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Background
According to the latest reports from the World Health 
Organization and international agency for research on cancer, 
lung cancer is the most common malignant tumor in humans, 
with the highest incidence (11.6%) and mortality (18.4%) 
among all cancer types.1 Lung adenocarcinoma (LUAD) 
accounts for a high proportion of lung cancers. Advances in 
genomics have led to the development of targeted molecular 
agents, such as epidermal growth factor receptor tyrosine 
kinase inhibitors (EGFR TKIs) and anaplastic lymphoma 
kinase (ALK) inhibitors,2,3 which play an important role in the 
treatment of lung cancer. Further genomics research is neces-
sary to identify key Hub genes in LUAD, which may help 
develop effective targeted agents.

Weighted gene co-expression network analysis (WGCNA) 
explores the relationship between genes and phenotypes.4 It 
can be used to mine specific cancer-related modules and genes 
associated with specific features by converting gene expression 
data into co-expression modules to analyze signaling net-
works.5 This can identify related genes and predict gene func-
tions by analyzing key genes and identifying potential 
therapeutic targets and predictive biomarkers.6 Wei et al7 used 
WGCNA to identify modules that were highly correlated with 
LUAD. Yi et al8 used WGCNA to identify genes associated 
with the occurrence and prognosis of LUAD. In recent years, 
WGCNA has been used extensively to screen important Hub 
genes from LUAD gene expression data.

In this study, mRNA expression data from LUAD samples 
downloaded from The Cancer Genome Atlas (TCGA) data-
base were used as the experimental group, whereas normal sam-
ples from the Genotype Tissue Expression (GTEx) database 

were used as the normal group. Module-trait relationship cor-
relation analysis in WGCNA was used to mine out modules 
highly correlated with LUAD, and the Hub genes were screened 
in the intersecting genes of DEGs and modules. The competing 
endogenous RNA (ceRNA) model is a novel regulatory mecha-
nism between mRNA, microRNA (miRNA), and long non-
coding RNA (lncRNA).9,10 To understand the regulatory 
relationship of Hub genes of LUAD, online prediction tools 
were used to predict miRNAs and lncRNAs for constructing a 
ceRNA network in LUAD. Experimental design (Figure 1).

Materials and methods
mRNA data collection

LUAD RNA expression data were downloaded from TCGA 
Pan-Cancer (PANCAN) of the UCSC Xena database (https://
xenabrowser.net/datapages/). To increase the sample size of 
normal controls, RNA expression data of normal lung tissues 
were downloaded from GTEx of the UCSC Xena database 
(https://xenabrowser.net/datapages/). R software (version 
4.0.2) was used to read transcripts per million (TPM) values 
for all samples and separate the LUAD mRNA. A total of 515 
LUAD mRNA samples and 347 normal mRNA samples were 
identified. Because data were obtained from public databases, 
ethical approval was not necessary for this study.

DEGs screening

The R package Limma was used to compare the differences 
between the tumor and normal groups. The adjusted P ≤ .0511 
and log fold change (FC) ≥ 2 screening for up-regulated genes. 
The adjusted P ≤ .05 and log FC ≤ −2 screening for down-
regulated genes. Log FC = log (tumor) – log (normal), where 
“tumor” is the mean of a gene expression in the tumor group, 
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and “normal” is the mean of a gene expression in the normal 
group.

WGCNA analysis

The R package WGCNA(https://horvath.genetics.ucla.edu/
html/Co-expressionNetwork/Rpackages/WGCNA/index.
html) was used to analyze genes with TPM ⩾ 1. β values, as 
well as scale free R2, were adjusted as a soft-threshold index to 
construct a scale-free co-expression network. Closely con-
nected genes in the network were clustered together to form a 
module. Modules are clusters of highly interconnected genes. 
In an unsigned co-expression network, modules correspond to 
clusters of genes with high absolute correlations. In a signed 
network, modules correspond to positively correlated genes. 
Average linkage hierarchical clustering with a dynamic cutting 
algorithm was used to generate modules under the conditions 
of a minimum cluster size of 50 and a height of 0.25. Module 
trait relationship correlation analysis was performed, and the 
modules with the highest correlation coefficient (r) with 
LUAD (tumor) were selected.

Functional enrichment analysis

We selected the intersection part of the modules with the high-
est correlation of WGCNA and DEGs, and the R package 
clusterprofiler was used for Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Gene Ontology (GO) analysis on this 
part of the gene set.

Constructing protein-protein interaction (PPI) 
networks

Intersecting genes were selected using the string database 
(https://string-db.org/) to construct the PPI network. The PPI 
pairs with a combined confidence score ⩾ 0.4 were visualized 
in the network. The Hub genes in the PPI network were iden-
tified by cytohubba, a plug-in for the Cytoscape software (ver-
sion 3.7.2), which identified the top 10 Hub genes.

Hub gene survival analysis and construction of a 
ceRNA network

The R package RTCGA.clinical was used to download clinical 
information on LUAD, and the R package survival was used to 
perform survival analysis on Hub genes and to filter out Hub 
genes associated with significant survival differences. The 
Encori online prediction tool was used to predict miRNAs, and 
miRNAs were used to predict lncRNAs (http://starbase.sysu.
edu.cn/index.php). To determine the clinical value of the pre-
dicted miRNAs and lncRNAs, survival analysis of miRNAs 
was performed using the OncomiR online tool, and miRNAs 
with a P-value ⩽.05 in LUAD were selected (http://www.
oncomir.org/). The lncRNA Explorer online tool performed 

Figure 1. Experimental design.
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survival analysis on lncRNAs and selected lncRNAs with a 
P-value ⩽.05 in LUAD (https://lncar.renlab.org/explorer). 
The results were used to construct an mRNA-miRNA-
lncRNA network.

Results
WGCNA results

The R package WGCNA was used to analyze genes (19 405 
genes) with TPM ⩾ 1. The β-value was set at 12 (scale free 
R2 ≥ .90) and adjusted as a soft threshold index to construct a 
scale-free co-expression network according to the analysis 
(Figure 2), and the average linkage hierarchical clustering and 
a dynamic cutting algorithm were used to generate 10 modules. 
Each color represents a module, including MEred, MEblue, 

MEgreen, MEmagenta, MEpink, MEyellow, MEblack, 
MEbrown, MEturquoise, and MEgrey (Figure 3). For each 
module, the gene co-expression was summarized by the 
Eigengene 12 (The module eigengene (ME) is defined as the 
first principal component of a given module. It can be consid-
ered a representative of the gene expression profiles in a mod-
ule). We choose 2 modules with the highest positive correlation 
and negative correlation to study, including MEturquoise 
(r = −0.7, 3449 genes) and MEblue (r = 0.6, 1820 genes).

Intersecting genes of DEGs and WGCNA

DEGs analysis was performed using mRNA data (19 405 
genes), and 822 up-regulated genes and 1696 down-regulated 
genes were screened following the set criteria (adjusted P ≤ .05 

Figure 2. (a) Effects of power values on the scale independence of genes in co-expression modules for LUAD and (b) effects of power values on the 

average connectivity of genes in co-expression modules for LUAD.

Figure 3. The module-trait relationship is the result of the correlation between modules and tumors (LUAD) or normal. The different colors on the left 

represent different modules (MEred, MEblue, MEgreen, MEmagenta, MEpink, MEyellow, MEblack, MEbrown, MEturquoise, and MEgrey). The right side 

represents the scale of the correlation coefficient, r. Each column corresponds to a clinical characteristic (tumor or normal), and each cell contains the 

corresponding correlation. A negative value represents a negative correlation.

https://lncar.renlab.org/explorer


4 Evolutionary Bioinformatics 

and log FC ≥ 2, adjusted P ≤ .05 and log FC ≤ −2). Next, we 
screened 169 up-regulated genes and 519 down-regulated 
genes from the intersection of DEGs and WGCNA with 2 
modules (MEturquoise and MEblue), with 688 genes in total 
(Figure 4).

Enrichment analysis
GO/KEGG analysis was performed for the 688 genes. GO 
analysis showed that biological process (BP) was mainly 
enriched in extracellular matrix organization, structural organi-
zation. Cellular component (CC) was mainly enriched in col-
lagen-containing extracellular matrix, cell-cell junction. 
Molecular function (MF) was mainly enriched in glycosami-
noglycan binding and sulfur compound binding. The KEGG 
analysis showed enrichment in the PI3K/Akt signaling path-
way (Figure 5a–d).

Figure 4. The intersection of the 4 gene clusters. “UP” denotes 

up-regulated genes, and “DOWN” denotes down-regulated genes. 

MEblue and MEturquoise are modules highly related to LUAD. The 

number represents the number of genes.

Figure 5. (a–d) Top 10 GO terms of the genes related to biological process (BP), cellular component (CC), and molecular function (MF), and correlated 

with cellular process, metabolism, signaling pathways, and organismal systems (KEGG).
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PPI network and hub gene survival analysis

The top 10 hub genes (IL6, CDH1, PECAM1, SPP1, THBS1, 
HGF, SNCA, CDH5, CAV1, and DLC1) were selected from 
the above gene clusters (688 genes) (Figure 6). To determine 
which Hub genes had an impact on LUAD survival, survival 
analysis was performed for each Hub gene. Survival analysis for 
each Hub gene showed that only SPP1 had an impact on 
LUAD survival (P = .029) (Figure 7). P-values were calculated 
using the two-sided log-rank test.

ceRNA network construction

Online prediction tools showed that SPP1 is regulated by 66 
miRNAs, of which 4 were associated with LUAD survival 
(hsa-mir-125a-5p, hsa-mir-142-5p, hsa-mir-181c-5p, and 
hsa-mir-582-5p). We predicted 540 lncRNAs for the 4 miR-
NAs, among which 49 were associated with LUAD survival. A 
regulatory network consisting of 4 miRNAs and 49 lncRNAs 
was constructed (Figure 8).

Discussion
In this study, intersectional genes of DEGs and WGCNA 
were used for GO/KEGG analysis, screening Hub genes, 
identifying Hub genes for survival analysis, and only SPP1 
among the 10 hub genes had an impact on LUAD survival, 
and we analyzed SPP1, and predicted miRNAs and lncR-
NAs, which were used for survival analysis. The cDNA 
sequence of the SPP1 gene contains a 67 BP 5′-UTR, a 415 
BP 3′-UTR, and a 942 BP coding region encoding a 314 
amino acid protein.13 KEGG analysis showed that SPP1 is 
involved in the PI3K/Akt signaling pathway, and GO analy-
sis showed that it is involved in extracellular matrix binding, 
structural organization, and integrin binding. SPP1 is also 

involved in promoting lung cancer cell proliferation14 and 
inhibiting T cell activation, as well as mediating macrophage 
polarization associated with lung cancer cell immune escape.15 
It has been suggested that SPP1 is not associated with tumor 
progression16; however, high expression of SPP1 is involved 
in the early development and prognosis of LUAD. Giopanou 
et  al17 generated a mouse model and concluded that SPP1 
promotes early tumorigenesis by increasing the survival of 
KRAS mutant cells. Li et  al18 evaluated the association 
between SPP1 and its prognostic value, and the results 
showed that high SPP1 levels predicted poor LUAD survival 
by univariate Cox analysis (P = .017). Chiou et al19 proposed 
that the combination of low expression of FSTL1 and high 
expression of SPP1 predicted a poor prognosis of lung cancer 
patients. SPP1 was suggested to serve as a biological 
marker20-23 and risk factor24 for LUAD prognosis. High 
expression of SPP1 affects the response to treatment in lung 
cancer. SPP1 increases the resistance to second-generation 
EGFR TKIs in lung cancer, and inhibition of SPP1 may be a 
therapeutic target to overcome afatinib resistance.25 These 
findings together with the results of the present study suggest 
that SPP1 may be a key Hub gene for LUAD. SPP1 is also 
involved in the development of lung fibrosis, as well as in the 
metastatic invasion of osteosarcoma by affecting macrophage 
secretion26 via upregulated expression.27

To examine the regulatory relationship of SPP1 in ceRNAs, 
we constructed a ceRNA regulatory network for SPP1. Because 
the expression data of miRNAs and lncRNAs were insuffi-
cient, we chose miRNAs and lncRNAs in the form of online 
prediction and performed miRNA and lncRNA survival 

Figure 6. A total of 169 up-regulated genes and 519 down-regulated 

genes from the intersection of DEGs and WGCNA with 2 modules 

(MEturquoise and MEblue). The top 10 hub genes were selected from the 

above gene clusters (688 genes) and were displayed.
Figure 7. Survival analysis for each hub gene showed that only SPP1 

had an impact on LUAD survival (P = .029). The expression level of SPP1 

was divided into high expression and low expression according to the 

median. The different colored lines in the figure represent the overall 

survival outcome of different expression levels.
P-values were calculated using the two-sided log-rank test.
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analysis. A large amount of data indicates that SPP1 may be a 
key central gene in LUAD, and SPP1 may be directly regulated 
by 4 miRNAs and indirectly regulated by 49 lncRNAs. 
However, the relationship between miRNA and lncRNA 
expression in LUAD and their roles was not determined in this 
study. Additional studies are necessary to clarify this issue.

Conclusions
Analysis of a large amount of data indicates that SPP1 may be 
a key central gene in LUAD, and SPP1 may be directly regu-
lated by 4 miRNAs and indirectly regulated by 49 lncRNAs.

Author Contribution
Xuan Luo and Lei Feng designed the research study; WenBo 
Xu analyzed the data; XuJing Bai and MengNa Wu wrote the 
paper.

Ethical Approval
Because data were obtained from public databases, ethical 
approval was not necessary for this study.

ORCID iD 
Xuan Luo  https://orcid.org/0000-0002-7838-2489

REfEREnCEs
 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer 

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide 
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.

 2. Wu TH, Han-Chung Hsiue E, Lee JH, et al. Best response according to 
RECIST during first-line EGFR-TKI treatment predicts survival in EGFR 
mutation-positive non-small-cell lung cancer patients. Clin Lung Cancer. 
2018;19:e361-e372.

 3. Zhang M, Wang Q , Ding Y, et al. CUX1-ALK, a novel ALK rearrangement 
that responds to crizotinib in non-small cell lung cancer. J Thorac Oncol. 
2018;13:1792-1797.

 4. Meng Z, Xiaojun W, Hongbo S, et al. Characterization of long non-coding 
RNA-associated ceRNA network to reveal potential prognostic lncRNA bio-
markers in human ovarian cancer. Oncotarget. 2016;7:12598-12611.

 5. Udyavar AR, Hoeksema MD, Clark JE, et al. Co-expression network analysis 
identifies spleen tyrosine kinase (SYK) as a candidate oncogenic driver in a sub-
set of small-cell lung cancer. BMC Syst Biol. 2013;7:S1.

 6. Tang J, Kong D, Cui Q , et al. Prognostic genes of breast cancer identified by 
gene co-expression network analysis. Front Oncol. 2018;8:368-374.

 7. Wei Z, Zhongqiu T, Lu S, Zhang F, Xie W, Wang Y. Gene coexpression analysis 
offers important modules and pathway of human lung adenocarcinomas. J Cell 
Physiol. 2020;235:454-464.

 8. Yi M, Li T, Qin S, et al. Identifying tumourigenesis and prognosis-related genes 
of lung adenocarcinoma: based on weighted gene coexpression network analysis. 
Biomed Res Int. 2020;2020:4169691.

 9. Wang P, Zhi H, Zhang Y, et al. miRSponge: a manually curated database for experi-
mentally supported miRNA sponges and ceRNAs. Database. 2015:30:bav098.

 10. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the 
Rosetta Stone of a hidden RNA language? Cell. 2011;146:353-358.

 11. Wright S. Adjusted p-values for simultaneous inference. Biometrics. 1992;48: 
1005-1013.

 12. Langfelder P, Horvath S. Eigengene networks for studying the relationships 
between co-expression modules. BMC Syst Biol. 2007;1:54.

 13. Kiefer MC, Bauer DM, Barr PJ. The cDNA and derived amino acid sequence for 
human osteopontin. Nucleic Acids Res. 1989;17:3306.

 14. Liu H, Wei S, Zhang L, Yuan C, Duan Y, Wang Q. Secreted phosphoprotein 1 
promotes the development of small cell lung cancer cells by inhibiting autophagy 
and apoptosis. Pathol Oncol Res. 2019;25:1487-1495.

 15. Zhang Y, Du W, Chen Z, Xiang C. Upregulation of PD-L1 by SPP1 mediates 
macrophage polarization and facilitates immune escape in lung adenocarcinoma. 
Exp Cell Res. 2017;359:449-457.

 16. Souza Viana L, José Affonso R Jr, Silva SRM, et al. Relationship between the 
expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and 

Figure 8. The central oval represents SPP1, the V-shaped represents miRNA, and the rhomboid represents lncRNA.

https://orcid.org/0000-0002-7838-2489


Luo et al 7

ITGAV and clinicopathological parameters of tumour progression and colorec-
tal cancer dissemination. Oncology. 2013;84:81-91.

 17. Giopanou I, Kanellakis NI, Giannou AD, et al. Osteopontin drives KRAS-
mutant lung adenocarcinoma. Carcinogenesis. 2019;41:1134-1144.

 18. Li S, Yang R, Sun X, et al. Identification of SPP1 as a promising biomarker to 
predict clinical outcome of lung adenocarcinoma individuals. Gene. 2018;679: 
398-404.

 19. Chiou J, Chang Y-C, Tsai H-F, et al. Follistatin-like protein 1 inhibits lung can-
cer metastasis by preventing proteolytic activation of osteopontin. Cancer Res. 
2019;79:6113-6125.

 20. Guo Z, Huang J, Wang Y, et al. Analysis of expression and its clinical signifi-
cance of the secreted phosphoprotein 1 in lung adenocarcinoma. Front Genet. 
2020;11:547.

 21. Shen X-Y, Liu X-P, Song C-K, Wang Y-J, Li S, Hu W-D. Genome-wide analysis 
reveals alcohol dehydrogenase 1C and secreted phosphoprotein 1 for prognostic 
biomarkers in lung adenocarcinoma. J Cell Physiol. 2019;234:22311-22320.

 22. Tu Y, Chen C, Fan G. Association between the expression of secreted phospho-
protein-related genes and prognosis of human cancer. BMC Cancer. 2019;19:1230.

 23. Su C, Liu W-X, Wu L-S, Dong T-J, Liu J-F. Screening of hub gene targets for 
lung cancer via microarray data. Comb Chem High Throughput Screen. 2021; 
24:269-285.

 24. Zhang W, Fan J, Chen Q , Lei C, Qiao B, Liu Q. SPP1 and AGER as potential 
prognostic biomarkers for lung adenocarcinoma. Oncol Lett. 2018;15: 
7028-7036.

 25. Wang X, Zhang F, Yang X, et al. Secreted phosphoprotein-1(SPP1) contributes 
to second generation EGFR tyrosine kinase inhibitor resistance in non-small cell 
lung cancer. Oncol Res. 2019;27:871-877.

 26. Wang H, Wang M, Xiao K, et al. Bioinformatics analysis on differentially 
expressed genes of alveolar macrophage in IPF. Exp Lung Res. 2019;45: 
288-296.

 27. Li Y, Du W, Han J, Ge J. LAMP3 promotes the invasion of osteosarcoma cells 
via SPP1 signaling. Mol Med Rep. 2017;16:5947-5953.




