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Chronic pain is one of the most debilitating human diseases and represents a social

and economic burden for our society. Great efforts are being made to understand the

molecular and cellular mechanisms underlying the pathophysiology of pain transduction.

It is particularly noteworthy that some types of chronic pain, such as migraine, display a

remarkable sex dimorphism, being up to three times more prevalent in women than in

men. This gender prevalence in migraine appears to be related to sex differences arising

from both gonadal and genetic factors. Indeed, the functionality of the somatosensory,

immune, and endothelial systems seems modulated by sex hormones, as well as

by X-linked genes differentially expressed during development. Here, we review the

current data on the modulation of the somatosensory system functionality by gonadal

hormones. Although this is still an area that requires intense investigation, there is

evidence suggesting a direct regulation of nociceptor activity by sex hormones at the

transcriptional, translational, and functional levels. Data are being accumulated on the

effect of sex hormones on TRP channels such as TRPV1 that make pivotal contributions

to nociceptor excitability and sensitization in migraine and other chronic pain syndromes.

These data suggest that modulation of TRP channels’ expression and/or activity by

gonadal hormones provide novel pathways for drug intervention that may be useful for

targeting the sex dimorphism observed in migraine.
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INTRODUCTION

Chronic pain is a disease that affects more than 20% of the world’s population (Breivik et al.,
2006; Nahin, 2015), and is considered a social, medical, and economic burden (Patapoutian
et al., 2009). Chronic pain results from complex processing of molecular and cellular signals at
different levels of the peripheral (PNS) and central nervous systems (CNS), and also involves the
immune system. A plethora of molecules and signaling pathways are involved in the detection,
transduction, and propagation of environmental noxious stimuli by nociceptors, a specialized class
of sensory neurons. These include members of the superfamily of Transient Receptor Potential
(TRP) channels, which act as molecular sensors of harmful chemical and physical stimuli.

The TRP channels are non-selective cation channels expressed mainly in the plasma membrane
of different cell types, as well as in the membrane of some intracellular organelles (Venkatachalam
and Montell, 2007). They are implicated in a variety of sensorial functions, expanding from vision
and taste to nociception (Clapham, 2003; Venkatachalam and Montell, 2007; Julius, 2013; Jardin
et al., 2017). Structurally, the TRP channels are tetrameric integral membrane proteins whose
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monomeric subunits display a domain structure characterized
by six transmembrane segments (S1-S6), C- and N-cytosolic
domains, and an aqueous pore region structured by S5 and
S6 segments and their connecting loop. Both C- and N-
termini exhibit particular functional domains depending on the
subfamily (Ferrer-Montiel et al., 2004; Latorre et al., 2009; Cao
et al., 2013; Liao et al., 2013). Currently, the TRP family is
divided into six subfamilies according to sequence homology,
namely canonical (TRPC), vanilloid (TRPV), ankyrin (TRPA),
melastatin (TRPM), polycystic (TRPP), and mucolipin (TRPML)
(Venkatachalam and Montell, 2007; Flockerzi and Nilius, 2014).
In mammals, a total of 28 members have been identified, of
which 4 members of TRPV (TRPV1-4), 2 members of TRPM
(TRPM8 and TRPM3), and the only member of the TRPA
subfamily (TRPA1) are known as thermoTRP channels, as they
are environmental temperature sensors. Notably, thermoTRPs
have been related to the pathophysiology of pain (Mickle et al.,
2015, 2016).

Activation of thermoTRP channels in nociceptors provokes
a Na+ and Ca2+ influx resulting in membrane depolarization,
neuronal exocytosis, and action potential firing, as well as
activation of intracellular second messenger cascades that
may lead to neuronal adaptation, i.e., desensitization and/or
potentiation (Ramsey et al., 2006; Ciardo and Ferrer-Montiel,
2017). All thermoTRPs are polymodal channels, being gated by a
variety of chemical and physical stimuli, such as temperature, pH,
osmolarity, endogenous compounds, inflammatory molecules,
and natural products (Nilius and Szallasi, 2014; Dai, 2016;
Moran and Szallasi, 2017). Natural compounds, such as capsaicin,
menthol, and cinnamaldehyde, have been widely used to explore
and understand the role of these channels in nociception and pain
(Julius and Basbaum, 2001; Julius, 2013).

The ThermoTRP channels are functionally modulated by
lipids (Ciardo and Ferrer-Montiel, 2017). Cholesterol has been
described to be a modulator of TRPV and TRPM channels,
involved in potentiating or reducing their activity (Taberner
et al., 2015; Morales-Lazaro and Rosenbaum, 2017). One
family of molecules derived from cholesterol metabolism is
steroid hormones (Hu et al., 2010). Progestogens, estrogens,
and androgens are powerful molecules that regulate a wide
variety of cellular functions, and the link between them and
pain vulnerability continues to grow. Several reports point to
a transcriptional regulation of thermoTRPs expression by sex
hormones (Jung et al., 2009; Kumar and Singru, 2017). Notably,
recent studies in mice suggested a direct activation and/or
modulation of thermoTRP channels by steroids (Asuthkar et al.,
2015a,b; Ortiz-Renteria et al., 2018). Thus far, the link between
sex hormones and pain has been mainly centered around how
these hormones affect the structures in the CNS related to
stress, anxiety, and pain (Aloisi and Bonifazi, 2006). It is well-
established that estrogens regulate and modulate the opioid
system contributing to analgesia differences in males and females
at both experimental and clinical levels (Craft, 2003; Fillingim
and Gear, 2004; Loyd and Murphy, 2014). Furthermore, the
sex hormones appear to disturb the interrelation between the
immune system and opioid receptors (Doyle andMurphy, 2017).
Cumulative evidence implies a modulation of the somatosensory

system function by sex hormones that may underlie the human
gender prevalence in some types of chronic pain (Mapplebeck
et al., 2017; Sorge and Totsch, 2017).

As suggested by Kumar et al. (2015), the cross-talk between
steroid hormones and thermoTRPs may have important
implications for clinical context of human diseases. A relevant
case in point is migraine, which is the seventh most prevalent
medical disease and the second most disabling neurological
condition in the world (GBD 2015 Disease Injury Incidence
Prevalence Collaborators, 2016; GBD 2015 Neurological
Disorders Collaborator Group, 2017). This episodic primary
headache is often characterized by intense, unilateral, throbbing,
and pulsatile headache attacks, lasting for 4–72 h, and is
frequently accompanied by nausea, vomiting, photophobia,
and/or phonophobia. It is commonly divided into two main
groups—with and without aura, that correspond to transient
focal neurological symptoms that usually precede or sometimes
accompany a headache (Headache Classification Committee of
the International Headache Society, 2013). Migraine exhibits a
clear sex difference in prevalence, indicating a predominant role
of sex hormones as triggers per se or modulators of headache
attacks through regulation of thermoTRP channels. Although
both have separately been proposed as therapeutic targets for
migraine intervention, the interrelation of sex hormones and
thermoTRPs in the etiology of the disease has not been addressed
in depth.

Here, we review the role of sex hormones in the activation,
modulation, and regulation of the main thermoTRP channels
involved in the pathophysiology of migraine. Nonetheless, we
should mention that sex differences in migraine, and other
chronic pain syndromes, will also be influenced by gonadal-
independent X-linked gene expression that contributes to
inborn sex differences in organs, tissues, and cells (immune,
endothelial, and neurons), as well as by other factors (i.e.,
psychological and social) (review in Mogil, 2012; Bartley and
Fillingim, 2013). The available information on the influence
of these gonadal-independent factors on the pathophysiology
of migraine, especially on the expression and activity of TRP
channels, is very scarce, thus preventing us from properly
addressing it in this review. Accordingly, we focus on the
information regarding the direct interaction and modulation of
thermoTRP channels by sex hormones, which may, at least in
part, underlie the greater prevalence of the disease in women.
We suggest that thermoTRPsmay represent potential therapeutic
targets for migraine intervention and other pain syndromes that
exhibit sex dimorphism.

INFLUENCE OF SEX HORMONES IN
MIGRAINE

Cumulative evidence indicates that migraine is a chronic pain
disease linked to sex hormones. Firstly, ∼15% of the population
suffer from this, including children; however, the prevalence in
women is up to three times higher than in men. Although a
peak of incidence appears in individuals in the age range of
25–55 years in both genders, this remains higher in women

Frontiers in Molecular Biosciences | www.frontiersin.org 2 August 2018 | Volume 5 | Article 73

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Artero-Morales et al. TRP Channels in Pain

(Stewart et al., 1992; Lipton et al., 2001, 2007; Mathers et al.,
2008; Vetvik and MacGregor, 2017). Secondly, the migraine
prevalence changes across the age range. In 2003, a National
Health Interview Survey, in which more than 40,000 US-citizens
(70% adults and 30% children) were interviewed, showed that
boys and girls shared a similar 1-year prevalence until puberty,
thereafter it increased in both genders, being two or three times
greater in women (Victor et al., 2010). This study also found
that the largest difference in migraine prevalence occurred at
the age of 30.2 years, declining from the age of 42 years (Victor
et al., 2010). In women, the prevalence sharply decreased at
menopause (Vetvik and MacGregor, 2017). The sex difference
in the disease incidence between 15 and 50 years is probably
related to the higher level of sex hormones during this age
range. Most studies showed a protective role of testosterone
and progesterone against migraine crisis, while the data for
estrogens were more controversial. There are studies reporting
that low levels of estrogens may be related to an increase
in the number of migraine attacks, whereas others suggest
that the application of estrogens promotes migraine episodes
(see below).

In addition to the higher prevalence of migraine in females,
it has also been reported that women experience more frequent,
longer-lasting, and more intense attacks than men (Celentano
et al., 1990; Boardman et al., 2003). The constant finding
was that women, in comparison to men, have longer-lasting
migraine attacks (Kallela et al., 1999; Steiner et al., 2003;
Wober-Bingol et al., 2004; Kelman, 2006; Murtaza et al., 2009;
Franconi et al., 2014; Bolay et al., 2015), as well as longer
photophobia, phonophobia, nausea, vomiting, and cutaneous
allodynia (Steiner et al., 2003; Murtaza et al., 2009; Bolay
et al., 2015). One study, which analyzed 2,082 migraine adult
patients (1,804 women and 278 men), reported that the headache
intensity in women changed in an age-dependent manner and
the duration and intensity of each attack achieved a peak above
the age of 30 years. None of these variations were detected
in men (Bolay et al., 2015). Therefore, these changes in the
frequency and/or intensity seemed related to changes in women’s
reproductive status (puberty, pregnancy, or menopause) (Gupta
et al., 2007), which were associated with fluctuating levels of
estrogen and progesterone in the menstrual cycle. In support
of this tenet, it has been shown that there is a significantly
increased risk in women to suffer a migraine episode between
2 days before and 3 days after menstruation, which could be
related to the lowest concentration of estrogen and progesterone
(reviewed in Gupta et al., 2007; Macgregor, 2014; Vetvik and
MacGregor, 2017). Furthermore, the headache classification set
out by the Committee of the International Headache Society
(2013) indicated that migraine without aura was often related
to the menstrual cycle, thus categorizing it as pure menstrual
migraine if the attack occurred only during the cycle, and
menstrual-relatedmigraine if there were additional episodes with
or without aura during the menstrual cycle. Although the first
phenomenon is not common (Gupta et al., 2007), menstrual-
related migraine has been reported in more than 50% of women
with migraine (Martin, 2004). Akin to menstruation, treatments
involving the intake of hormonal contraceptives have been

related to a higher frequency of migraine episodes (MacGregor,
2013).

Perimenstrual estrogen withdrawal seems to be a trigger for
migraine without aura. Based on this finding, perimenstrual
estrogen supplements (estradiol patches) to 22 migraineur
women significantly reduced the number of menstrual-related
migraine attacks and also the intensity of the attacks during the
months of treatment, as compared with placebo (Dennerstein
et al., 1988). Similarly, in another pilot clinical trial with
20 migraineur women, estradiol gel reduced the duration
and intensity of the migraine attacks when compared to a
placebo gel (de Lignieres et al., 1986). Interestingly, an inverse
association between migraine and estrogen levels in urine was
found (MacGregor et al., 2006a). However, this study did
not establish a threshold for estrogen withdrawal to trigger
a migraine attack. Another study with 21 migraineur women
reported that transdermal estradiol patches induced a slightly
preventive effect for migraine crisis in women with induced
menopause, thereby concluding that a low amount of estradiol
in serum is sufficient to evoke migraine (Martin et al., 2003).
During pregnancy, when estrogen and progesterone are 10
times higher than in non-pregnant states, an improvement in
the disease was reported, especially in women suffering from
menstrual-related migraine, although in some cases migraine
with aura worsened in the first month of pregnancy (Macgregor,
2014).

The prevalence of migraine during perimenopause (period of
2–8 years prior to menopause and 1 year after the end of menses)
appears to be higher among women who had suffered from
menstrual-related migraine (Mattsson, 2003; Wang et al., 2003).
In a clinic-epidemiologic report, which analyzed 556 migraineur
women, two-thirds of women suffering from migraine reported
an improvement in the disease after spontaneous menopause.
However, it worsened in women after surgical menopause (Neri
et al., 1993). During this period, the treatment of choice for
migraine was transdermal estrogen patches or an estrogen gel,
since there was evidence that oral pharmacological treatment
could worsen migraine because of a greater systemic hormonal
fluctuation (MacGregor et al., 2006b). Overall, there is an
increased risk of migraine during the reproductive years, which
decreases in the post-menopause phase (Ripa et al., 2015).
Nonetheless, to confirm the effect of menstrual hormones on
migraine, longitudinal studies are required.

A study by Li et al. (2018) analyzing 119 migraineurs,
42 patients with tension-type headache, and 30 healthy
controls tried to relate sex hormones with migraine clinical
outcomes in men and menopausal, perimenopausal, and
reproductive-aged women. In this study, testosterone appeared
to be lower in all migraineur women categories when
compared to healthy controls, while progesterone appeared
to be lower in both men and postmenopausal women. High
estrogen levels in men and reproductive women appear
to correlate with the least incapacitating migraine attacks.
However, high estrogen levels were positively related to
the duration of the migraine episode in post-reproductive
women during the luteal phase (Li et al., 2018). With several
limitations, similar to previous prospective studies, this study
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suggested a complex role of sex hormones in the etiology of
migraine.

PATHOPHYSIOLOGY OF MIGRAINE

Several events that occur in the CNS and PNS during a migraine
attack, particularly in the trigeminal ganglia (TG), have been
described. To mention a few: (i) a neuronal hyperexcitability
in cortical regions (Welch, 2005; Aurora and Wilkinson, 2016);
(ii) a cortical spreading depression (CSD) likely connected with
the aura phase (Iadecola, 2002; Eikermann-Haerter et al., 2009,
2011; Zhang et al., 2010); (iii) the activation and sensitization of
trigeminal nociceptors at the peripheral and central levels (Buzzi
and Moskowitz, 1992; Goadsby and Edvinsson, 1993; Bolay et al.,
2002); (iv) a cranial vasodilatation and meningeal inflammation
(Moskowitz and Macfarlane, 1993; Williamson and Hargreaves,
2001; Levy, 2009).

Some of these events have been reported as a consequence
of others, without clarifying which is the main cause or the
trigger of a migraine episode. Meningeal blood vessels are
located in the dura mater of the meninges in the CNS. The
role of these vessels and their vasodilation in migraine has
been widely studied (Humphrey and Goadsby, 1994; Goadsby
et al., 2002; Parsons and Strijbos, 2003). Various studies in
animals indicate that meningeal inflammation is the driving
event of nociceptor sensitization (Williamson and Hargreaves,
2001; Levy, 2009, 2012). Accordingly, it was thought that
vasodilation of these meningeal blood vessels was responsible
for migraine triggers and therefore, some vasoconstrictors were
developed to treat acute migraine (Villalon et al., 2003). However,
other researches suggested that vasodilation of meningeal blood
vessels was the consequence of trigeminal system activation
rather than the major trigger. Thus, it was reported that the
trigeminal sensitization caused cranial vasodilation in both
humans and cats as a result of the production of nitric oxide
(NO) that promoted the release of neuropeptides, such as
substance P (SP) and α-calcitonin gene-related peptide (α-
CGRP) (Goadsby and Edvinsson, 1993; Goadsby et al., 2009).
The secretion of these vasoactive neuropeptides underlies the
vasodilation characteristic of a migraine attack (Waeber and
Moskowitz, 2005). In 2008, Schoonman and colleagues published
a paper in which they induced migraine in migraineurs and
healthy individuals by injecting the vasodilator nitroglycerin, a
NO donor. Contrary to the widespread belief, they observed
that only the control subjects experienced vasodilation of
the meningeal vessels (Schoonman et al., 2008). Thus, the
vasodilation ofmeningeal vessels seemed not to be themain cause
of migraine pathophysiology, although it pivotally contributes to
the symptomatology of the disorder. On the other hand, many
studies have shown that CSD promotes trigeminal sensitization
(Bolay et al., 2002; Zhang et al., 2010). Hence, the precise
molecular and cellular mechanisms underlying migraine attacks
remain largely elusive (Goadsby et al., 2009).

The triggering event in migraine is still under intense debate
(Burstein and Jakubowski, 2005; Levy et al., 2009; Messlinger,
2009; Olesen et al., 2009; Charles, 2010; Levy, 2010, 2012; Bolay,

2012). Several groups postulated that the CNS is the starting point
of the migraine attack, but other groups suggested that migraine
is initiated by the activation of the trigeminal system. One data
point that supports a peripheral triggering event is that during
a migraine attack, elevated levels of inflammatory mediators,
such as nerve growth factor (NGF), bradykinin, prostaglandins,
and eicosanoids, are observed (Goadsby and Edvinsson, 1993;
Sarchielli et al., 2006). This “inflammatory soup” has been largely
postulated to be a key factor that sensitizes the TRPV1 and
TRPA1 channels. Sensitization of these thermoTRP channels
promotes the release of αCGRP in trigeminal terminals that in
turn induces cranial vasodilatation (Meents et al., 2010; Benemei
et al., 2013, 2014). Similarly, the application of capsaicin in
the trigeminal system has been used as an experimental model
of migraine (Gazerani et al., 2005). However, in a different
study, capsaicin was shown as a relief for migraine attacks
by depleting vasoactive neuropeptides (Benemei and Geppetti,
2013). Besides capsaicin, other TRP channel agonists have been
described as migraine triggers (Kunkler et al., 2011), thereby
placing TRPV1, TRPA1, and TRPM8 in the therapeutic spotlight
for the development of migraine treatments (Nassini et al., 2010;
Oxford and Hurley, 2013; Dussor et al., 2014). Interestingly,
some chemical agents such as cigarette smoke, ammonia,
formaldehyde, and chlorine can induce migraine attacks—all
these compounds are TRPA1 agonists (Benemei et al., 2012).
The headache produced by these environmental agents has been
shown to be mediated by the secretion of αCGRP that increases
cerebral blood flow (Kunkler et al., 2011). Additionally, low levels
of magnesium in early embryonic development, which is able to
permeate TRPM6 and TRPM7 channels, have also been reported
as triggering migraine episodes (Komiya and Runnels, 2015).

In several meta-analysis and genome-wide association studies
(GWAS) the TRPM8 locus has been related to susceptibility to
migraine (Chasman et al., 2011; Esserlind et al., 2016; Gormley
et al., 2016; Key et al., 2018). Also, genetic variations in single
nucleotide polymorphisms (SNPs) in TRPV1 and TRPV3 loci
in a Spanish cohort were linked to a genetic predisposition to
migraine (Carreño et al., 2012) (review in Zorina-Lichtenwalter
et al., 2016). Thus, these studies implicate thermoTRPs as pivotal
contributors tomigraine, and suggest that theymay be interesting
targets for the treatment of migraine (Dussor et al., 2014; Tso and
Goadsby, 2014).

TRPV1 AND ESTROGENS

TRPV1 channels, along with other thermoTRPs, are localized
predominatly in peripheral and central nerve terminals of dorsal
root ganglia (DRGs) and TGs (Caterina et al., 1997; Ichikawa
and Sugimoto, 2001; Peier et al., 2002; Story et al., 2003; Bae
et al., 2004; Okazawa et al., 2004; Roberts et al., 2004; Bautista
et al., 2005; Kobayashi et al., 2005; Shimizu et al., 2007; Huang
et al., 2012). Notably, TRPV1 is highly co-expressed with αCGRP
(Ichikawa and Sugimoto, 2001; Bae et al., 2004), as well as
with Substance P (SP) and P2X3 purinergic receptors. TRPV1
colocalizes with TRPA1 as well (Story et al., 2003; Bautista et al.,
2005), whereas TRPM8 is expressed in a different subpopulation
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of nociceptors (Peier et al., 2002; Story et al., 2003; Okazawa et al.,
2004; Ren et al., 2018).

TRPV1 is also present in the brain, particularly in the
hypothalamus, thalamus, amygdala, periaqueductal gray, insula,
and a number of other regions in the brain of humans and
rodents (Mezey et al., 2000; Roberts et al., 2004; Steenland
et al., 2006; Cavanaugh et al., 2011). Interestingly, brain regions
expressing TRPV1 are targets of sex hormones. Imaging studies
in 44 adult migraineurs (22 women and 22 men) showed
that migraineur women exhibited a thicker posterior insula
and precuneus cortices compared to male migraineurs and the
healthy controls of both sexes (Maleki et al., 2012). The authors
suggested that thesemorphological alterationsmight underlie the
different responses of both genders to migraine attacks, as well
as the effect of sexual hormones and the differential impact of
anti-migraine drugs such as triptans (Maleki et al., 2012).

In addition to the presence of TRPV1 channels in the brain
regions that are influenced by sex hormones, some studies have
demonstrated the expression of estrogen receptors (ERα, ERβ y
GPR30) in sensory neurons (Papka et al., 1997; Papka and Storey-
Workley, 2002; Takanami et al., 2010) where they colocalize with
TRPV1 channels (Bennett et al., 2003). This co-expression in
nociceptors has led to the hypothesis of a modulation of pain
transduction by sexual hormones (Bennett et al., 2003; Chaban,
2013). In support of this hypothesis, there is experimental and
clinical evidence relating the function of estrogens with TRPV1
activity. For instance, it has been reported that women experience
more pain-related sensations on exposure to TRPV1 agonists
than men (Jensen and Petersen, 2006; Gazerani et al., 2007).

Some studies analyzed the effects of steroid hormones on
capsaicin-evoked currents in rodent nociceptors. Although a
differentiation between sexes was not established, these studies
detected that 17β-estradiol, the dominant estrogen during a
woman’s reproductive phase, is an important enhancer of
capsaicin responses evoked in vitro in primary cultures of
rodent nociceptors (Chen et al., 2004). This observation was
also seen in vivo, where the threshold of the nociceptive
responses to capsaicin injection was significantly reduced in
rodent females (Lu et al., 2009). Although both sexes showed
sensitivity to capsaicin, males required a four-fold higher dose
of capsaicin than females for a similar response (Lu et al., 2009).
It should be noted that the differences in capsaicin sensitivity
observed between sexes may be caused by differential estrogen
levels and influenced by the distinct percentage of estrogen
receptors in male and female nociceptors (Takanami et al.,
2010).

When estrogen levels were monitored, either as a function
of the estral cycle or its replacement after ovariectomy in
rodents, it was observed that under low levels of 17β-estradiol,
capsaicin produced a mild nocifensive response (Lu et al.,
2009; Yamagata et al., 2016). In marked contrast, high levels
of 17β-estradiol (proestrus) resulted in a lower mechano- and
thermo-nociceptive threshold, thereby promoting mechanical
and thermal sensitization (Payrits et al., 2017). This nociceptive
sensitization was not observed in TRPV1 knock-out mice,
implying a link between estrogen nociceptor sensitization and
TRPV1 in vivo (Payrits et al., 2017).

At the cellular level, it has been proposed that nociceptor
sensitization induced by estrogens could be provoked by
an alteration of nociceptor excitability. Flake et al. (2005)
demonstrated that estrogens reduced the threshold of action
potential firing and increased their spontaneous activity. They
speculated that these changes in nociceptor excitability may
be associated with membrane depolarization provoked by
estrogen-induced activation of thermoTRP channels, particularly
TRPV1. In this study, however, the authors did not find
a significant difference in the proportion of nociceptors
that responded to capsaicin between ovariectomized females
treated with vehicle and those treated with estrogens after
ovariectomy (Flake et al., 2005). In contrast, Yazgan and
Naziroglu (2017) showed that ovariectomy led to higher
capsaicin-induced current densities. Replacement therapy with
17β-estradiol reduced capsaicin responses to a level similar
to that of mock-operated animals (Yazgan and Naziroglu,
2017).

Curiously, some studies show that TRPV1 sensitization by
17β-estradiol was stereospecific. However, the 17β-estradiol
induced TRPV1 potentiation, the stereoisomer, 17α-estradiol,
did not affect the activity of the channel in sensory neurons
(Chen et al., 2004; Lu et al., 2009). Similarly, 17α-estradiol did not
affect the vasorelaxation induced by anandamide, an endogenous
TRPV1 agonist (Ho, 2013). It should be noted, however, that this
observation is still under debate as this stereospecificity was not
observed in another study (Xu et al., 2008).

Themolecular mechanisms involved in 17β-estradiol-induced
sensitization of TRPV1 appeared to include both a genomic
regulation of channel expression and a functional modulation.
Regarding the long-term effect of estrogens in females,
several studies showed a transcriptional-induced expression
of TRPV1 by 17β-estradiol in nociceptors (Yamagata et al.,
2016; Kumar et al., 2017; Payrits et al., 2017). Even sensory
neurons derived from female mouse stem cells showed that
the application of 17β-estradiol increased the expression of
TRPV1 mRNA (Greaves et al., 2014). Similarly, Cho and
Chaban (2012) published another study that showed the
relationship between estrogens and TRPV1 expression. Notably,
they reported a reduction of TRPV1 expression in ERα and
ERβ null lines. Estradiol-induced TRPV1 expression has been
observed not only in neuronal samples (Wu et al., 2010;
Kumar and Singru, 2017) but also in non-neuronal tissues
such as peritoneum (Greaves et al., 2014), endometrium
(Pohoczky et al., 2016), and synoviocytes (Wu et al., 2015).
Although still limited, some genomic studies imply the presence
of a putative functional estrogen response element in the
TRPV1 promoter (Greaves et al., 2014; Kumar and Singru,
2017).

In addition to the genomic regulation, there are several
studies that have provided evidence for the modulation and/or
a direct effect of 17β-estradiol on TRPV1 based on the rapid
responses that can be induced by estrogens. An in vivo study
in rodents reported a fast onset of 17β-estradiol on capsaicin
sensitization when instilled locally in the ipsilateral paw, without
an effect on the contralateral paw (Lu et al., 2009). Furthermore,
pre-incubation with PKC or PKA inhibitors did not enhance
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capsaicin responses, thereby suggesting a direct effect of 17β-
estradiol on TRPV1 activity (Lu et al., 2009). In support of
this, other studies have suggested that the effect of estrogens
on TRPV1 activity was mediated by PKCε phosphorylation of
Ser-800, which enhances channel activity (Hucho et al., 2006;
Kuhn et al., 2008; Goswami et al., 2011). Through a TRPV1-
dependent mechanism, but independent of its ion channel
activity, PKCε may promote cytoskeletal destabilization that in
turnmay producemechanical nociceptor sensitization (Goswami
et al., 2011). In contrast, Payrits et al. (2017) suggested that 17β-
estradiol-induced TRPV1 sensitization in nociceptors may be
indirectly produced through the TrkA pathway as the application
of inhibitors of this pathway abolished TRPV1 sensitization by
estrogen (Figure 1).

However, to add more confusion to the field, not all studies
have shown that 17β-estradiol enhances the expression and
sensitization of TRPV1 channel in nociceptors. Indeed, there
are studies that imply a preventive or analgesic effect of
estrogens. For instance, Yazgan and Naziroglu (2017) observed
that deprivation of 17β-estradiol was related to an excessive
production of mitochondrial oxygen free radicals and a high
Ca2+ influx through TRPV1, TRPA1, and TRPM2 channels,
which appears to be one of the main causes of neurodegenerative
disease in postmenopausal women. This study also showed that
TRPV1 levels decrease as a result of 17β-estradiol administration,
and ovariectomy produced capsaicin sensitization in line with
a previous study (Sanoja and Cervero, 2005). Another study
reported that a long-term incubation with 17β-estradiol reduced
the activation of TRPV1 (Xu et al., 2008). Similarly, Thompson
et al. (2008) pointed out that the anti-nociceptive action of
17β-estradiol depended on the concentration used, as high

doses of 17β-estradiol benzoate produced a low nociceptive
response in females. Clearly, additional studies are needed to
further unveil estrogen-mediated modulation of thermoTRPs
in sensory neurons and other cell types involved in migraine.
Furthermore, attention has to be paid to the experimental
conditions used in in vitro studies as these may have a
notable influence on the final modulatory effect of gonadal
hormones. For instance, nociceptor subpopulations should be
considered, as they may exhibit differential sensitivity to these
hormones.

TRPV1 AND PROGESTERONE

Progesterone is the other steroid hormone that, together with
estradiol, regulates the estral cycle in rodents and the menstrual
cycle in humans. There are a plethora of studies linking
progesterone to anti-nociception in neuropathic pain models
(Coronel et al., 2011, 2016; Verdi et al., 2013; Jarahi et al.,
2014; Liu et al., 2014). In this context, the few studies that
investigated the putative effects of progesterone in the expression
and functional modulation of thermoTRPs showed mainly an
inhibitory role of this hormone. For example, it was observed that
progesterone, acting through its receptor, reduced the expression
of TRPV4 in sensory neurons (Jung et al., 2009). Recently, Ortiz-
Renteria et al. (2018) reported a new molecular mechanism
through which progesterone and the Sig-1R chaperon promoted
TRPV1 down-regulation in nociceptors. The interaction of
progesterone with the Sig-1R chaperon inhibited its binding to
the TRPV1 promoter, resulting in a transcriptional inhibition
of TRPV1 expression and consequently a lower nociceptive
response to capsaicin. This in vivo observation is in disagreement

FIGURE 1 | Schematic diagram of the potential mechanisms of action of estrogen modulating TRPV1. The scheme reflects a possible direct activation by estradiol. In

addition, the interaction of estradiol with estrogen receptors (ER and GPR30) may induce the expression of TRPV1 and likely activate intracellular signaling pathways

that phosphorylate TRPV1 inducing its membrane expression and its activation/sensitization. The increase of intracellular calcium enhances αCGRP release which

induces cranial vasodilatation, trigeminal sensitization, and pain. ER, estrogen receptor; PKCε, Protein Kinase C epsilon; PI3K, Phosphatidylinositol-4,5-bisphosphate

3-kinase.

Frontiers in Molecular Biosciences | www.frontiersin.org 6 August 2018 | Volume 5 | Article 73

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Artero-Morales et al. TRP Channels in Pain

with Chen et al. (2004) who observed that progesterone
did not modify capsaicin-induced currents in DRGs cultures.
Similarly, Lu et al. (2009) found that the therapeutic replacement
of progesterone in ovariectomized rats did not change the
nocifensive response to capsaicin application.

Akin to estrogens, it is plausible that progesterone nociceptive
effects are concentration-dependent, being stronger at high
concentrations. This may account for the lack of a clear anti-
nociceptive effect of the hormone during the estral cycle, where it
is present at low concentration. On the other hand, progesterone
seemed to mediate anti-nociceptive responses during pregnancy
(Ortiz-Renteria et al., 2018). Furthermore, progesterone is a
direct agonist of TRPM3 channels (Majeed et al., 2012; Miehe
et al., 2012; Kumar et al., 2015) and it appears to regulate TRPC3
channels (Majeed et al., 2011). As with estrogens, more studies
are needed to fully understand the potential role of progesterone
modulation of nociceptor excitability in contributing to migraine
episodes.

TRPV1 AND OTHER SEX-RELATED
HORMONES

Prolactin is a peptide hormone secreted by the anterior
pituitary gland that plays a role in osmoregulation, metabolism,
the immune system, and the stimulation of lactogenesis and
galactopoiesis. Prolactin is also involved in inflammatory
responses (Costanza et al., 2015; Pereira Suarez et al., 2015).
In TG neurons, a prolactin receptor is highly expressed
in TRPV1 nociceptors, where it potentiates capsaicin-evoked
currents, calcium influx, and αCGRP release (Patil et al.,
2014). Diogenes et al. (2006) reported that 17β-Estradiol
produced a notable increase of prolactin in TG overlapping
with TRPV1-expressing sensory neurons. Notably, prolactin
enhanced the capsaicin-evoked responses in TG nociceptors,
both in vitro and in vivo, in a 17β-Estradiol-dependent manner.
Furthermore, prolactin significantly augmented the capsaicin-
induced nociceptive responses in female rats at proestrus and
in ovariectomized females after estradiol treatment (Diogenes
et al., 2006). In a subsequent study, the same group demonstrated
that the short prolactin receptor signaling pathway mediated the
activation of TRPV1 via PKC and PI3K, thereby affecting the
action potential threshold and excitability of nociceptors (Belugin
et al., 2013; Patil et al., 2013a,b, 2014).

In addition to prolactin, there is increasing interest in oxytocin
because it may become an analgesic target for various chronic
pain pathologies due to its role in pain modulation (Gonzalez-
Hernandez et al., 2014; Rash et al., 2014; Tracy et al., 2015;
Valstad et al., 2016). The nociceptive modulation exerted by
this neuropeptide is mediated through two main pathways.
Firstly, the endogenous opioid system plays an important indirect
role in the modulation of pain by oxytocin. Specifically, the
activation of opioid receptors appears to drive oxytocin central
analgesic effects (Rash et al., 2014). Secondly, the activation of
GABAergic inhibitory interneurons directly inhibits nociceptive
C and Aδ fibers at the spinal cord (Gonzalez-Hernandez et al.,
2014; Rash et al., 2014). The relative importance of this system

remains elusive because it is still unknown whether there are
oxytocin receptors in nociceptors. In addition, the peripheral
contribution of vasopressin 1a receptors might also explain the
oxytocin nociception regulation. Clearly, information about the
receptors involved in the antinociceptive effects of oxytocin,
at the peripheral nociceptors endings and supraspinal levels,
remains a key research area in pain science (Gonzalez-Hernandez
et al., 2014), which requires urgent investigation.

There are several attempts to apply intranasal oxytocin
as an analgesic therapy, and even as a migraine treatment
(Wang et al., 2013; Tracy et al., 2015). However, the intranasal
application of oxytocin is often not effective. For instance,
some women reported an increase in the perceived intensity
of noxious heat stimuli after oxytocin inhalation (Tracy et al.,
2017). In this context, a recent report describing, in both
sexes, the direct agonist action of oxytocin on TRPV1 is a
significant step toward disentangling the mechanism of action of
oxytocin on nociceptors (Nersesyan et al., 2017). These results
provide an explanation for the hot pain intensity reported by
women patients under oxytocin therapy. Furthermore, oxytocin
anti-nociceptive activity may be due to TRPV1 desensitization
in nociceptors, similar to that induced by capsaicin and
resiniferatoxin. Interestingly, the different physicochemical
characteristics of oxytocin and capsaicin suggest a distinct
receptor binding site for the hormone. However, it appears that
oxytocin may bind to an outer transmembrane site located in
the interfacial region between two adjacent subunits (Nersesyan
et al., 2017), distant from the capsaicin binding site (Cao et al.,
2013; Darre and Domene, 2015; Yang and Zheng, 2017). The
discovery of this novel binding site in the TRPV1 channel opens
new avenues for the design of novel receptor antagonists for the
treatment of migraine.

TRPV1, TRPM8, AND TESTOSTERONE

The lower prevalence of chronic migraine in men is also
characterized by a lower intensity and/or shorter duration
of pain symptoms as compared to women (Bartley et al.,
2015), thereby suggesting a role of testosterone. There are
clinical studies showing that testosterone replacement therapy
reduces pain outcomes and improves the quality of life of
patients with hypogonadism (Aloisi et al., 2011), thereby
supporting the hypothesis that testosterone may have an anti-
nociceptive role. However, some studies suggest that testosterone
is necessary for a small nociceptive response (Thompson
et al., 2008; Glaser et al., 2012; Schertzinger et al., 2017).
According to these studies, low levels of testosterone are
related to high discomfort, anxiety, and pain in response to
noxious hot stimuli (Choi et al., 2017). In another study,
Fanton et al. (2017) concluded that the protective effect of
testosterone is due to the activation of androgen receptors by
the hormone instead of an androgenic action of a testosterone
derivative (i.e., dihydrotestosterone) during CNS development.
These observations are in agreement with the testosterone
effect observed in nociceptors. For example, the application
of androgenic hormones to nociceptors showed an inhibitory

Frontiers in Molecular Biosciences | www.frontiersin.org 7 August 2018 | Volume 5 | Article 73

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Artero-Morales et al. TRP Channels in Pain

effect on capsaicin-induced currents (Chen et al., 2004). In
addition, a recent study observed the significant differences
between male and female mice in the expression of TRPV1
channels in TG, after an inflammatory insult, and provided data
suggesting that testosterone may be an important contributor
to the sensitization of TRPV1 in chronic inflammatory pain
(Bai et al., 2018). This study observed a decrease of TRPV1
expression with testosterone replacement after gonadectomy.
Although more studies are needed, this report further supports
that sex hormones play a central role inmodulation of the activity
of TRPV1 channels.

Apart from TRPV1, it is worth mentioning that testosterone
is also a regulator of TRPM8, a thermoTRP channel involved
in cold nociception. Zhang and Barritt (2004) found that the
promoter of TRPM8 contains a putative androgen-response
element motif. Notably, this channel is highly expressed in the
prostate and appears overexpressed in prostate cancer by a
testosterone-mediated mechanism. The dependence of TRPM8
expression on androgens was demonstrated, which showed that
the replacement of testosterone after gonadectomy induced the
recovery of TRPM8 expression (Yang et al., 2012). Testosterone
and TRPM8 are not just linked by genomic regulation, as
testosterone is a potent TRPM8 agonist (Asuthkar et al.,
2015a,b,c). These studies report the first evidence describing an
endogenous modulator of this thermoTRP channel, although
additional studies are needed to unveil the contribution of
testosterone to cold allodynia and other nociceptive conditions
promoted by TRPM8 activity. It is worth noting that TRPM8
has been recently proposed as an interesting therapeutic target
for migraine due to the analgesic ability of some of its agonists
(Dussor and Cao, 2016).

CONCLUSIONS

There is no doubt about the existence of a sex difference
prevalence in chronic pain conditions such as migraine,
where the prevalence in women is two or three times
greater than in men. Although the specific molecular and

cellular mechanisms underlying this sex dimorphism are still
under intense investigation, a pivotal role of sex hormones
regulating the somatosensory system appears clear. It was
believed that sex hormones mainly acted to regulate the
immune system, but evidence is building up on a direct
role modulating nociceptor signaling. This modulation
appears mediated by the action of these hormones on
thermoTRP channels, such as TRPV1, TRPA1, TRPM3,
TRPV4, and TRPM8, and probably others that are still to
be investigated. Sex hormones can regulate the expression of
these channels, acting at a transcriptional level and/or their
channel activity and/or through activation of intracellular
signaling pathways that sensitize their activity. Understanding
the role of sex hormones modulating the somatosensory system,
and unraveling their impact on the long-term nociceptor
excitability that underlies chronic pain, will pave the way
to the design and development of novel and more efficient
therapies that consider sex differences in pain perception.
Nonetheless, it should be taken into consideration that
sex hormones may not be the only players in determining
sexual dimorphism in migraine pain, as this is a very
complex phenomenon involving both gonadal-dependent
and independent mechanisms that most likely complement each
other in defining sex differences in migraine and chronic pain
disorders.
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