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Peripheral Circadian Oscillators
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Circadian rhythms are ~24-hour cycles of physiology and behavior that are synchronized to environmental 
cycles, such as the light-dark cycle. During the 20th century, most research focused on establishing the 
fundamental properties of circadian rhythms and discovering circadian pacemakers that were believed to 
reside in the nervous system of animals. During this time, studies that suggested the existence of circadian 
oscillators in peripheral organs in mammals were largely dismissed. The discovery of a single-locus 
circadian pacemaker in the nervous system of several animals affirmed the single-oscillator model of 
the circadian system. However, the discovery of the genes that constituted the molecular timekeeping 
system provided the tools for demonstrating the existence of bona fide circadian oscillators in nearly every 
peripheral tissue in animals, including rodents, in the late 1990s and early 2000s. These studies led to our 
current understanding that the circadian system in animals is a hierarchical multi-oscillatory network, 
composed of master pacemaker(s) in the brain and oscillators in peripheral organs. Further studies showed 
that altering the temporal relationship between these oscillators by simulating jet-lag and metabolic 
challenges in rodents caused adverse physiological outcomes. Herein we review the studies that led to our 
current understanding of the function and pathology of the hierarchical multi-oscillator circadian system.
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INTRODUCTION

Circadian rhythms, which are 24-hour cycles of be-
havior and physiology (e.g. sleep/wake and core body 
temperature cycles), are ubiquitous and observed in most 
organisms. Before the 1960s, scientists established the 
three fundamental properties of circadian rhythms. First, 
the circadian rhythm must be self-sustained and free-run 
with a period of ~24 hours (i.e. the 24h rhythm persists 
in constant conditions). Second, the circadian rhythm 

should entrain to (be synchronized by) environmental 
cycles, such as the light-dark cycle. Third, the circadian 
rhythm should maintain a ~24h period across a physio-
logical range of temperatures (i.e. it is temperature-com-
pensated). After these formal properties were established, 
the next goal was to discover the locus of the self-sus-
tained circadian oscillator.

During the 1960s and 1970s, scientists searched for 
the location of the circadian pacemaker in multicellular 
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organisms. At this time, it was believed that a pacemak-
er(s) located in the brain or in a neuroendocrine gland 
drives overt circadian rhythms in behavior and phys-
iology. The approaches used were to lesion, transplant, 
and culture candidate pacemaker tissues. For an organ to 
qualify as the circadian pacemaker, it had to adhere to the 
fundamental circadian properties. Lesioning should abol-
ish the overt circadian rhythms and transplantation of that 
tissue should restore the circadian rhythms. Moreover, 
the tissue must express a circadian rhythm in vitro in con-
stant conditions. Using these methods, the locus of the 
circadian pacemaker was identified in the central nervous 
system of several animals—the optic lobe in cockroaches 
(lesion [1], transplant [2], in vitro [3]), the pineal gland 
in house sparrows (lesion [4], transplant [5,6]) and the 
suprachiasmatic nucleus (SCN†) of the hypothalamus in 
rodents (lesion [7,8], in vivo isolation [9], transplant [10-
13], in vitro [14-16]). It was later shown that the pace-
makers in non-mammalian vertebrate species are distrib-
uted in a circadian axis and include the retina, SCN, and 
pineal gland. The dominant pacemaker in the axis varies 
in each species [17-19].

Although the single-pacemaker model of the circa-
dian system was the prevailing view in the 20th century, 
scientists were also making discoveries suggesting that 
circadian oscillators could be located in peripheral tis-
sues. This hierarchical multi-oscillator view of the circa-
dian system was not widely accepted. More than 40 years 
after the initial discoveries that implicated peripheral tis-
sues as circadian clocks, it is now dogma in the field of 
chronobiology that the circadian system is a hierarchical 
multi-oscillator network of circadian clocks. Herein we 
review the studies that led to our current understanding of 
the hierarchical multi-oscillator circadian system.

EARLIEST STUDIES OF PERIPHERAL 
CIRCADIAN RHYTHMS: FIRST EVIDENCE 
OF MULTI-OSCILLATOR CIRCADIAN 
SYSTEMS

In 1958, Erwin Bünning reported that intestines cul-
tured from golden hamsters expressed ~24h rhythms in 
peristalsis under a range of temperatures (20-39°C) [20]. 
After Bünning’s report, several studies by G. Edgar Folk 
and others in the 1960s and 1970s showed that cultured 
mammalian tissues (adrenal, heart, and liver) exhibited 
circadian rhythms in metabolism, hormonal secretion, 
or enzyme activity [21-29]. These studies were pub-
lished when mammalian circadian biologists were trying 
to identify a solitary circadian pacemaker in the central 
nervous system. Therefore, in the field of mammalian 
circadian rhythms, the existence of circadian oscillators 
in peripheral organs was not widely acknowledged. In 
contrast, chronobiologists studying insects had already 

developed a multi-oscillator model of the insect circadi-
an system after an elegant study by Jaga Giebultowicz 
and her colleagues showed that the isolated testis-seminal 
ducts complex from gypsy moths contained a functional 
self-sustained circadian oscillator that was entrained by 
light [30].

THE MOLECULAR BIOLOGY ERA: 
USING REPORTER TECHNOLOGY TO 
DEMONSTRATE SELF-SUSTAINED 
CIRCADIAN RHYTHMS IN PERIPHERAL 
ORGANS

Successful cloning of circadian genes in Drosophila, 
zebrafish, and mammals in the 1980s and 1990s provided 
the tools to observe molecular rhythms in tissues outside 
of the central nervous system. Giebultowicz and Hege 
observed ~24h cycles of expression of the circadian pro-
teins, PERIOD and TIMELESS, in Malpighian tubules in 
headless Drosophila housed in constant dark or entrained 
to the light-dark cycle [31,32]. Steve Kay and colleagues 
generated transgenic Drosophila in which the promotor 
of the period gene drove firefly luciferase reporter gene 
expression. Using these transgenic flies, they measured 
circadian gene transcription from living flies [33], and 
also measured light emission from cultured tissues [34]. 
Surprisingly, nearly every tissue, including the antenna, 
proboscis, wing, and leg, exhibited self-sustained circa-
dian rhythms that entrained to environmental light-dark 
cycles.

In vertebrates, Tosini and Menaker found that cul-
tured neural retinas from golden hamsters exhibited a 
circadian rhythm of melatonin release that entrained to 
light [35]. One year later, in 1997, two mammalian genes, 
Clock and Period, were cloned by forward and reverse 
genetics, respectively [36-39]. Both Clock and Period 
were expressed in the central nervous system and in many 
other peripheral organs in mice and humans. Schibler and 
colleagues also found that Period2 and other circadian 
genes cycled in an immortalized rat fibroblast cell line 
[40]. At the same time, Sassone-Corsi and colleagues 
discovered that organs cultured from zebrafish showed 
rhythmic expression of circadian genes, and later those 
rhythms were shown to directly entrain to environmental 
light-dark cycles [41,42].

In 2000, our group was the first to demonstrate 
self-sustained circadian gene expression in cultured pe-
ripheral tissues in mammals [43]. We generated a trans-
genic rat which carried the Period1-luciferase transgene, 
in which the Period1 promotor controlled the expression 
of luciferase. Consistent with the original observation 
that Period1 mRNA was expressed in many peripheral 
organs, tail snips submerged in luciferin were biolumi-
nescent. The first tissues we attempted to culture were the 
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SCN and muscle. We found that cultured muscle exhibited 
two cycles of a circadian rhythm of bioluminescence (the 
first Period1-bioluminescence recording from cultured 
muscle is shown in Figure 1B). As expected based on le-
sion and transplant studies, the Period1-bioluminesence 
circadian rhythm was robust in cultured SCN explants 
(Figure 1A). In addition, most tissues we cultured also 
exhibited circadian rhythms. This study transformed our 
understanding of the mammalian circadian system and 
demonstrated that it is composed of multiple circadian 
oscillators, similar to Drosophila and zebrafish. In con-
trast to Drosophila and zebrafish, mammalian peripheral 
oscillators are not light-sensitive and only tissues in the 
eye (e.g. retina, cornea, retinal pigment epithelium-cho-
roid) have been shown to entrain to light-dark cycles in 
vitro [44-48].

To investigate how the hierarchical multi-oscillatory 
mammalian circadian system entrained to the environ-
mental light-dark cycle, we subjected Period1-luciferase 
transgenic rats to a jet-lag protocol (shifting the time of 
lights-on 6h earlier to simulate eastward travel or 6h later 

to simulate westward travel). We found that the SCN cir-
cadian rhythm adapted to the new light-dark cycle quick-
ly, but it took several days for peripheral tissue rhythms 
to entrain to the new light-dark cycle [43]. Importantly, 
the speed of entrainment was different in each peripheral 
organ.

Because food availability is a cyclic environmental 
factor, we next fed Period1-luciferase rats only during 
the daytime. In the presence of the light-dark cycle, rats 
were given access to food for only 4h during the light 
phase. Since rats are nocturnal and normally eat during 
the night, the daytime restricted feeding provided two 
conflicting environmental cues, light and food. We found 
that the SCN rhythm entrained to the light-dark cycle 
(and was unaffected by restricted feeding), while the liver 
rhythm entrained to feeding time [49]. Two other groups 
independently observed the same phenomenon using 
conventional mRNA measurements [50,51].

 
 

Figure 1. First successful recording of a circadian promoter-driven luminescence rhythm in cultured rodent 
peripheral tissue. On May 19, 1999, the SCN and skeletal muscle were explanted from a 15 day-old Period1-lucifer-
ase rat (L1-line) and cultured with 0.1 mM luciferin. This was our second attempt to record the luminescence rhythm.
Bioluminescence was continuously monitored from the SCN (A) and muscle (B) by photo-multiplier tubes (HC135, 
Hamamatsu) maintained in the incubator at 36°C. Photon counts were recorded at 1-min intervals. C: Photo of the 
original set-up for bioluminescence recording. It had only two photo-multiplier tubes that were extended to 8 channels.
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sues. But, somewhat surprisingly, a significant portion 
of genes, including some circadian genes, continued to 
cycle in Bmal1 knockout (or knock down) tissues in vivo, 
because systemic circadian hormonal and physiological 
signals drove rhythmicity in tissues [61]. Regardless, 
most of the studies summarized in Table 1 support the 
hypothesis that circadian oscillators in peripheral tissues 
control local physiology. For instance, the ERG b-wave 
rhythm was lost in retina-specific Bmal1-knockout mice 
[62]. Metabolic defects were found in the mice in which 
Bmal1 was knocked out in tissues related to metabolism 
(liver [63], skeletal muscle [64], pancreas [65,66]). Prob-
ably the most severe phenotype in tissue-specific Bmal1 
knockouts is shortened life span in cardiomyocyte-spe-
cific knockouts [67]. Knocking out Bmal1 in ovarian 
steroidogenic cells or theca cells decreased fertility and 
litter size [68,69]. An interesting finding in tissue-specific 
knockouts is that the effects of disabling the clock in a 
tissue can extend beyond the function of that tissue. Paul 
and colleagues found changes in the total amount of non-
REM sleep in the mouse when Bmal1 was knocked out in 
muscle [70]. This could be due, in part, to the heteroge-
neous functions of BMAL1 both in the output of the cir-
cadian oscillator and the non-circadian roles of BMAL1. 
Bmal1 has a paralog, Bmal2, which is down-regulated 
in Bmal1-knockout tissues [71]. CLOCK/NPAS2 and 
BMAL1/BMAL2 are transcription factors that activate 
thousands of E-box-containing genes. Therefore, knock-
ing out Bmal1 in a tissue not only disables the circadian 
oscillator, but also causes an array of other genes to be 
aberrantly regulated. Therefore, the tissue-specific func-
tions of peripheral clocks must be confirmed by knock-
ing out other circadian genes that are not transcription 
activators (e.g. Period1/2 or Cryptochrome1/2 double 
knockouts).

HIERARCHICAL ORGANIZATION OF THE 
MULTI-OSCILLATOR SYSTEM: CIRCADIAN 
PACEMAKER(S) AT THE TOP OF THE 
HIERARCHY

The central circadian pacemaker, the SCN, is neces-
sary and sufficient for circadian rhythms in behavior and 
physiology. To understand the relationship between the 
SCN and peripheral oscillators, the function of the SCN 
was disabled by either lesion or by Bmal1 knockout in 
the brain (this knockout included, but was not exclusive 
to, the SCN). These studies support the hypothesis that 
the SCN coordinates the phases of peripheral oscillators. 
Peripheral clocks remained rhythmic in both SCN-le-
sioned and brain-Bmal1 knockout mice, but the phase 
relationship between peripheral oscillators was disrupted 
[72-74]. Together, many studies have contributed to the 
metaphor of the mammalian circadian system as a sym-

EMERGENCE OF THE CIRCADIAN 
MISALIGNMENT CONCEPT

The discovery of peripheral circadian oscillators in 
mammals was paradigm-shifting; we came to view the 
mammalian circadian system as a hierarchical multi-os-
cillatory system rather than a system controlled by one 
pacemaker structure in the SCN. This new paradigm af-
forded a series of experiments that measured how devel-
opment, aging, and metabolic challenges (e.g. high-fat 
diet, exercise) altered the rhythms in peripheral tissues 
[52-55]. Numerous studies also described the adverse 
physiological consequences of disruption of the multi-os-
cillator circadian system. A striking consequence of this 
disruption was our study that showed aged mice and rats 
in the jet-lag protocol had increased mortality [56,57]. 
We found that only 47 percent of aged mice survived re-
peated 6-h advances of the light-dark cycle, compared to 
83 percent survival of aged mice in a typical static light-
dark cycle. Circadian misalignment also adversely affects 
physiology in humans. For example, healthy adult sub-
jects who were forced to sleep and eat on a 28-h cycle 
became prediabetic when their circadian rhythms were 
misaligned with the environmental cycle [58].

As the concept of “circadian misalignment” has 
gained momentum, so has the complexity and diversity 
of the definitions and experimental paradigms in investi-
gating this concept. For example, circadian misalignment 
can be internal (e.g. desynchrony among peripheral oscil-
lators or among central and peripheral oscillators) or ex-
ternal (e.g. the light-dark cycle is not aligned with the in-
ternal rhythm), or a combination of these factors (as seen 
during jet-lag). There can even be misalignment within 
a pacemaker structure. For example, groups of cellular 
oscillators within the SCN (e.g. the right and left SCN or 
the ventral and dorsal SCN) can dissociate under certain 
environmental conditions [59,60].

FUNCTIONAL SIGNIFICANCE OF 
PERIPHERAL OSCILLATORS

After the new hierarchical multi-oscillator model of 
the circadian system was established, the next obvious 
question became: what is the role of a peripheral circa-
dian oscillator? In gypsy moths, it was shown that the 
circadian oscillator in the testis-seminal ducts complex 
controlled sperm release [30]. This question was ad-
dressed in mammals by generating tissue/cell type-spe-
cific circadian gene knockout animals. The Period and 
other circadian genes have multiple paralogs and single 
gene knockout does not cause arrhythmicity. Bmal1 is 
the only single-gene knockout that disabled the circadi-
an oscillator. As a result, most studies have used Cre-lox 
technology to knock out Bmal1 and make clock-less tis-
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is the methamphetamine-sensitive circadian oscillator 
(MASCO), whose behavior rhythm (MASCO-driven ac-
tivity rhythm) appears when low-dose methamphetamine 
is chronically administered to rodents. Interestingly, both 
the FEO and MASCO do not depend on canonical cir-
cadian genes to keep time [76,77]. By measuring the 
phases of luminescence rhythms from ex vivo tissues, it 
was shown that both the FEO and MASCO can substitute 

phony, where the SCN is the conductor and the peripheral 
oscillators are the musicians (Figure 2) [75].

The SCN is not the only circadian pacemaker that 
is capable of acting as the conductor of the symphony. 
It is known that at least two SCN-independent circadian 
pacemakers exist in rodents [76,77]. One is the food-en-
trainable oscillator (FEO), which controls food anticipa-
tory activity during time-restricted feeding. The second 

Tissue Bmal1 deleted / Cre Driver Key Results References
Retina / CHX10-Cre ERG b-wave rhythm was lost Storch et al. (2007) [62]
Liver / Albumin-Cre Hypoglycemia during fasting phase Lamia et al. (2008) [63]
Liver / Albumin-Cre Increased expression of lipoprotein lipase 

mRNA
Shimba et al. (2011) [81]

Pancreatic islet / PDX1-Cre Impaired glucose tolerance / hyperglycemia Marcheva et al. (2010) [65]
Pancreatic islet / PDX-CreER* Impaired glucose tolerance / hyperglycemia 

/ hypoinsulinemia 
Perelis et al. (2015) [66]

Adipocyte / adipocyte protein 2-Cre or 
adiponectin-Cre

Obese / reduced amplitude of food intake 
rhythm / reduced energy expenditure 

Paschos et al. (2012) [82]

Skeletal muscle / muscle creatine 
kinase-Cre

No phenotype Shimba et al. (2011) [81]

Skeletal muscle / human skeletal 
actin-MerCreMer*

Disrupted glucose metabolism / hyperglyce-
mia in non-fasting / glucose intolerance / al-
tered body composition / increased amount 
of non-REM sleep 

Hodge et al. (2015) [83]
Harfmann et al. (2016) [64]
Ehlen et al. (2017) [70]

Cardiomyocyte / αMHC-Cre Shortened life span / accelerated age-de-
pendent-dilated cardiomyopathy 

Young et al. (2014) [67]
Ingle et al. (2015) [84]

Smooth muscle / SM22α-Cre Reduced amplitude blood pressure rhythms Xie et al. (2015) [85]
Perivascular adipose tissue (Brown 
adipocyte) / UCP1-Cre

Reduced blood pressure during resting 
phase

Chang et al. (2018) [86]

Adrenal / MC2R# No alteration corticosterone rhythm under 
light-dark cycle, but amplitude of rhythm is 
diminished under constant darkness

Son et al. (2008) [87]

Adrenal / aldosterone synthase-Cre No alteration in corticosterone rhythm under 
regular light-dark cycle (12:12) 

 Engeland et al., (2018) [88]

Renal tubular cell / Pax8-rtTA/LC1φ Small kidney size / increased plasma urea 
level 

Nikolaeva et al. (2016) [89]

Ovarian steroidogenic cell / SF1-Cre Impaired uterine implantation / worsened 
fertility

Liu et al. (2014) [68]

Ovarian theca cell / Cyp17-Cre Abolished daily rhythm of oocyte release in 
response to eLH / small litter size (subfer-
tile)

Mereness et al. (2016) [69]

Ovarian granulosa cell / Cyp19-Cre No abnormality was observed Mereness et al. (2016) [69]
Pituitary gonadotrope cell / GnRHR-in-
ternal ribosome entry site-Cre

Increased estrous cycle length variability / 
no changes in litter size

Chu et al. (2013) [90]

Myeloid / LysM-Cre Increased size of atherosclerotic lesion in 
Apoe-/- background

Huo et al. (2017) [91]

Table 1. Physiological Consequences of Tissue-Specific Bmal1 Deletion.

*tamoxifen inducible; #knockdown by Bmal1 antisense; φdoxycycline inducible
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tor activity, eating, and body temperature, but the specific 
neural and hormonal output/modulatory pathways remain 
to be elucidated [79]. In the reciprocal direction, we have 
shown that the eyes and the SCN are coupled and stabi-
lize the locomotor activity rhythm of the hamster in con-
stant darkness [80]. Understanding the ways that the SCN 
and peripheral oscillators interact will reveal the network 
architecture of the circadian system and further elucidate 
the physiological functions of peripheral oscillators.
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