂αβ · r̂αγ to be able to find the
macroscopic pressure by coarse-graining the microscopic forces. This is easy in 1D
but in 2D and 3D complete geometric information is not available and assumptions
on the cell geometry are necessary.

3.4.1 One dimension

Let ri be the distance between the center of cell i and the cell boundary in 1D in Fig. 2.
Then the length of the cell is

Vi = xα − xγ = 2ri . (32)

There is no perimeter but let ai j in (5) be 1 and J = 2. The geometric relations between
Vi , ai j , and ri j in (29) are

ri = 1

2
Vi = ξ1Vi , ri j = 1

2
(Vi + Vj ),

Vi
ai j

= Vi , ai =
2∑

j=1

ai j = 2. (33)

The inner products are either −1 or 1.

3.4.2 Two and three dimensions

The PDE approximation of the forces is expected to be the most accurate when there
is a smooth and small variation of the cell density. By assuming that the cell shapes are
close to regular polygons in 2Dand regular polyhedra in 3D,we canderive approximate
expressions for the dependence on V of ri j and ai j in (29) and ai , rαβ, and the inner
products in (31). The shortest distance between the cell center and the perimeter in
cell i is denoted by ri which is equal to the radius of the inscribed circle. Hence,
ri j = ri + r j .
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Table 1 The factor ξ2 in the
relation r = ξ2(J )V 1/2 in
regular polygons

J 2D name ξ2

3 Triangle (3 tan(π/3))−1/2 = 0.4387

4 Square (4 tan(π/4))−1/2 = 0.5000

5 Pentagon (5 tan(π/5))−1/2 = 0.5247

6 Hexagon (6 tan(π/6))−1/2 = 0.5373

∞ Circle 1√
π

= 0.5642

A regular polygon in 2D with J corners and J edges fulfills

Vi = Jr2i tan(π/J ), ai j = 2ri tan(π/J ), ai =
∑

j

ai j = 2ri J tan(π/J ). (34)

Introduce ξ2(J ) = 1/
√
J tan(π/J ). Then by (34) we find that

ri = ξ2(J )
√
Vi ,

Vi
ai j

= 1

2
Jξ2(J )

√
Vi , ai = 2

ξ2(J )

√
Vi . (35)

The polygon becomes a circle when J → ∞ and ξ2 → 1/
√

π . A triangle yields the
lower bound on ξ2. The ξ2-values for different J are found in Table 1.

The maximum number of inscribed circles of equal radius in other cells touching
circle i is 6 (the kissing number (Conway and Sloane 1993)). In a densly packed cell
colony, J will be close to 6. Choosing 5 or 6 for J in ξ2 does not alter its value very
much in the table and ξ2 appears to vary slowly when J → ∞. The inner products
between r̂αβ and other r̂-vectors in (31) are equal to± cos(2π/J ) if the cell is a regular
polygon with J edges.

The growth of epithelia are simulated in Staple et al. (2010) with a planar vertex
model. The statistics of the cell geometry shows that most cells have five or six
neighbors. This is also the conclusion in Farhadifar et al. (2007) in both simulations
and experiments. Theminimum of the potential in Farhadifar et al. (2007), Staple et al.
(2010) is obtained in a hexagonal lattice in numerical experiments. In observations of
2D cell patterns in plants in Lewis (1943), it is found that the average number of edges
of a cell is six with a hexagonal shape.

A regular polyhedron in 3D with J faces or neighbors satisfies

Vi =
∑

j

1

3
ai j ri = 1

3
airi ,

Vi
ai j

= 1

3
Jri . (36)

The quotient between ri and V 1/3 is written ξ3(J ). Then it follows from (36) that

ri = ξ3(J )V 1/3
i ,

Vi
ai j

= 1

3
Jξ3(J )V 1/3

i , ai = 3

ξ3(J )
V 2/3
i . (37)
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Table 2 The factor ξ3 in the
relation r = ξ3(J )V 1/3 in
regular polyhedra

J 3D name ξ3

4 Tetrahedron 1
2·31/6 = 0.4163

6 Cube 0.5000

8 Octahedron 1
22/3·31/6 = 0.5246

12 Dodecahedron 41/3
√
250+110

√
5

20(15+7
√
5)1/3

= 0.5648

∞ Sphere
(

3
4π

)1/3 = 0.6204

We obtain a sphere when J → ∞. The ξ3-values can be calculated for the five Platonic
solids (Weisstein 2003). Four of them are tabulated in Table 2. As in Table 1, the value
of ξ3 increases slowly when J increases from 6 to ∞. The highest density packing
of spherical cells is achieved by J = 12 and the kissing number for a sphere is 12
(Conway and Sloane 1993). Therefore, the icosahedron with J = 20 is excluded.

The formulas in dimension d, d = 1, 2, 3, in (33), (35), and (37) are summarized
by

ri = ξd(J )V 1/d
i ,

Vi
ai j

= 1

d
Jξd(J )V 1/d

i , ai = d

ξd(J )
V (d−1)/d
i . (38)

3.5 Pressure in center and vertex basedmodels

The geometric relations for the cells from Sect. 3.4 are introduced in the pressure
formulas from Sects. 3.2 and 3.3.

3.5.1 Center based models

Insert ri j = ri + r j and Vi/ai j from (38) into the pressure formula for CBM (29) to
arrive at

pi j = − Jξd(J )

dμ
V 1/d
i g(ξd(J )(V 1/d

i + V 1/d
j )) (39)

for the pressure between cell i and j . It can be interpreted as a discretization of

p = − Jξd(J )

dμ
V 1/dg(2ξd(J )V 1/d) (40)

at a point 1
2 (xi + x j ). In d dimensions, the pressure formulas for pd are

p1 = − 1

μ
Vg(V ), p2 = −1.31

μ
V 1/2g(1.05V 1/2), p3 = −1.83

μ
V 1/3g(1.1V 1/3),

(41)
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with the number of neighbors J = 2, 5, 10, for d = 1, 2, 3. Let g be as in (7) and let
s = 2ξdV

1/d
0 . If V < V0 then p is positive and decreases when V increases. This is the

usual behavior in fluids: the pressure decreases when the density (∼ 1/V ) decreases.

3.5.2 Vertex basedmodels

With the VBM force in (15) in 2D, f in (31) can be written as a sum

f (Vi , a j , ak) = fV (Vi ) + fa(a j ) + fa(ak). (42)

By the geometric relations in 2D we have

− μ
pβ − pα

rαβ

= fV (Vk) − fV (Vl) − 2 cos(2π/J )( fa(ak) − fa(al)). (43)

Use (38) with d = 2 and rαβ = a j/J and identify pα and pβ in (43) with

pα = 2

Jξ2(J )μ
V 1/2

(
fV (Vk) − 2 cos(2π/J ) fa(2V

1/2
k /ξ2(J ))

)
,

pβ = 2

Jξ2(J )μ
V 1/2

(
fV (Vl) − 2 cos(2π/J ) fa(2V

1/2
l /ξ2(J ))

) (44)

to satisfy the equality. These are interpreted as discrete versions of the pressure in

p = 2

Jξ2(J )μ
V 1/2

(
fV (V ) − 2 cos(2π/J ) fa(2V

1/2/ξ2(J ))
)

. (45)

Thus, the pressure corresponding to the Weliky-Oster model in (15) is

p = 2

Jξ2(J )μ
V 1/2

(
ς

V
− 4κ cos(2π/J )

ξ2
V 1/2

)
. (46)

In summary, we have derived macroscopic constitutive laws for the pressure from
the microscopic CBM and VBM in (40) and (46) by comparing a discretization of
a pressure gradient with the microscopic forces. Only the cell area or volume V is
available on the macro level but the CBM and VBM forces depend on more details of
the cell geometry such as the perimeter a and the distance r . The missing information
is obtained in (38) by assuming that the cells are regular polygons or polyhedra.

3.6 One dimension

A comparison between the CBM and the VBM for small perturbations in 1D shows
how the parameters in themethods are related. A perturbation δVi from the equilibrium
r = s in CBM and V = V0 in VBM is introduced in the force formulas in Sects. 2.2
and 2.3. The notation is as in Fig. 2.
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The CBM velocity of cell i according to (28) is

vi = g(ri + r j )r̂i j + g(ri + rk)r̂ik . (47)

Perturb ri , r j , and rk about ri j0 = s. Then the change in velocity is

δvi = g′(s)δri j r̂i j + g′(s)δrik r̂ik = g′(s)(δri j − δrik) = g′(s)(δr j − δrk). (48)

The VBM due to Weliky-Oster in (15) depends on the perimeter a. It has no imme-
diate interpretation in 1D and is ignored here. The velocity at xα is

vα = ς

(
1

Vi
− 1

Vj

)
= ς(ρi − ρ j ). (49)

Perturb the cell lengths as in (48)

δvα = ς

(
δVj

V 2
0

− δVi
V 2
0

)
, δvγ = ς

(
δVi
V 2
0

− δVk
V 2
0

)
, (50)

to obtain

δvi = 1

2
(δvα + δvγ ) = ς

2V 2
0

(
δVj − δVk

) = ς

V 2
0

(
δr j − δrk

)
. (51)

Comparing δvi in (48) and (51) yields g′(s) = ς/V 2
0 . With g(r) in (7), g′(s) = μ =

ς/V 2
0 .

4 Finite volumemethod for the PDE

The equation for conservation of mass (22) is advanced in time by time stepping with
the Euler forward method and a FVM discretization in space on an arbitrary mesh as
in (24) in this section. A finite difference method or a finite element method would be
a possible alternative for the spatial discretization. The pressure in Darcy’s law (25)
is defined by the CBM or the VBM on the micro level as in Sect. 3.5.

The conservation law for transport of density is a nonlinear parabolic PDE for ρ in
stationary Euler coordinates in (26). Insert p(ρ) into the right hand side of (26)

∇ · (ρ∇ p) = ∇ · (ρ
∂ p

∂ρ
∇ρ). (52)

The expression ρ
∂ p
∂ρ

is a diffusion coefficient in (26). This is observed byMurray et al.
(2012) and the coefficient is derived in 1D in a coordinate system different from ours.
For ρ to remain stable in the diffusion equation, we require ∂ p

∂ρ
> 0. The diffusion

coefficient for the CBM in (40) is with ρ = 1/V

123



75 Page 18 of 31 P. Lötstedt

∂ p

∂ρ
= Jξd(J )

d2μ
ρ−(d+1)/d(g(2ξdρ

−1/d) + 2ξdρ
−1/dg′(2ξdρ−1/d)). (53)

In particular the coefficient in 1D is

∂ p

∂ρ
= 1

μρ2

(
g(1/ρ) + g′(1/ρ)

ρ

)
. (54)

The diffusion coefficient is negative if ρ is such that g+2ξdρ−1/dg′ < 0 in (53). This
is possible e.g. when 2ξdρ−1/d is close to rA in (7) since g > 0 but small and g′ < 0.
A continuous g in (6) with g > 0 for s < r < rA and g = 0 for r > rA necessarily
has this property.

The diffusion coefficient for the VBM in (46) is

∂ p

∂ρ
= 2

Jξ2(J )μ

(
ς

2ρ1/2 + 4κ cos(2π/J )

ξ2(J )ρ2

)
. (55)

The coefficient is positive when J ≥ 4 with stable solutions of (26).
Compressible fluids are modelled by constitutive laws for the relation between p

and ρ or V similar to (40) and (46) (Anderson 1990). A perfect gas satisfies

p = ρRT (56)

where R is the specific gas constant and T is the temperature. The constitutive law for
an isentropic gas such as air (γ = 1.4) is

p

p0
=

(
ρ

ρ0

)γ

. (57)

The assumption in Chaplain et al. (2020) is that p(ρ) = Kγ ργ , Kγ > 0, γ > 1, as
in (57).

The space derivatives in (26) are discretized by a finite volume method on an
arbitrary stationary mesh with element areas (or volumes) ωi , ω j . The separating line
(or area) between ωi and ω j is denoted by σi j and the distance between the element
centers is �i j . Then the equation for ρi in element i is

∂ρi

∂t
= μ

ωi

∑

j∈Ji

ρi jni j · (∇ p)i jσi j = μ

ωi

∑

j∈Ji

1

2
(ρi + ρ j )

p j − pi
�i j

σi j . (58)

The equation (58) is integrated in time from tn to tn+1 by the forward Euler method
with the time step Δt resulting in

ρn+1
i = ρn

i + μΔt

ωi

∑

j∈Ji

1

2
(ρi + ρ j )

p j − pi
�i j

σi j . (59)
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The right hand side is evaluated at tn . On a Cartesian equidistant spatial grid with grid
size Δx , we have σi j = Δxd−1, �i j = Δx , and ωi = Δxd .

Multiply (59) by ωi and sum over all M elements in the mesh

M∑

i=1

ωiρ
n+1
i =

M∑

i=1

ωiρ
n
i + μΔt

M∑

i=1

∑

j∈Ji

1

2
(ρi + ρ j )

p j − pi
�i j

σi j =
M∑

i=1

ωiρ
n
i .

(60)

The double sum over i and j vanishes since each term in the interior of the domain
appears twice with opposite sign and a term on the boundary is zero due to the dis-
cretized Neumann boundary condition ρi = ρ j implying pi = p(ρi ) = p(ρ j ) = p j .
Therefore, the total mass

∑
i ωiρi is conserved also in the discretization, cf. ρ in the

PDE in (22).
The pressure at i and j in (59) is approximated by the CBM in dD in (40)

pk = − Jξd(J )

dμ
V 1/d
k g(2ξd(J )V 1/d

k ), k = i, j, (61)

with the specific volume Vk resulting in

ρn+1
i = ρn

i − JξdΔt

dωi

∑

j∈Ji

σi j

2�i j
(ρi + ρ j )

·(V 1/d
j g(2ξd(J )V 1/d

j ) − V 1/d
i g(2ξd(J )V 1/d

i )).

(62)

The constant J in (62) is chosen to be fixed with different values in 2D and 3D. It
is 6 in the numerical experiments in 2D in the next section assuming that the cell
environment is dense and slowly changing. The PDE model is not suitable in rapidly
changing domains. There the distance r may not depend on V as smoothly as in (38)
where a change in Vi will change ri equally in all directions from the cell center.

The approximation of p at xk with the Weliky-Oster model (46) in 2D is

pk = 2

Jξ2(J )μ
V 1/2
k

(
ζ

Vk
− 4 cos(2π/J )κ

ξ2(J )
V 1/2
k

)
, k = i, j . (63)

This p is inserted into (59) to advance the cell system in time with the VBM.
The PDE is discretized on an equidistant grid in 1D with grid size Δx with CBM

forces (40) and indices as in Fig. 2. Let ρi j = 1
2 (ρi + ρ j ) and update ρ in time by

ρn+1
i = ρn

i − Δt

Δx2
∑

j∈Ji

ρi j (Vj g(Vj ) − Vi g(Vi ))

= ρn
i − Δt

Δx2
(
ρi j (Vj g(Vj ) − Vi g(Vi )) + ρki (Vkg(Vk) − Vi g(Vi ))

)
.

(64)
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Apply FVM to (22) for a comparison of the PDE in 1D with the discrete CBMmodel.
In CBM, vi j = g(Vj ) − g(Vi ) and (22) is discretized by

ρn+1
i = ρn

i − Δt

Vi
(ρi jvi j − ρkivki )

= ρn
i − Δt

V 2
i

(
ρi j Vi (g(Vj ) − g(Vi )) + ρki Vi (g(Vk) − g(Vi ))

)
.

(65)

The difference between the PDE solution in (64) and the CBM solution in (65) is in
the evaluation of the pressure and the variable cell size in (65).

The pressure in the Weliky-Oster model in 1D is derived from (46). The constant
2/(Jξ2) → 1/(2ξ1) = 1 in 1D and fa = 0. Multiplying the force function by V
results in a constant p

p = 1

μ
V f (V ) = ς

μ
.

This is avoided by letting a discrete pressure p j at x j to update element i be

p j = 1

μ
Vi f (Vj ). (66)

Then the integration of ρn
i is achieved by

ρn+1
i = ρn

i + Δt

Δx2
(
ρi j Vi ( f (Vj ) − f (Vi )) + ρki Vi ( f (Vk) − f (Vi ))

)
, (67)

cf. (64) and (65).
With a general macroscopic definition of the pressure as in (40), it is possible to

integrate the vertex coordinates xα in (13) with the CBM force by taking

f (V ) = −
(
Jξ2(J )

2

)2

g(2ξ2(J )V 1/2). (68)

The macroscopic pressure in the PDE is the same with this f . In the same manner, p
in (45) can be used to advance the center coordinates in (10) with a g derived from
(68).

5 Numerical results

The discrete methods and their PDE approximations in Sect. 3 are compared in this
section in numerical experiments in 1D and 2D. The methods are implemented in
Matlab in a straightforwardmanner using their voronoin for the Voronoi tesselation
without any attempts to optimize the efficiency of the code. The parameters in the
methods are displayed in Table 3.
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Table 3 The parameters in the CBM in (7) and the VBM in (14)

Method Parameter Value Method Parameter Value

CBM s 1 VBM ς 1, 5, 50

CBM μ 50 VBM κ 1, 2, 5

CBM c 10

CBM rA 1.5

The distance r between two cell centers with no force between them is denoted by s in the CBM. The force
is scaled by μ. The exponential decay of the adhesion force is given by c and the force vanishes when
r > rA . In the VBM, ς and κ are the scalings of the area and the perimeter dependent force components,
respectively

0

0.5

1

0.6 0.8 1 1 1.5 2
0

100

200

Fig. 3 The pressure p (solid blue) and the diffusion coefficient ρ ∂ p
∂ρ

(dotted red) in the CBM in 1D in the
ρ-intervals [0.5, 1] (left) and [1, 2] (right). The parameters in the CBM are as in Table 3

5.1 One dimension

The density of the particles is computed in 1D using the CBM and VBM forces in the
micro model and the corresponding macro level PDEs in a comparison of the methods
in Figs. 4, 5, 6, 7. The parameters in the methods are found in Table 3. The relation
between the parameters ς and κ in the VBM is important but not the scaling of them.
It follows from (10) and (13) that a different parameter scale of μ, ς, and κ will only
change the time scale of the evolution of the system.

A system consisting of N particles is simulated for t ≥ 0 in an intervalA in space.
The spatial cells or intervals are computed by a Voronoi tesselation of the particle
system as in (32). Then the cell density in the interval is given by ρi = 1/Vi . The
original positions of the cells at t = 0 are such that ρ varies smoothly. The initial
density distribution is interpolated to a grid with constant step size Δx for use as
initial conditions to the solution of the PDE discretized by FVM in the interval B.
The cells at the boundaries of A are fixed and ρ satisfies Neumann conditions at the
boundaries of B. These boundary conditions guarantee that mass is conserved in A
and B. A stationary or equilibrium solution for the discrete model and the continuum
model have a constant density with equal cell size.

The repulsion and adhesion between the cells is modelled by the CBM in (7) in the
first example. The behavior of p(ρ) based on CBM with the parameters in Table 3
is depicted in Fig. 3. The particle simulation with N = 40 and the solution of the
PDE in (64) are found in Figs. 4 and 5. The initial data have a peak compared to the
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0 20 40
1

1.1

1.2

1.3

1.4

1.5

0 20 40 0 20 40 0 20 40 0 20 40

Fig. 4 Comparison of the density in the CBM and the PDE solutions in 1D inA = B = [0, 37] at different
times t . The CBM and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively. In the
columns from left to right: t = 0, 0.01, 0.02, 0.05, 0.1. The timestep Δt = 1.25 · 10−4, N = 40, and the
grid size is Δx = 1.95

equilibrium density in Fig. 4 and the density is lower in parts of the domain in Fig. 5.
When ρ > 1 in Fig. 4 then there is a repulsive force between the cells in the discrete
model and ∂ p/∂ρ > 0 in (54) in the PDE model (to the right in Fig. 3). The solution
diffuses toward the constant state. An adhesive force acts between the cells when
1/rA = 0.667 < ρ < 1 and the force disappears when ρ < 0.667. The diffusion in
the PDE is negative and unstable when ρ < 0.901 and vanishes when ρ < 0.667 (to
the left in Fig. 3). For small perturbations about ri j = s, the effect is given by g′(s) in
(48) which is equal to μ with the force in (7).

In Fig. 5, the solutions approach a steady state with two ρ-levels: one low with
separated cells and one high with cells touching each other. Because of the instability
in the PDE for low ρ, some of the ρ values in the solution decrease as time increases.
The solutions are close to steady state at t = 3 and the high density solutions agree
between the CBM and the PDE. The instability in the PDE causes oscillations in the
numerical solution for the low density values. This phenomenon is not ameliorated
by refining the mesh or reducing the timestep. Since the diffusion vanishes for low
density values, the oscillations remain in the stationary solution.

TheWeliky-Oster VBM in (14) is compared with the corresponding PDE in Figs. 6
and 7. The PDE is stable with a positive diffusion coefficient. The initial data and
the boundary conditions are the same as in the CBM example above and the force
coefficient is ς = 50. The vertices of 39 cells are advected in the micro model and
the macro model has 20 grid points. As observed in Sect. 4, there is no directly
corresponding continuous pressure in 1D for the VBM but a discretization of the PDE
is still possible with the pressure (66) in (67) which yields a fair result. The PDE
solutions diffuse toward a constant steady state as time progresses which is different
from the steady state with CBM in Fig. 5. The discrete and the PDE solutions are close
except for the peak in ρ. Peaks cannot be represented very well in a PDE discretization
on a coarse mesh.
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Fig. 5 Comparison of the density in the CBM and the PDE solutions in 1D inA = B = [0, 47] at different
times t . The CBM and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively. In the
columns from left to right: t = 0, 0.5, 1.0, 2.0, 3.0. The timestep Δt = 10−3, N = 40, and the grid size is
Δx = 2.50
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Fig. 6 Comparison of the density in the VBM and the PDE solutions in 1D in A = B = [0.5, 36.5] at
different times t . The VBM and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively.
In the columns from left to right: t = 0, 0.04, 0.12, 0.24, 0.4. The timestep Δt = 4 · 10−4, N = 39, and
the grid size is Δx = 1.90
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Fig. 7 Comparison of the density in the VBM and the PDE solutions in 1D in A = B = [0.5, 47] at
different times t . The VBM and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively.
In the columns from left to right: t = 0, 0.1, 0.3, 0.6, 1.0. The timestep Δt = 10−3, N = 39, and the grid
size is Δx = 2.45

5.2 Two dimensions

The density of the particles is computed in 2D in this section using the CBM andVBM
forces and the corresponding PDEs in a comparison of the methods. The parameters
in Table 3 are used in the methods. A system consisting of 1777 particles in A =
[0, 40] × [0, 40] is simulated in a time interval with t ≥ 0. The density of the particle
system is computed by a Voronoi tesselation. The area Vi of the Voronoi cell is first
determined and then the density by ρi = 1/Vi . The original positions of the cells are
located in a hexagonal pattern. It is disturbed in the center of the domain such that the
density varies radially from there. An example is found in Fig. 8 with ρ ∈ [1.11, 1.97]
in the central parts of the figure and ρ = 1.15 in the outer parts. The cells will be close
to hexagons also in the steady state. Therefore, J is chosen to be 6 in ξ2(J ). The PDE is
discretized by FVM on a Cartesian grid with square elements in B = [8, 32]× [8, 32]
as in (59) with the grid sizes Δx = Δy = 1.263, see Fig. 8. The initial ρ in the PDE
solution at t = 0 is interpolated to the grid from the initial CBM or VBM solution.
The solutions of the discrete system and the PDEs are compared along a line with a
constant y value through the center of the domain along the x axis.

The system with CBM forces is simulated for t ∈ [0, 0.45] with the timesteps
Δt = 2.5 ·10−4. The CBM solution and the PDE solution of (62) are compared at five
time points in Fig. 9. The PDE solution decays at a slower rate than the CBM solution.
The explanation is that r in the force formula varies more rapidly in a neighborhood of
large variations in ρ than V does in the PDE approximation r = ξ2V 1/2 thus inducing
weaker forces and slower dissipation in the PDE solution. The cells at the center of the
domain are less regular than assumed to obtain ξ2. Refining the PDE mesh does not
change the result very much. The steady state solution is a constant density and the
boundary conditions are such that the total mass is conserved. Close to the steady state
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Fig. 8 An example of a Voronoi
tesselation (blue) of a collection
of cells with cell centers marked
by ·. The Cartesian grid (green)
is overlaid
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Fig. 9 Comparison of the density in the CBM and the PDE solutions in 2D on the line through the center of
the solution at different times t . The CBM and PDE solutions are marked by a solid line (red) and ∗ (blue),
respectively. In the columns from left to right: t = 0, 0.1, 0.2, 0.3, 0.45

at t = 0.45, the solutions almost overlap on the scale of the figure. When t → ∞, ρ
will approach the average at t = 0.45. It is 1.1558 for the micro solution and 1.1554
for the macro solution.

The solutions with the VBM forces due to Weliky and Oster are compared at five
time points in the interval [0, 0.6] in Figs. 10, 11, 12, and 13 for different parameters
ς and κ . The timestep is Δt = 10−3. The difference between the particle simulation
and the PDE solution of (59) with the pressure (63) is largest at the peak of the
density. There the approximations of a length scale r by ξ2V 1/2 and the perimeter a
by 2V 1/2/ξ2 are the least accurate to determine a pressure for the PDE.

In the figures, the solutions computed by the CBM and the VBM and the PDE
approximations are compared. The computing time to obtain the solutions is at least
an order ofmagnitude fasterwith the PDEs. For example, take the simulation in Fig. 10.
Initialization of data structures necessary for a VBM simulation required 84.9 s on a

123



75 Page 26 of 31 P. Lötstedt

10 20 30
1.1

1.2

1.3

1.4

1.5

1.6

1.7

10 20 30 10 20 30 10 20 30 10 20 30

Fig. 10 Comparison of the density in the VBM and the PDE solutions with Weliky and Oster forces in 2D
on the line through the center of the solution at different times t with parameters ς = 1, κ = 1. The VBM
and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively. In the columns from left to
right: t = 0, 0.1, 0.2, 0.4, 0.6
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Fig. 11 Comparison of the density in the VBM and the PDE solutions with Weliky and Oster forces in 2D
on the line through the center of the solution at different times t with parameters ς = 1, κ = 2. The VBM
and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively. In the columns from left to
right: t = 0, 0.1, 0.2, 0.4, 0.6

standard processor. The VBM simulation itself with 800 time steps took 217.2 s. The
PDE solution with 800 time steps was finished in 10.5 s. These numbers give a hint
of the relations between the computational work for the micro and macro levels of
simulation.
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Fig. 12 Comparison of the density in the VBM and the PDE solutions with Weliky and Oster forces in 2D
on the line through the center of the solution at different times t with parameters ς = 1, κ = 5. The VBM
and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively. In the columns from left to
right: t = 0, 0.1, 0.2, 0.4, 0.6
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Fig. 13 Comparison of the density in the VBM and the PDE solutions with Weliky and Oster forces in 2D
on the line through the center of the solution at different times t with parameters ς = 5, κ = 1. The VBM
and PDE solutions are marked by a solid line (red) and ∗ (blue), respectively. In the columns from left to
right: t = 0, 0.1, 0.2, 0.4, 0.6

6 Conclusions

The CBMand the VBMaremodels on amicro level for themechanical forces between
neighboring biological cells in time dependent motion. Each cell is treated as an entity
whose motion is determined by the forces. PDEs are suitable models on a macro level
for the motion of large aggregations of cells. We have derived these PDEs from two
established CBM and VBM in Sect. 3 and compared the two levels of modelling in
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numerical examples in Sect. 5. The advantage with PDEs is that tissues with billions of
cells are easier to simulate than the detailed particle models with the same number of
cells. A disadvantage with a PDE is that local events such as cell proliferation cannot
be well represented.

The PDE on the macro level, corresponding to the CBM and the VBM on the
micro level, is nonlinear and parabolic. It is an equation for transport of cell density
ρ = 1/V where V is the area or volume of a cell. The forces in CBM and VBM are
transformed to a pressure p as a function of V , p(V ), in the PDE and there is a direct
translation of the parameters in the microscopic and the macroscopic models. By the
relation between the forces and the pressure, a pressure obtained from a CBM force
can be used to define a VBM force and vice versa. The microscopic forces depend
on the cell perimeter a in 2D and the cell radius r in 2D and 3D. They are involved
in the specification of the macroscopic pressure but are not readily available on the
macro level. This is usually the case in a multiscale model that information on the
micro level is missing on the macro level. Instead, a and r are approximated in the
PDE assuming that the cell is a regular polygon in 2D and a regular polyhedron in
3D. This approximation is not necessary in 1D. The PDE derived from the CBM is
unstable in a density interval because the diffusion coefficient is negative there. The
motion of the cells is assumed to obey Darcy’s law, which governs the flow of a fluid
through a porous medium. An alternative would be to assume that the cell aggregation
behaves as a solid tissue with shear forces such as a tumour described by a nonlinear
elastic model (Lowengrub et al. 2010) and then relate a given microscale model to
those equations or choose a micro model suitable for those equations.

There are discrepancies between the solutions in 2D computed with the discrete
particle models and the PDE approximations in the numerical experiments in Sect. 5.
These are explained by the approximations of a and r in the PDE which are less
accurate at peaks in the density distribution where the cell geometry deviates the most
from a regular polygon. In 1D, the agreement between the fine micro level and the
coarser macro level solutions is good. A possible solution in dimensions higher than
one is to derive transport equations for a and r in the same spirit as for V (or ρ) and use
these a, r , and V to define p. This would be more complicated than it is to arrive at an
equation for ρ and would require detailed knowledge on the macro level of the initial
cell geometry to provide initial data for a and r . Another solution is to let the forces
between the cells on the micro level depend only on the cell volume V to simplify
the transfer to the macro level. In this way, the macroscopic model would define the
forces in the microscopic model to which additional, detailed features could be added
to motivate and refine a cell based approach.

The advantage with a PDEmodel is that the spatial discretization of it for numerical
solution is chosen to resolve the variation in the densitywithout regard to the size of the
biological cell. If the cell size is almost constant and the density varies smoothly, then
major reductions in computational work are possible by a coarse mesh on the macro
level. With a micro model and a macro model one can treat parts of the cell domain
by the CBM or VBM where detailed modelling is required and more quiescent parts
by the PDE model and glue them together at an interface in a multiscale model as in
Kim et al. (2007). The PDE would define conditions at the boundary of an embedded
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domainwith discrete, microscopicmodelling. That appears to be possible alreadywith
the PDEs in Sect. 5 if the variation in density is low in the PDE domain.
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