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A B S T R A C T

Excessive demand of concrete is causing depletion of natural sand resources. Especially, the extraction of river
sand negatively affects its surrounding environment. A sustainable solution to this problem can be the proper
utilization of waste materials and by-products like stone dust (SD) as fine aggregate replacement in concrete. The
recycling of stone dust as a construction material lessens the use of natural resources and helps to solve landfill
scarcity as well as environmental problems. Addition of nylon fiber (NF) as fiber reinforcement can also attribute
to enhance the properties of concrete. This research aims at utilizing SD as fine aggregate along with NF, and
assessing the compressive strength and splitting tensile strength of concrete. Although the individual effects of
incorporating stone dust and nylon fiber in concrete have been investigated in previous researches, their com-
bined effects, as well as effects of water cement (WC) ratio on concrete strength, have not been studied yet. In this
study, volumetric percentages of stone dust (20%–50%) and nylon fiber (0.25%–0.75%) and three different water
cement ratio (0.45, 0.50 and 0.55) have been considered as three independent variables to develop probabilistic
models for compressive strength and splitting tensile strength of concrete using artificial neural network (ANN).
The values of coefficient of determination (R2) and other statistical parameters of the developed probabilistic
models indicate the accuracy of the models to predict the concrete strength. In terms of compressive strength at
early age, the optimal percentages of SD and NF have been found as 20% and 0.25%, respectively. However, the
strength gradually drops as water cement ratio elevates from 0.45 to 0.55. The reduction of the splitting tensile
strength has been observed for increasing SD from 20% to 50%, whereas, strength increases for rising NF and WC
up to mid-level.
1. Introduction

Concrete has appeared as the prevailing construction material for all
types of infrastructure of the twenty-first century due to its longevity,
durability, easy preparation and fabrication from readily available con-
stituents (Aggarwal et al., 2007; Ray et al., 2021c). It is the second most
consumed material after water. Every year, over 10 billion tons of con-
crete is produced which represents nearly 1.5 ton per capita in the world
(Kanojia and Jain, 2017). The production of one cubic meter of concrete
requires nearly equal volume of aggregates (Gupta et al., 2021). In con-
crete, aggregates occupy 70–80% in which 25–30% is filled by fine
aggregate (Kanojia and Jain, 2017). Since fine aggregate comes from
natural sources, its excessive demand has resulted in a shortage of re-
sources. In addition, the widespread reduction of sand sources causes
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negative impacts on associate ecosystem, landscape, water tables and
riverbeds (Ray et al., 2021a).

On the other hand, due to high production, construction and de-
molitions activities in developing countries, waste generation is on rise
and has become a matter of grave concern. The appalling status of virgin
land is growing as a result of an increase in the percentage of dumping by
abandoned waste materials including stone dust (SD) raising social,
global, and environmental concerns (Bisht and Ramana, 2018; Ray et al.,
2021d). Stone dust is obtained at crusher plants as rubbish where the
artificial crushing of rock or gravels is done to obtain coarse aggregate
(Figure 1). At present, this waste is not recycled in any form except for
dumping in landfills (Ahmed et al., 2010; Ray et al., 2021b). During
crushing, handling and disposal, this waste disperses a great extent of
fine solid particles in air, water and soil as pollutant (Galetakis and
Soultana, 2016). These, scarcity of resources and problems associated
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Figure 1. Stone dust as by-product of stone crushing.
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with wastes, motivate researchers to use stone dust in concrete produc-
tion without reducing quality and hardened strength of concrete. Utili-
zation of stone dust provides homogeneous mix to concrete and can
enhance compressive, splitting tensile and flexural strength of concrete
since previous researches appeared to suggest a promising option as
construction material (Gadgihalli et al., 2017; Gupta et al., 2021;
Hameed and Sekar, 2009; Mundra et al., 2016; Syed and Quadri, 2013).

Stone dust is such a promising waste to be mentioned with high
specific gravity, almost similar particle sizes that make it potential for use
as fine aggregate in concrete (Reddy et al., 2015). However, stone dust
has little lower value of fineness modulus compared to natural sand
(Suman and Srivastava, 2015). Worldwide, stone businesses create 68
million tons of processed products annually causing disposal problems,
makes an incredible issue for transfer and environmental hazards (Pra-
kash and Rao, 2016). As for Bangladesh, about 100000 cubic feet of stone
dust is produced during stone crushing (Muhit et al., 2014). The utili-
zation of crushed stone dust in making concrete and mortar not only
preclude the decline of sources of natural sand but also solves the issues
associated with disposal and environmental of this dust (Rajput, 2018).
Syed and Quadri (2013) and Turuallo et al. (2020), Yadav (2021) found
that maximum compressive strength was obtained about 40% replace-
ment of sand with crushed dust. The concrete specimens tested by Singh
et al. (2016) was found rising the strength up to 30% addition of stone
dust. Kala and Sethuraman (2013) studied the effect of stone dust varying
from 25% to 100% on the compressive strength of concrete and found
that highest strength occurred at 25%. Similar results were stated by
Arivumangai (2014) where replacement level higher than 25% under-
went a drop of the strength. Oyekan and Kamiyo (2008) also noticed that
stone dust can be used up to 15% of river sand. However, for incorpo-
ration of stone dust, Serelis et al. (2018) reported decrement in the
strength lower than control concrete. In addition, no significant influence
on the compressive strength was found by Vijayalakshmi et al. (2013) for
replacement of stone dust from 0%-15%.

Meanwhile, in case of splitting tensile strength, Rao (2021) focused
on the behaviour of concrete having stone dust and promulgated that
tensile strength increases significantly for rising incorporation of the
dust. The experimental outcomes of the research of Alok et al. (2020),
and Prasanth et al. (2020) revealed that the strength increased with the
elaboration of stone dust's percentage up to 40%. Moreover, rising trend
of the strength of concrete was observed by Khan et al. (2018) and
Vijayalakshmi et al. (2013) for inclusion of stone dust and found opti-
mum strength at 15% substitution of river sand with the dust. To increase
the usage (%) of SD in concrete without compromising the strength of
concrete fiber reinforcement can be a good solution.
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Fiber reinforced concrete (FRC) is becoming popular due to its
promising performance in structural reliability (Verma, 2016). Fiber
improves flexural strength, splitting tensile strength, freeze-thaw resis-
tance, toughness, resistance to fatigue, etc. (Choi et al., 2011; Gadgihalli
et al., 2017; Haque et al., 2021). It also reduces swelling of micro and
macro crack, segregation and bleed-water (Wang and Shah, 2001).
Extensive investigation on FRC has established that the addition of
different types of fiber such as steel, glass, synthetic, and carbon im-
proves strength, toughness, ductility, post-cracking resistance and resist
localize tension that causes cracking. Nylon fiber (NF) is such a
well-known material used as fiber reinforcement in concrete. The reason
for using nylon fiber is that it has good hardness, resilience, and dura-
bility, resistant to soil and dirt, has good abrasion and wearing charac-
teristics, cost effects, availability in different cross section and color
(Swami and Gupta, 2016). Gadgihalli et al. (2017) promulgated that
nylon fiber, as admixture, can increase the compressive strength about
4.18% and 1.77% for M20 and M30 grade respectively compared to
conventional concrete. Likewise, Munadrah et al. (2021) examined the
effect of 0.5% and 1% inclusion of nylon fiber and noticed increment of
compressive strength by 68.75% and 126.26% respectively compared to
control concrete. Ahmad et al. (2021) added 2%–8% nylon fiber in in-
terval of 2% and found that the highest compressive strength happened
at 5.5%. An increasing pattern was observed by Vaishnavi et al. (2019)
when proportion of nylon fiber rose from 0.125% to 0.300%. On the
other hand, concrete made of 1.5% nylon fiber augment significant
splitting tensile strength in comparison with conventional concrete (Zul
et al., 2021). In addition, Lashari et al. (2021) reported gradual incre-
ment of the strength since nylon fiber increases up to 0.5% in step of
0.1%. Moreover, Bheel et al. (2021) found 1% nylon fiber to be optimum
percentage providing maximum splitting tensile strength that was 14.1%
more that concrete having no nylon fiber.

The improvement of strength in concrete is determined by water
cement ratio and the bond at the contact surface of hydrated binding
(cement) paste and its constituents. For fluidity of concrete mixture
having 0.80 water cement ratio is immense enough to induce collapse of
the concrete cone resulting in reduction of strength of concrete (Alawode
and Idowu, 2011). While, decrease in w/c positively affect concrete by
developing strengths (Anifowose et al., 2021). Singh et al. (2015) found
0.5 water cement ratio, within the range of 0.5–1.2 water cement ratio, as
the point where maximum compressive and splitting tensile strength
happened. Moreover, Yaşar et al. (2004) stated that 20% compressive
strength of concrete was attributed to optimum water cement ratio
(0.33–0.36) at 28-day curing time. However, low or medium water
cement ratio may not develop the strength since stone dust has low
fineness modulus than river sand implying that stone dust would use
more cement paste resulting in less fluidity of the concrete mix (Dhir
et al., 2017). An optimum water cement ratio could be a feasible
approach to get the best concrete (Anifowose et al., 2021). Hence, in this
study, three different water cement ratios (0.45–0.55) have been used to
understand the performances along with other materials.

Hence, a correlation between affecting factors (stone dust, nylon fiber
and water cement ratio) and influenced factors (compressive strength
and splitting tensile strength) needs to be created to investigate the in-
fluences of these input variables on the output variables. Over the past
few decades, application of computer models to investigate the resulting
outcome of concrete mixes has received ample priority. One mentionable
method is artificial neural networks (ANN) which emulate the processing
system of biological neuron, have structure of vast parallel, inter-
connected, unvarnished computing constituents called neurons arranged
in layers (Alshihri et al., 2009; O. Akande et al., 2014). ANN has the
potentiality of solving convoluted problems owing to nonlinear pro-
cessing, parallel processing systems (Ozturan et al., 2008; Stathakis,
2009). Topçu and Saridemir (2007) employed ANN in predicting the
concrete properties made of waste aggregate. Kewalramani and Gupta
(2006) simulated compressive strength of concrete using artificial neural
networks. Mashhadban et al. (2016) constructed ANNmodels to simulate



Figure 2. Stone dust.
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mechanical properties of fiber-reinforced concrete. The effect of silica
fume and fly ash on the compressive strength of concrete was assessed by
Shariati et al. (2021). In another study of the author, artificial neural
network-genetic algorithm (ANN-GA) was employed to simulate the
strength of concrete containing furnace slag and fly ash (Shariati et al.,
2020b).

Previous researchers have studied the effect of stone dust and nylon
fiber in concrete individually. So, the present study is aimed to find the
effects of stone dust (SD), nylon fiber (NF), and water cement (WC) ratio
combinedly on the compressive and splitting tensile strength of concrete
from the ANN-based models. Also, the prediction of the properties of
concrete using artificial neural networks is unique compared to earlier
research. Feedforward Neural Networks methods were adopted for the
development of ANN models where SD, NF, and WC were taken as input
factors and 7-day and 28-day compressive and splitting tensile strength
were taken as responses.

2. Experimental study

2.1. Material properties

Portland Limestone Cement (PLC) as binding material has been used
having 27% normal consistency. The initial and final setting time of PLC
was found 130 and 170 min respectively. In this present study, 20 mm
and 10mmdowngrade crushed stone chips as coarse aggregate with ratio
of 7:3 respectively was adopted. As fine aggregate, river sand having 4.75
mm maximum size and 2.6 fineness modulus has been utilized. Stone
dust that was amassed from a local crusher plant was taken as partial
replacement of natural fine aggregate having size varied between 0.15
mm to 4.75 mm (Figure 2). The particle size distribution curve of river
sand and stone dust has been displayed in Figure 3. The nylon as fiber
reinforcement was collected from a local market which is normally used
for fishing nets. Nylon has been processed manually into laboratory to
make fiber of 20 mm length (Figure 4). Table 1 depicts the physical
properties used material.

2.2. Mixture proportioning

The relative proportions of constituents used in preparation of test
specimens for testing of hardened properties of concrete are given in
Table 2. A total of 13 concrete mixes were used with the samemix ratio of
1:1.5:3 but having different types of water cement ratio. In each of the
proportions, stone dust was used as 20%, 35%, and 50% in place of fine
aggregate while the addition of nylon fiber was ranged from 0.25% to
0.75%. Volumetric percentages of all variables that have been employed
in this research are presented in Table 3.

2.3. Preparation of specimens

All concrete specimens were cast using molds of 100 mm diameter
and 200 mm height for hardened strength tests. Molds were coated with
grease followed by casting and drying of specimens for 24 h into a con-
stant room temperature. Then the concrete was removed from the molds
and immediately submerged in fresh clean water. Specimens for
compressive and splitting tensile strength tests were cured for 7 and 28
days. Test of sieve analysis, bulk density, flakiness and elongation, spe-
cific gravity of coarse aggregate and fine aggregate, compressive strength
and splitting tensile strength were executed in accordance with ASTM
C136, C29, D-4719, C127, C128, C39 and C496 respectively.

2.4. Artificial neural network

ANN simulates the functioning of the biological nervous system that
is made of small units called neurons. An input layer, one or more
hidden layers, and an output layer are used to organize neurons
(Figure 5) (Dantas et al., 2013; Gupta et al., 2019; Ray et al., 2021a;
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Shariati et al., 2020a). The ANN shown in Figure 5 is called
feed-forward network where computations proceed along the forward
direction only.

ANN is formed of inputs, weights, sum function, activation function
and outputs (Figure 6). Inputs are information from external world that
are used by neurons to learn and recognize the process. A neuron can
have several inputs but one output. The input layer contains one neuron
for each of the input variables. Each input has a coefficient referred
weight assigned to it. Sum function calculates the net input that comes to
a cell. Activation function (sigmoid function) calculates the outcome of
the cell by processing the total input gained from sum function. In
multilayer network, the output of one layer constitutes the input to the
next layer. The output obtained from the output neurons constitutes the
network output (Khan et al., 2021). Neuron functions as follows: the
neuron's inputs are multiplied by the associated weights. The outcome
(dimensionless) is then added together using Eq. (1) (Topçu and Sar-
idemir, 2007).

x¼
 Xn

i¼1

wiyi þ b

!
(1)

where, x is the outcome of the neuron, yi is the input value, wi is the
associated weight, b is the bias value and

P
is sum function. The output

of the neuron is applied to a sigmoid function to form net output
(dimensionless) of the neuron by employing Eq. (2) (Bonagura and
Nobile, 2021) where α is a constant.

Net output¼ f ðzÞ ¼ 1
1þ e�αx (2)

Initially, the values of weights and bias are randomly chosen and
afterward resolved by the training processes. There are numerous
processes available including back propagation (BP) and cascade
correlation (CC) schemes. Back-propagation learning is an iterative
process that adapts the weights from the output layer to the input
layer. Any learning algorithm's focus is to reduce the mean square
error (MSE) between simulated and experimental outcomes (in the
training sample) while preserving the networks' generality. The
performance of the network (generality) is evaluated by a testing
data set. Validation set is used to train the network to discover and
maximize the best system to address a specific issue. (Alshihri et al.,
2009).

2.5. Model assessment

To examine the accuracy of the developed ANN models for 7-day and
28-day compressive and splitting tensile strength coefficient of correla-
tion (Hammoudi et al., 2019), coefficient of determination (Ray et al.,
2021e), mean square error (Duan et al., 2013), and coefficient of effi-
ciency (Grunwald and Frede, 1999), mean absolute error (Maran, 2013),
average error (Getahun et al., 2018) were employed. The corresponding
equations, shown as Eqs. (3), (4), (5), (6), (7), and (8) of these tools are
given below.



Figure 3. Particle size distribution of river sand and stone dust.

Figure 4. Nylon fiber.

Table 1. Properties of aggregates.

Name of property FA SD CA

Specific gravity 2.74 2.11 -

Density (kg/m3) 1600 1430 -

Water absorption capacity (%) 2.24 3.3 1.01

Coefficient of uniformity 3.96 3.83

Coefficient of gradation 0.89 0.77

Fineness modulus 2.67 2.54

Flakiness (%) - - 17.8

Elongation (%) - - 35.29

FA ¼ Fine aggregate, SD ¼ Stone dust, CA ¼ Coarse aggregate.
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Coefficient of determination ðRÞ¼
n
1ðai � aÞðpi � pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn 2

q Pn 2
(3)
P
1ðai � aÞ 1ðpi � pÞ

Coefficient of determination
�
R2�¼

0
B@ Pn

1ðai � aÞðpi � pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1ðai � aÞ2

q Pn
1ðpi � pÞ2

1
CA

2

(4)

Mean square error ðMSEÞ¼
Pn

1ðpi � aiÞ2
N

(5)

Coefficient of efficiency
�
Ef
�¼ Pn

1ðai � aÞ2 �Pn
1ðpi � aiÞ2Pn

1ðai � aÞ2 (6)
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Mean absolute error ðMAEÞ¼ 1
N

XN
jpi � aij (7)
1

Average error ðAEÞ¼ 1
N

Xn
1

ðpi � aiÞ (8)

Here, ai is actual data, pi is predicted data, a and p are the average of
actual and predicted data respectively and N is the number of samples.
The all mentioned statistical parameters in the present study have no
unit.

3. Results and discussions

3.1. ANN model evaluation

In order to confirm the suitability of the developed ANN models for 7
and 28 days compressive and splitting tensile strength, the experimental
values of each experiment were weighed to corresponding predicted
values as can be seen in Figures 7, 8, 9, and 10. These figures show the
significance of the ANN regression models since predicted data were
close to experimental data (Ray et al., 2021a). The figures also represent
the best fit line, which is defined by the best linear function (y ¼mx þ c)
and has an elevated coefficient of determination (Nazerian et al., 2018).

The correlation coefficient (R) of the set of training, validation,
testing and overall for each model are presented in Table 4. These R
(overall) values close to 0.9 hint at a good degree of relation between the
predicted and actual values in all cases (Schober and Schwarte, 2018).
From Table 4, the R-value in the testing set was 0.89 and 0.94 for
compressive strength at 7 and 28 days respectively, which implies that
the constructed model can interpret at least 90% of the estimated data.
Almost similar outcomes were noticed for splitting tensile strength for
both ages which confirm the applicability of ANN approaches for accu-
rate prediction in this study (Demirkir et al., 2013). The constructed
models are good fit since coefficient of determination (R2) values of the
models were above 0.8 (Hassan et al., 2020).

The ANN model of compressive and splitting tensile strength at 7 and
28 days simulated the actual results with MSE values of 0.04441,
0.09581, 0.00508 and 0.01783 respectively which implies that residual
errors were not considerable (Table 5). In comparison of predicted results
with actual values, the 7-day compressive strength and splitting tensile
strength values were overpredicted on average values of 0.04477 and
0.01329 respectively, whereas, for 28 days, the simulation was 0.09063
less for compressive strength and 0.02753 less for splitting tensile



Table 2. Concrete mix proportions.

Mix
Number

Water
Cement ratio

Cement (kg/m3) Water (kg/m3) Coarse
Aggregate (kg/m3)

Fine Aggregate Nylon Fiber

River Sand Stone Dust % kg/m3

kg/m3 % kg/m3

M1 0.45 400.00 180.00 1200.00 390.00 35.00 210.00 0.25 6.00

M2 0.45 400.00 180.00 1200.00 480.00 20.00 120.00 0.50 12.00

M3 0.45 400.00 180.00 1200.00 300.00 50.00 300.00 0.50 12.00

M4 0.45 400.00 180.00 1200.00 390.00 35.00 210.00 0.75 18.00

M5 0.50 400.00 200.00 1200.00 480.00 20.00 120.00 0.25 6.00

M6 0.50 400.00 200.00 1200.00 300.00 50.00 300.00 0.25 6.00

M7 0.50 400.00 200.00 1200.00 480.00 20.00 120.00 0.75 18.00

M8 0.50 400.00 200.00 1200.00 300.00 50.00 300.00 0.75 18.00

M9 0.55 400.00 220.00 1200.00 390.00 35.00 210.00 0.25 6.00

M10 0.55 400.00 220.00 1200.00 480.00 20.00 120.00 0.50 12.00

M11 0.55 400.00 220.00 1200.00 300.00 50.00 300.00 0.50 12.00

M12 0.55 400.00 220.00 1200.00 390.00 35.00 210.00 0.75 18.00

M13 0.50 400.00 220.00 1200.00 390.00 35.00 210.00 0.50 12.00

Table 3. Proportions of variables.

Variable Percentages

Low Level Intermediate Level High Level

SD% 20 35 50

NF% 0.25 0.50 0.75

WC 0.45 0.50 0.55

WC ¼ Water cement ratio.

Figure 5. Structure of ANN.

Figure 6. A simple

S. Ray et al. Heliyon 8 (2022) e09129

5

strength. MAE demonstrates that deviation of the predicted values of 7
and 28 days compressive and splitting tensile strength values happened
by 0.12986, 0.20341, 0.05715 and 0.11669 respectively from experi-
mentally determined results. These validate that the models were fit for
precise simulation of the hardened strength of concrete (Getahun et al.,
2018). Measures of coefficient of efficiency (Ef) close to 1 implies good
fitness between actual and predicted data (Grunwald and Frede, 1999).
neuron model.

Figure 7. Correlation coefficient for 7 days compressive strength.



Figure 8. Correlation coefficient for 28 days compressive strength.

Figure 9. Correlation coefficient for 7 days splitting tensile strength.

Figure 10. Correlation coefficient for 28 days splitting tensile strength.

Table 4. Coefficient of Correlation of ANN models.

Test type Training Validation Testing Overall

CS-7 0.99998 0.97828 0.88727 0.95199

CS-28 0.98669 0.92553 0.93670 0.92129

STS-7 0.92099 0.96908 0.87200 0.92308

STS-28 0.96564 0.97468 0.99350 0.92221

Table 5. Parameter of ANN models.

Tool C7 C28 S7 S28

R 0.95199 0.92129 0.92308 0.92221

R2 0.90628 0.84878 0.85207 0.85048

MSE 0.04441 0.09581 0.00508 0.01783

MAE 0.12986 0.20341 0.05715 0.11669

AE 0.04477 -0.09063 0.01329 -0.02753

Ef 0.90234 0.96848 0.83906 0.83036

S. Ray et al. Heliyon 8 (2022) e09129
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3.2. Response surface of ANN models

3.2.1. Compressive strength
To develop the correlations between the responses and the process

parameters, it is necessary to study the influence of each parameter on
the strength. For this, in the present study, 3D response surface plots
(Figures 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22) for the
compressive and splitting tensile strength at 7 and 28 days were devel-
oped using JMP software by providing predicted values with matrices of
the input variables. In Figure 11, compressive strength dropped from
15.2 MPa to 13.28 MPa with the increasing SD up to 35%. One of the
causes for the lowering in compressive strength was the larger surface
area of SD aggregate particles (Joel, 2010; Singh et al., 2016). Further
increase of the dust resulted in rise of the strength. This increase was
attributed by Rao et al. (2012) to rough and irregular granite particles,
high frictional resistance of SD. According to the plot, 20% SD with
0.25–0.75% NF showed higher strength compared with other pro-
portions of SD and NF. Similar tendency can be seen in case of NF where
the maximum result occurred at initial level at 14.6 MPa. The 3D figure
showed that as the NF increases to 0.5%, the compressive strength de-
creases and could be attributed to the contribution of pores from the high
proportion of NF (Abbas et al., 2002; Ismail et al., 2020; Lee et al., 2012).
Figure 11. Response surface of 7 days compressive strength against stone dust
and nylon fiber.

Figure 12. Response surface of 28 days compressive strength against stone dust
and nylon fiber.



Figure 13. Response surface of 7 days compressive strength against stone dust
and water cement ratio.

Figure 14. Response surface of 28 days compressive strength against stone dust
and water cement ratio.

Figure 16. Response surface of 28 days compressive strength against water
cement ratio and nylon fiber.

Figure 17. Response surface of 7 days splitting tensile strength against stone
dust and nylon fiber.
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However, additional increment of NF causes an increment of strength
which is consistent with the study presented by Bheel et al. (2021) and
Munadrah et al. (2021). This augmentation of the strength might be
happened by the NF's controlling of the formation and widening of cracks
(Bheel et al., 2021).

Figure 15, when NF varies from 0.25%-0.50% and WC range from
0.45-0.55 at fixed SD of 35%, indicated that increment of WC within the
specified range caused decrement of compressive strength. This trend is
in line with the result reported by Joshi and Dave (2016), Schulze (1999),
Yaşar et al. (2004). The addition level of 0.75% NF with 0.45 WC
appeared to be the peak strength displayed in the plot. A similar
decreasing pattern of the strength with the rising WC can be seen in
Figure 15. Response surface of 7 days compressive strength against water
cement ratio and nylon fiber.

7

Figure 13. According to the 3D plot, peak strength of 15.56MPa occurred
in the region of 20% SD and 0.45 WC ratio.

Figure 12 represents the 3D surface plot of 28 days compressive
strength as a function of SD and NF, while WC was kept constant at 0.50.
It was seen that the strength rose from 19.87 to 21.2 MPa when the SD
was changed from 20% to 35%. Divakar et al. (2012) and Srivastava et al.
(2014) divulged an identical pattern of outcomes in their research. When
the proportion of SD was higher than 35%, the compressive strength
decreased. This drop of strength could be attributed to supplement SD
after filling voids inside concrete (Verma et al., 2020).

As illustrated in Figure 14, indicated that the influence of WC ratio on
the compressive strength of concrete is most significant when the ratio is
Figure 18. Response surface of 28 days splitting tensile strength against stone
dust and nylon fiber.



Figure 19. Response surface of 7 days splitting tensile strength against stone
dust and water cement ratio.

Figure 20. Response surface of 28 days splitting tensile strength against stone
dust and water cement ratio.

Figure 22. Response surface of 28 days splitting tensile strength against water
cement ratio and nylon fiber.
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at the mid-level (0.50). Ali et al. (2019) stated that the rise in strength
might be due to internal curing and good hydration of cement particles.
However, further increment of WC caused decrement of compressive
strength that is parallel with the findings of Schulze (1999). Meanwhile,
it can be seen from Figure 16 that the strength rises slightly for the
increment of NF from 0.25% to 0.50% but decreases markedly when the
proportion rises continuously beyond the mid-level (0.50%). Abbas et al.
(2002) and Lee et al. (2012) presented similar results in their study. The
lowest point of compressive strength was seen at 0.75% NF with 0.55
WC.
Figure 21. Response surface of 7 days splitting tensile strength against water
cement ratio and nylon fiber.
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3.2.2. Splitting tensile strength
The variations of splitting tensile strength values with SD, NF and WC

are presented as response surface graph as shown in Figures 17, 18, 19,
20, 21, and 22. In Figure 17, the maximum value of the strength recorded
was 2.17 MPa at 20% SD which matches with the results registered by
Joel (2010), Vijayalakshmi et al. (2013). As the content of SD increases,
strength decreases to 1.88 MPa identified as the lowest strength occurred
at the high level of SD.

It is noticed that, from Figure 17, strength rises with the increase of
NF until a certain point (0.50%) and following this percentage strength
decreased rapidly with the increasing NF to 0.75%. The excessive in-
clusion of fiber resulted in porous concrete which reduced the bonding
strength between the concrete particles (Ismail et al., 2020). On the other
hand, it can be stated from Figure 19 that augmentation of the strength
happened from 2.17 MPa at 0.45 WC to 2.22 MPa at 0.50 WC. Peak
strength at early ages occurred at 0.5 WC within the range of 20%–50%.

The effects of three factors on 28 days splitting tensile strength were
depicted by Figures 18, 20 and 22. It is clear that, from Figure 18, with
the gradual rise of SD up to 35% the strength increases which can be
attributed to compact matrix caused by fine particles of SD (Khan et al.,
2018). Whereas, at the mid-level of NF highest strength occurs followed
by an increase of strength from initial level of NF. Lashari et al. (2021)
connected the rise of the strength with increased plasticity that delay the
initiation of cracks. However, gradual rise in both parameters from the
central point caused drop in the strength. For WC, the increment of WC
from 0.45 to 0.55 caused the 28-day compressive strength to drop from
3.09 MPa to 1.95 MPA (Figure 22).

4. Conclusion

In this research, the effect of incorporating SD as fine aggregate
replacement and NF as fiber reinforcement in concrete has been inves-
tigated. Also, the influence of water cement ratio on the properties of
concrete containing SD and NF has been assessed. Artificial neural
network method was employed to develop prediction models for
compressive and splitting tensile strength of concrete. Natural sand
replacement with 20% and 35% SD generates the maximum compressive
strength at 7 and 28 days respectively. Peak compressive strength at early
age has been observed at low levels of both SD and NF, however, in later
age, peak strength has been gained at mid-levels of SD and NF. On the
other hand, splitting tensile strength at early days shows a decline for
increasing SD from 20% to 50%, but strength shows an increasing trend
for increasing NF (0.25%–0.50%) and WC (0.45–0.5). Splitting tensile
strength at 28 days increases with increasing SD and NF up to 35% and
0.5%respectively, whereas decreases for rising WC. All the models
developed by ANN were found significant as the statistical values were
satisfactory. The simulation capacity of the models was satisfactory due
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to the closeness of the predicted results with actual values. However, a
detailed investigation can be conducted in future studies in order to
observe the physical, mechanical and durability properties of concrete
incorporated with stone dust aggregate and nylon fiber.
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