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Decreased integrity of exercise-
induced plasma cell free nuclear 
DNA – negative association with 
the increased oxidants production 
by circulating phagocytes
Robert Stawski   1, Konrad Walczak2, Ewelina Perdas3, Anna Wlodarczyk4, Agata Sarniak5, 
Piotr Kosielski6, Pawel Meissner6, Tomasz Budlewski7, Gianluca Padula6 & Dariusz Nowak1*

Strenuous exercise increases circulating cell free DNA (cfDNA) and stimulates blood phagocytes to 
generate reactive oxygen species (ROS) which may induce DNA strand breaks. We tested whether: (A) 
elevated cfDNA in response to three repeated bouts of exhaustive exercise has decreased integrity; 
(B) each bout of exercise increases luminol enhanced whole blood chemiluminescence (LBCL) as a 
measure of ROS production by polymorphonuclear leukocytes. Eleven men performed three treadmill 
exercise tests to exhaustion separated by 72 hours of resting. Pre- and post-exercise concentrations 
and integrity of cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) and resting (r) and fMLP 
(n-formyl-methionyl-leucyl-phenylalanine)-stimulated LBCL were determined. Each bout increased 
concentrations of cf n-DNA by more than 10-times which was accompanied by about 2-times elevated 
post-exercise rLBCL and fMLP-LBCL. Post-exercise cf n-DNA integrity (integrity index, I229/97) decreased 
after the first (0.59 ± 0.19 vs. 0.48 ± 0.18) and second (0.53 ± 0.14 vs. 0.44 ± 0.17) bout of exercise. 
There were negative correlations between I229/97 and rLBCL (ƍ = –0.37), and I229/97 and fMLP-LBCL 
(ƍ = –0.40) – analysis of pooled pre- and post-exercise data (n = 66). cf mt- DNA integrity (I218/78) did not 
alter in response to exercise. This suggests an involvement of phagocyte ROS in cf n-DNA strand breaks 
in response to exhaustive exercise.

There are rising evidences suggesting that besides, health promoting effects, exhaustive exercises might have 
potential adverse effects on immune system1,2. Therefore, explanation of this issue is essential for training recom-
mendations or customization of individual training load. Interestingly, bouts of strenuous exercise caused rapid 
increase in cell free DNA (cfDNA) concentration in plasma and, moreover, it was suggested to be a promising 
marker of acute exercise induced-metabolic changes in human body3. Exercise resulted in the surge of plasma 
cfDNA independently of workout associated with various sport disciplines and types of training such as weight-
lifting4, running5, soccer6, cycling7, rowing8, strength training9 or repeated sprint6. Concentration of post-exercise 
cfDNA positively correlated with the duration and the intensity of aerobic running10 as well as with selected 
markers of muscle damage11. Moreover, the ratio of post- to pre-exercise cfDNA associated with the distance 
covered by soccer players during the game6. In another study, increased cfDNA in response to heavy resistance 
exercise was described to have possible predictive value of muscle-performance decrease within 2 days after the 
bout12. Therefore, measurements of exercise-related variations of cfDNA can be used for monitoring of training 
load or diagnosis and prevention of overtraining syndrome11.
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The common process following exhaustive exercises is leukocyte demargination from the vascular, hepatic, 
pulmonary or spleen reservoirs in parallel with exercise-induced increase in cardiac output and blood flow. This 
elevates the white blood cell count, however, it seems to be not the main contributor to the exercise-induced 
increase in cfDNA because the rise in the latter is many times higher than post-exercise leukocytosis3. Therefore, 
mechanisms responsible for this phenomenon could include at least the elevated number of circulating leukocytes 
accompanied by the increase in their activity leading to the release of a variety of biomolecules including DNA3. 
This is in line with the recent observation of increased formation of intravascular neutrophil extracellular traps 
(NETs) that could be responsible for the rise in cfDNA in subjects after exhaustive exercise13,14.

NETs formation involves disintegration of nuclear and granular membranes, diffusion of decondensed chro-
matin into the cytoplasm and its mixing with various proteins. After rupture of neutrophil plasma membrane, 
this chromatin associated with granular proteins such as myeloperoxidase, neutrophil elastase or cathepsin G is 
released into the extracellular space15,16 leading to the increase in plasma cf n-DNA.

Respiratory burst of circulating phagocytes (mainly polymorphonuclear – PMNs) in combination with phago-
cytosis and NETs formation is essential for innate immunity17,18. Increased generation of reactive oxygen species 
(ROS) related to activation of circulating PMNs NADPH oxidase complex was reported in healthy subjects after 
exhaustive exercise19,20.

Luminol-enhanced whole blood chemiluminescence technique (LBCL), which reflects mainly superoxide rad-
icals production by circulating PMNs21,22, was used for evaluation of pre- and post-exercise ROS generation23–25. 
This is a rapid test which due to its low day-to-day variability and relative simplicity is suitable in epidemiological 
and clinical studies26. It can be executed in two settings: (a) – blood samples without stimulation – resting LBCL 
(rLBCL) and (b) – blood samples after stimulation with n-formyl-methionyl-leucyl-phenylalanine (fMLP), a 
chemotactic peptide which induces PMNs respiratory burst via activation of NADPH oxidase26 – fMLP- stim-
ulated LBCL (fMLP-LBCL). Both rLBCL and fMLP-LBCL were increased in patients suffering from diseases 
accompanied by systemic inflammatory response such as systemic sclerosis, infective endocarditis and chronic 
renal failure27–29. Moreover, LBCL was attenuated in healthy subjects in response to regular consumption of fruits 
rich in anti-oxidant and anti-inflammatory polyphenols30,31.

ROS can induce damage to avariety of biomolecules including modification of DNA bases and DNA strand 
breaks. It is possible that simultaneous activation of respiratory burst of circulating PMNs and NETs formation 
in response to exhaustive exercise lead to strand breaks of released DNA and thus formation of cfDNA with 
decreased integrity. cfDNA can be divided in two pools: cell free nuclear DNA (cf n-DNA) and cell free mito-
chondrial DNA (cf mt-DNA), deriving from nucleus or cytoplasmic mitochondria’s, respectively. Because of lack 
of nucleosomal structure, cf mt-DNA fragments present different pattern of integrity than cf n-DNA32. Moreover, 
mt-DNA seems to be more sensitive to oxidative stress and other genotoxic damages due to the lack of protective 
proteins and efficient DNA repair mechanism33. Therefore, it seems that integrity of cf mt-DNA could be more 
affected by ROS increase following exhaustive exercise than that of cf n-DNA. To solve this question, we com-
pared the pre- and post-exercise plasma concentrations and integrity of cf n-DNA and cf mt-DNA in relation 
to rLBCL and fMLP-LBCL (reflecting ROS production by circulating PMNs) in healthy physically active men 
subjected to three repeated exhaustive treadmill runs.

Results
All included men successfully completed the study protocol of three repeated exhaustive treadmill exercises. 
Mean concentration of plasma cf n-DNA increased 11.3-, 11.8- and 17.3- times (p < 0.05) after the 1st, 2nd, and 3rd 
exercise, while cf mt-DNA increased significantly by about 2- and 2.4-times only after the 2nd and 3rd exhaustive 
treadmill run, respectively. Data of plasma concentrations of cf nDNA and cf mt DNA, other parameters related 
to exercise tests, changes of selected markers of muscle damage as well as metabolic and cardiovascular responses 
to exercise have been described elsewhere3.

Changes of integrity of circulating cell free nuclear and mitochondrial DNA in response 
to three repeated bouts of exhaustive treadmill exercise.  Pre-exercise integrity of cf n-DNA 
expressed as I229/97 did not alter significantly over the study period. However, the tendency to a gradual decrease 
in I229/97 was noted e.g. I229/97 = 0.59 ± 0.19 before the 1st bout in comparison to I229/97 = 0.50 ± 0.22 before the 
3rd one (Table 1). Exhaustive exercise resulted in the decrease in cf n-DNA integrity especially after the 1st 
(pre-exercise I229/97 = 0.59 ± 0.19 vs post-exercise I229/97 = 0.48 ± 0.18, p < 0.05) and the 2nd bout (pre-exercise 

DNA
Integrity

1st bout (day 7) 2nd bout (day 10) 3st bout (day 13)

Before After Before After Before After

cf n-DNA 
(I229/97)

0.59 ± 0.19 
(0.57; 0.36)

0.48 ± 0.18* 
(0.46; 0.36)

0.53 ± 0.14 
(0.55; 0.13)

0.44 ± 0.17* 
(0.46; 0.33)

0.50 ± 0.22 
(0.38; 0.36)

0.45 ± 0.17 
(0.41; 0.22)

cf mt-DNA 
(I218/78)

0.54 ± 0.16) 
(0.59; 0.28)

0.60 ± 0.26 
(0.69; 0.39)

0.63 ± 0.18 
(0.53; 0.33)

0.67 ± 0.16 
(0.63; 0.30)

0.65 ± 0.18 
(0.67; 0.16)

0.66 ± 0.20 
(0.79; 0.40)

Table 1.  Cell free nuclear (cf n-DNA) and mitochondrial (cf mt-DNA) DNA integrity in eleven average-
trained men before and after each of three bouts of exhaustive treadmill exercise. Eleven average-trained men 
completed the study composed of four visits at days 1, 7, 10 and 13. After determination of VO2max at day 1, 
three repeated treadmill exercise tests to exhaustion at speed corresponding to 70% of personal VO2max were 
executed at days 7, 10 and 13. Results are expressed as mean ± SD (median; IQR). * vs corresponding value 
before the bout, p < 0.05 (for exact p-values please see Table 9, supplementary file).
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I229/97 = 0.53 ± 0.14 vs post-exercise I229/97 = 0.44 ± 0.17, p < 0.05). In contrast to cf n-DNA integrity, the pre- 
and post-exercise-integrity of cf mt-DNA (I218/78) was relatively stable over the study period and did not alter in 
response to exercise (Table 1).

Changes of resting and fMLP-stimulated luminol enhanced whole blood chemiluminescence 
in response to three repeated bouts of exhaustive treadmill exercise.  Mean rLBCL increased by 
about 2.1-, 2.6- and 2.4-times (p < 0.05) in response to the 1st, 2nd and the 3rd bout of exhaustive exercise (Table 2). 
The values of pre-exercise rLBCL were relatively stable over the study period and the same behavior was noted 
for the post-rLBCL. Similarly, behaved mean fMLP-LBCL: 1.7-, 1.8- and 1.5-fold increase (p < 0.05) after each 
exhaustive treadmill run (Table 2). Mutual comparisons of pre-exercise fMLP-LBCL values at consecutive days 
did not reveal any significant differences, as well for post-exercise fMLP-LBCL values. Consequently, the mean 
ratio of pre-exercise fMLP-LBCL to pre-exercise rLBCL values was similar and ranged from 2.7 at the 1st bout 
to 3.0 at the 3rd bout. The mean ratio of post-exercise fMLP-LBCL to post-exercise rLBCL was also stable and 
reached 2.2, 1.8 and 1.9 after the 1st, 2nd and 3rd bout of exercise, respectively.

Correlations between integrity of cf n-DNA and whole blood chemiluminescence before 
and after three repeated bouts of exhaustive exercise.  Because we studied a relatively low group 
of men (n = 11), the direct analysis of correlations between variables obtained during one bout was inconclu-
sive. Therefore, to overcome (at least partially) this problem, we analyzed Spearman’s (ƍ) correlations between 
integrity of cf n-DNA (I229/97) and LBCL by using the following datasets from three bouts of exhaustive exercise: 
(A)- pooled individual pre-exercise data (n = 33); (B)- pooled individual post-exercise data (n = 33); and (C)- 
pooled pre- and post-exercise data (n = 66) (Table 3). There was a negative correlation of moderate strength 
between pre-exercise I229/97 and pre-exercise fMLP-LBCL (ƍ = −0.36, p < 0.05), while correlation between 
post-exercise I229/97 and post-exercise rLBCL or fMLP-LBCL reached borderline significance (ƍ = −0.31, p = 0.08 
and ƍ = −0.32, p = 0.06). In the case of analysis of dataset involving pre- and post-exercise data together, I229/97 
negatively correlated with rLBCL (ƍ = −0.37, p < 0.05) and fMLP-LBCL (ƍ = −0.40, p < 0.05) (Table 3). The 
same analyses performed between integrity of cf mt-DNA (I218/78) and whole blood chemiluminescence (rLBCL, 
fMLP-LBCL) revealed no significant correlations (ƍ ranged between 0.11 and 0.38).

Discussion
It is generally believed that regular physical activity has important health promoting effect. However, long term, 
repeated exhaustive exercises can evoke pathological reactions leading to the development of overtraining syn-
drome34–36. High intensity exercise related to various sports disciplines4,5 was reported to cause fast, transient 
increases in circulating cfDNA reaching concentrations comparable to those observed in trauma or sepsis37,38. 
Some studies suggest that elevated plasma cfDNA levels may by associated with the increased risk of occurrence 
of overtraining syndrome in athletes39,40. Recently, we found that three repeated bouts of exhaustive treadmill 
exercise induced increase in cf n-DNA and cf mt-DNA in average trained healthy men without development 
of tolerance3. In the present study (which is the continuation of the afore-mentioned one), we found that the 
increase in cf n-DNA in response to each of three repeated bouts of exhaustive treadmill exercise is accompanied 

Blood 
Chemilumi-
nescence

1st bout (day 7) 2nd bout (day 10) 3rd bout (day 13)

Before After Before After Before After

rLBCL 326 ± 269 
(196; 479)

697 ± 302* 
(786; 431)

335 ± 244 
(280; 551)

870 ± 663* 
(728; 1056)

319 ± 261 
(274; 528)

765 ± 610* 
(577; 1125)

fMLP- LBCL 892 ± 435 
(941; 561)

1531 ± 607* 
(1575; 1014)

909 ± 375 
(885; 692)

1598 ± 737* 
(1613; 1192)

960 ± 525 
(802; 746)

1470 ± 907* 
(951; 1442)

Table 2.  Resting (rLBCL) and fMLP-stimulated luminol enhanced whole blood chemiluminescence (fMLP-
LBCL) in eleven average-trained men before and after each of three bouts of exhaustive treadmill exercise. 
Results expressed in relative light units per 104 phagocytes present in the assayed sample are shown as 
mean ± SD (median; IQR). * vs corresponding value before the bout, p < 0.05 (for exact p- values please see 
Table 10, supplementary file). Other details as for Table 1.

Correlated variables rLBCL fMLP-LBCL Explanation

Integrity of cf n-DNA 
(I229/97)

−0.29 −0.36* Pooled individual pre-exercise data from 
three bouts (n = 33)

Integrity of cf n-DNA 
(I229/97)

−0.31# −0.32† Pooled individual post-exercise data 
from three bouts (n = 33)

Integrity of cf n-DNA 
(I229/97)

−0.37* −0.40* Pooled individual pre- and post- exercise 
data from three bouts (n = 66)

Table 3.  Spearman’s (ƍ) correlations between integrity of cell free nuclear DNA expressed as I229/97 and resting 
and fMLP-induced luminol enhanced whole blood chemiluminescence in eleven average trained healthy men 
before and after three repeated bouts of exhaustive treadmill exercise. cf n-DNA – cell free nuclear DNA, rLBCL 
– resting luminol enhanced whole blood chemiluminescence, fMLP-LBCL – stimulated luminol enhanced whole 
blood chemiluminescence. Other details as for Table 1. * - p < 0.05, # – borderline significance – p = 0.08, † – 
borderline significance – p = 0.06. Further details are shown in Figures 2, 3, 4, 5, 6 and 7 of supplementary file.
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by the decrease in cf n-DNA integrity. In parallel to this phenomenon, each bout of exercise caused significant 
increase in rLBCL and fMLP-LBCL and that reflects an increased post-exercise ROS production by circulating 
phagocytes, namely PMNs. Moreover, analysis of pooled data from all bouts revealed a few significant negative 
correlations between integrity index of cf n-DNA and LBCL. These considerations suggest the involvement of 
ROS generated from circulating phagocytes in fragmentation of post-exercise cf n-DNA. Although, cf mt-DNA 
raised in response to the 2nd and 3rd bout of exercise, very surprisingly, no changes of the integrity index of cf 
mt-DNA were noted over the study period.

Effect of three repeated bouts of exhaustive treadmill exercise on luminol enhanced whole 
blood chemiluminescence.  Each bout of exercise increased mean rLBCL and fMLP-LBCL in healthy men. 
Moreover, individual results revealed substantial increase in post-exercise rLBCL and fMLP-LBCL in each vol-
unteer at any occasion. These observations indicate that exhaustive run increased basic generation of ROS by cir-
culating PMNs and primed these cells for increased ROS production after stimulation with fMLP. Our results are 
consistent with the previous studies showing increased zymosan-induced luminol enhanced chemiluminescence 
of neutrophils isolated from blood collected after intensive aerobic exercise in healthy men23–25.

Moreover, neutrophils of subjects who completed 100 km marathon run revealed increased ROS production 
as reflected by the afore-mentioned method41. On the other hand, other studies did not confirm these observa-
tions and even reported suppression of ROS production by neutrophils in the group of well-trained men after 
marathon run or after acute bout of moderate intensity running and cycling using the same stimulator of phago-
cyte oxidative burst42,43. These differences may result from various study protocols, including exercise load and 
duration, time of blood collection, usage of whole blood or isolated cells for determination of ROS generation 
after stimulation with various cell activators. For instance, a continuous 90 min. exercise at the intensity of 50% 
VO2max caused an increase of phorbol 12-myristate 13-acetate (PMA)-induced neutrophils chemiluminescence 
while zymosan-induced chemiluminescence remained unchanged in healthy men44.

PMA is a direct activator of protein kinase C with following activation of NADPH oxidase and neutrophils 
oxidative burst while stimulation with opsonized zymosan (insoluble cell-wall preparation from the fungi 
Saccharomyces cerevisiae) involves phagocytosis of these particles, cell degranulation and massive production of 
ROS45. In our study, we used fMLP (an analog of N-formylated bacterial chemotactic peptides). In our study, we 
used fMLP (an analog of N-formylated bacterial chemotactic peptides). This peptide activates signal transduction 
pathways (phospholipase C–dependent generation of diacyl glycerol and inositol 1,4,5-triphosphate, rise in the 
intracellular Ca2+ concentration, protein kinase C activation) upon binding to specific G protein–coupled recep-
tors on the PMNs plasma membrane. This, in turn, leads to the formation of the active NADPH oxidase complex 
and ROS production45. Thus, the peak time – time from agonist addition to appearance of maximal chemilu-
minescence – is about 7-times shorter for fMLP than for opsonized zymosan23,46. This remark may explain the 
discrepancies between results of our study and some previous investigations42,43 about the effect of exercise on 
ROS production by isolated neutrophils after stimulation with opsonized zymosan.

Moreover, we studied the effect of exercise on LBCL, thus neutrophils and monocytes were not subjected 
to any process of isolation that could change the cell ability to respond to stimulations with various agonists. 
Elimination of the risk of cell priming or de-priming during the isolation procedure is the important advantage 
of this method21,31. Such technique allows monitoring of oxidants release by circulating phagocytes under condi-
tions that more closely resemble the in vivo situation than the analysis of isolated cells31,47. Severe exercise resulted 
in essential increase in plasma pro-inflammatory cytokines, namely IL-6, IL-8, granulocyte colony-stimulating 
factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and granulocyte macrophage colony stimulating 
factor (GM-CSF)48,49. Although these pro-inflammatory cytokines alone induced rather weak oxidative response 
of PMNs, they strongly enhanced ROS generation in response to secondary stimulation with fMLP50–53, and that 
could be an explanation of increased rLBCL and fMLP-LBCL in healthy men after exhaustive exercise.

Effect of repeated bouts of exhaustive treadmill exercise on the integrity of plasma cell free DNA.  
Each bout of exhaustive exercise increased several times the concentration of circulating cf n-DNA, accompanied 
by the decrease in I229/97 of post-exercise cf n-DNA. This indicates that apool of cf n-DNA released in response to 
exhaustive exercise is subjected to factors leading to its enhanced fragmentation. Conversely, no changes in I218/78 
were noted over the study period, although cf mt-DNA raised significantly after the 2nd and 3rd bout. Thus, one 
may conclude that exercise-induced release of cf mt-DNA was not accompanied by parallel processes resulting in 
its additional fragmentation. It is believed that the source of exercise-induced circulating cf n-DNA are NETs15. 
Various factors related to strenuous exercise including heat stress, catecholamines, pro-inflammatory cytokines 
(e.g IL-6, IL-8) can induce formation of NETs15. Intracellular generation of ROS by NADPH oxidase together 
with their elaboration by myeloperoxidase in intracellular granules are involved in triggering NETs formation54. 
Thus, nuclear DNA mixed with some components of granules before expulsion of NET fibers from PMNs can 
be exposed to and damaged by ROS, including breaking of DNA strands into shorter pieces. This could be a 
plausible explanation of increased post-exercise plasma levels of cf n-DNA with decreased integrity and is in 
line with observed moderate negative correlations between I229/97 and rLBCL and fMLP-LBCL. Moreover, previ-
ous studies showing increased concentration of 8-oxo-7,8-dihydro-2-deoxyguanosine (an oxidized derivative of 
deoxyguanosine - marker of cellular oxidative stress and oxidative damage to DNA) in leukocytes and urine of 
athletes after intense exercise55 support this explanation.

The exercise-induced rise in plasma cf n-DNA is transient8,56,57 probably due to simultaneous increase in the 
activity of circulating deoxyribonuclease I8. Thus, the post-exercise cf n-DNA decreased back to baseline within 
0.5 to 2 hours of recovery8.

The bouts of exhaustive treadmill exercise were separated by 3 days of rest, and all healthy volunteers did not 
perform any additional strenuous exercise during the whole 13-day study period. Therefore, one may conclude 
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that the contribution of NETs in maintaining the pre-exercise cf n-DNA levels was low (and even negligible) 
and other processes with the unchanging intensities (e.g. necrosis, apoptosis) were the source of abaseline pool 
of circulating cf n-DNA. This may explain the relatively stable concentrations of pre-exercise cf n-DNA and its 
integrity over the study period. Circulating cf mt-DNA increased in response to exhaustive exercise at the same 
time as cf n-DNA. However, pre- and post-exercise I218/78 of cf mt-DNA did not differ at any occasion. This is 
quite surprising considering the release of cf mt-DNA from NETs58 and formation of NETs from pure mt-DNA 
in response to skeletal injuries and orthopedic surgery in humans59. On the other hand, neutrophils infected with 
bacteria formed NETs with extracellular fibers containing n-DNA as the main structural component in vitro18. It 
cannot be excluded that neutrophils in response to exhaustive exercise extrude cf n-DNA alone or with very low 
admixture of cf mt-DNA. Thus, the exercise-induced increase in cf mt-DNA was about 5- to 6-times lower than 
that of cf n-DNA and no changes of cf mt-DNA integrity were noted.

Acute severe exercise on cycle ergometer until exhaustion increased mitochondrial ROS production in neu-
trophils of sedentary young males while the same physical exertion had no stimulatory effect on neutrophils 
mitochondrial ROS after 2 months of regular exercise training program in these subjects60.

Aerobic strenuous exercise resulted in an increase in superoxide radical activity in contracting muscles. 
However, the contribution of muscle mitochondria to this increase was small61,62, and even mitochondria gen-
erated less ROS during exercise than at rest61. We studied average trained healthy men who regularly performed 
recreational training where some of them participated in sport disciplines in the past. Therefore, it seems that 
exhaustive treadmill run did not induce increased generation of mitochondrial ROS and subsequent oxidative 
damage to mt-DNA.

Platelets are able to release microparticles containing functional mitochondria as well as free mitochon-
dria63,64. Circulating phospholipase A2 can digest mitochondrial membranes with subsequent release of mt-DNA 
into extracellular space63. Exhaustive exercise (e.g. marathon run) can induce platelets activation and their 
degranulation65. Additionally, short term lifestyle intervention (moderate energy restriction and aerobic training 
for 6 weeks) increased serum phospholipase A2 activity in overweight or obese subjects66.

Consequently, it is possible that platelets could be another source of cf mt-DNA and encapsulating membranes 
can protect mt-DNA from oxidative attack. On the other hand, even mt-DNA released in response to exercise 
could be damaged by ROS originated from other sources (e.g. NADPH oxidase), and its amount seems to be too 
little to decrease the integrity of total post-exercise pool of circulating cf mt-DNA. These considerations may also 
explain no differences between pre- and post-exercise integrity of plasma cf mt-DNA.

There are very scant and unconvincing data on the integrity of exercise-induced cf DNA in humans. 
Incremental treadmill test until volitional exhaustion induced significant increase in circulating cf n-DNA but 
without changes of its integrity compared to pre-exercise cf n-DNA in male athletes67. On the other hand, 10 km 
relay race resulted in a significant decrease in the integrity of post-exercise cf n-DNA in a group of recreational 
runners68. Moreover, neither of these studies evaluated circulating concentrations and integrity of pre- and 
post-exercise cf mt-DNA. Our results showed that repeated exhaustive exercise decreased integrity of circulating 
cf n-DNA but did not change the integrity of cf mt-DNA.

Correlations between integrity of cf n-DNA and luminol enhanced whole blood chemiluminescence.  
Because of the low number of studied volunteers, we pooled pre- and post-exercise data from three consecu-
tive bouts of exhaustive treadmill run and calculated correlations between cf n-DNA integrity and rLBCL and 
fMLP-LBCL. Such approach has some limitations and can increase the risk of bias. Nonetheless, for instance, we 
found significant negative correlations between I229/97 and rLBCL, and I229/97 and fMLP-LBCL for pooled individ-
ual pre- and post- exercise data from three bouts. Moreover, all values of Spearman’s ƍ (n = 6) ranged between 
−0.40 to −0.29 and that suggests that there is some negative relationship between integrity of cf n-DNA and 
generation of ROS by circulating phagocytes.

However, according to values of ƍ, these correlations can be interpreted as weak or moderate. This information 
suggests indirectly that other factors could be responsible for decreased integrity of post-exercise cf n-DNA, or 
post-exercise LBCL did not reflect precisely the generation of ROS by PMNs during the exhaustive run when 
NETs were formed and cf n-DNA released. Circulating cf n-DNA increased already after 9 min. from the onset of 
incremental treadmill run test (at the end of 10 km/h stage corresponding to 63% VO2max)68. In our study, mean 
run time was 47 min., 57 min. and 56 min. at the 1st, 2nd and 3rd bout, respectively3. Thus, pre- and post-exercise 
LBCL (rLBCL and fMLP-LBCL) reflected the activity of PMNs just before and after the exercise but not during 
the last 30 min. of run accompanied by the formation of NETs. Moreover, luminol crosses the cellular membrane 
of phagocytes (PMNs and monocytes); in this way, LBCL can mirror the extra- and intracellular production of 
ROS69. Hence, additional blood sampling during exercise followed by measurements of LBCL and cf n-DNA 
integrity (to estimate the dynamics of changes) would give more valuable results of the analysis of associations 
between cf n-DNA fragmentation and ROS production by blood phagocytes.

It is possible that numerous plasma antioxidants can inactivate extracellular ROS (in the close vicinity of 
PMNs) before their reaction with n-DNA. In consequence, intracellular activity of ROS during formation of NETs 
seems to be crucial for the decrease of cf n-DNA integrity. These aforementioned reasons may explain the low 
strength of observed correlations between pooled data of cf n-DNA integrity and LBCL.

Acute exercise of different duration and intensity increased plasma antioxidant activity in men70. Exhaustive 
cycling raised the activity of antioxidant enzymes e.g. superoxide dismutase and glutathione peroxidase in lym-
phocytes from peripheral blood71. Moreover, young athletes had higher Trolox-equivalent antioxidant capacity of 
plasma than their sedentary counterparts72. Thus, exercise-induced increase in circulating antioxidants (as adap-
tive response to muscle workout) may explain no effect of the third bout of exercise on cf n-DNA integrity and be 
an additional elucidation of weak correlations between post-exercise cf n-DNA integrity and LBCL.
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It should be mentioned that one subject had no decrease in cf n-DNA integrity in response to each of the three 
bouts of exhaustive exercise (Table 5, supplementary file). Although, he presented an increase in post-exercise 
rLBCL and fMLP-LBCL (Tables 7 and 8, supplementary file) along with many-fold increase in post-exercise cf 
n-DNA3, the integrity indexes of pre- and post-exercise cf n-DNA were similar over the study period. It is possible 
that this volunteer had high activity of circulating and intracellular antioxidants which inactivated ROS before 
their reaction with n-DNA released from NETs. Circulating neutrophils are functionally a heterogeneous cell 
population16,73. Certain neutrophil subpopulations could have increased capacity to form NETs and release cf 
n-DNA16,74, and some of them can also release more ROS spontaneously or upon stimulation by various media-
tors75,76. It cannot be excluded that in some persons these neutrophil subpopulations do not overlap, thus released 
cf n-DNA in response to exhaustive exercise would not be exposed to ROS and undergo subsequent fragmenta-
tion. Moreover, NETosis can occur without activation of NADPH oxidase and ROS generation16. These processes 
may also be a possible explanation of the afore-mentioned observations. Nevertheless, it is interesting that some 
subjects can increase cf n-DNA in response to exhaustive exercise without changes of its integrity.

Concomitant increase in the serum activity of DNase I was recognized as a factor responsible for transient 
nature of cf n-DNA response to strenuous exercise77. Therefore, decreased integrity of post-exercise cf n-DNA 
could be the result of cleaving NETs DNA by this endonuclease. However, we did not observe any changes of 
post-exercise cf mt-DNA integrity. For that reason, the contribution of DNase I to the decreased integrity of 
post-exercise cf n-DNA seems to be not important under the conditions of our study. Increased post-exercise cf 
n-DNA and its integrity index as well as LBCL returned to baseline levels within 72 hour interval between bouts 
of exercise. Therefore, it is difficult to conclude about the clinical significance of these phenomena. Perhaps, in 
athletes with very high training- and competition-load, these changes may persist for longer time and be an addi-
tional marker of the risk of injury or over-training syndrome. However, it requires further more extensive studies.

Limitations of the study.  Relatively low number of studied subjects (n = 11) and exclusion of female vol-
unteers from the trial could be recognized as a weakness of the present study. Because this report is the extension 
of our previous one, all these afore-mentioned limitations were discussed in details elsewhere3. In addition, the 
inhibitory effect of progesterone and estradiol on ROS production by human PMNs in vitro78 supported our 
decision on participation of only male volunteers in the study. The low number of studied subjects was counter-
balanced by three repeated bouts of exercise. We found that all bouts induced asignificant increase in cf n-DNA, 
rLBCL and fMLP-LBCL, while two bouts were accompanied by a decrease in cf n-DNA integrity and increase 
in circulating cf mt-DNA without changes of its integrity. This indicates the repeatability of these phenomena 
despite the small studied group of volunteers.

Conclusions
We found that repeated bouts of exhaustive exercise separated by three days of resting caused an increase in 
luminol enhanced whole blood chemiluminescence and in concentrations of circulating cf n-DNA. Post exercise 
cf n-DNA revealed decreased integrity which negatively correlated with LBCL. Because whole blood chemilu-
minescence reflects ROS production by circulating phagocytes, one may conclude that oxidants may be involved 
in the release of cf n-DNA and cf n-DNA strand breaks in response to exhaustive exercise. Although exercise 
caused moderate increase in plasma levels of cf mt-DNA, its integrity was stable and did not associate with blood 
chemiluminescence. This suggests a minor role of ROS in exercise-induced changes of cf mt-DNA. Further stud-
ies involving larger groups of male and female volunteers should be performed, especially bearing in mind the 
analysis of correlation and determination of causality between decreased of post-exercise cf n-DNA integrity and 
enhanced LBCL.

Methods
Studied group.  The studied group of eleven, average-trained, non-smoking healthy men as well as the inclu-
sion/exclusion criteria were the same as in our previous article3. Volunteers had mean age 34.0 ± 5.2 years, mean 
body mass index 26.2 ± 3.1 kg/m2 and mean maximal oxygen consumption VO2max 49.6 ± 4.5 ml/kg x min. They 
were free of any pharmacological treatment including vitamins and food supplements for 3 months preceding the 
study. They signed informed consent and did not change their dietary habits during the study period.

The study design.  The study design was described in details in our previous report3. Briefly, the study con-
sisted of 4 visits at the 1st, 7th, 10th and 13th day of observation. At the first visit (day 1st) 11 average-trained 
men underwent treadmill VO2max test and afterwards, at the three consecutive visits (day 7th, 10th and 13th), 
participants performed treadmill exercise to volitional exhaustion at speed corresponding to 70% of their per-
sonal VO2max (Fig. 1). Venous blood (15 ml) was collected into vacutainer tubes with EDTA (Becton Dickinson, 
Franklin Lakes, NJ) within 5 min. before and after each bout of exercise. One milliliter thereof was placed into a 
separate tube for resting (rLBCL) and n-formyl-methionyl-leucyl-phenylalanine (fMLP) – stimulated LBCL as 
well as blood cell count (Micros Analyzer OT 45,ABX, Montpellier, France). The rest was used for determination 
of concentration and integrity of cell free nuclear (cf n-DNA) and mitochondrial DNA (cf mt-DNA). During 
the whole study period (13 days) volunteers did not perform any exhaustive exercise besides those related to the 
study protocol. The study was conducted according to the Declaration of Helsinki. The protocol was reviewed and 
approved by The Medical University of Lodz Ethics Committee (RNN/95/14/KB), and all volunteers provided a 
written informed consent.

Blood processing and measurement of cfDNA.  EDTA blood samples were centrifuged (1600 × g, 4 °C, 
10 min.) immediately after collection. The obtained plasma samples were subjected to the second centrifugation 
(16 000 × g, 4 °C, 5 min.) to remove the cell debris and were stored at −80 °C for no longer than 4 weeks until 
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isolation of cfDNA with QIAamp DNA Blood Mini Kit (Qiagen GmbH, Hilden, Germany) and measurement 
of plasma concentrations of cf n-DNA and cf m-DNA with real time quantitative PCR as described previously3. 
Individual results were obtained as a mean from two separate runs and expressed in ng/mL for cf n-DNA and as 
genome equivalents (GE)/ml plasma (1 GE = 6.6 pg DNA) for cf mt-DNA79.

Determination of plasma cell free DNA integrity.  The integrity of circulating cf n-DNA was evaluated 
by a quantitative real-time PCR (qPCR) targeting the human GAPDH (glyceraldehyde 3-phosphate dehydroge-
nase) gene (gene ID 2597). The length of the amplicons selected for this assay was 97 and 229 bp, respectively. The 
ratio of the concentration of the longer amplicon (GAPDH229) to the concentration of the shorter one (GAPDH97) 
(ranging from 0 to 1) defined the integrity index 229/97 (I229/97), which was used to estimate the fragmentation 
of cf n-DNA. Higher values of I229/97 (e.g.I229/97 = 1) indicate that all the cf n-DNA molecules are at least 229 bp in 
length in the GAPDH gene while lower values show that cf n-DNA contains fragments below 229 bp in the same 
target gene sequence. Similarly two amplicons, one of 218 bp length (encoding part of mitochondrial ATPase 6 
gene, ID 4508, and mitochondrial ATPase 8 gene, ID 4509) and the second one of 78 bp length (encoding part of 
mitochondrial ATPase 8 gene) for calculation of cf mt-DNA integrity index 218/78 (I218/78) were chosen. The assay 
was designed in a way that the forward primer and the probe were the same for each pair of amplicons, whereas 
two different reverse primers were used. Both, GAPDH97 and MTATP78 primers and corresponding probes were 
described and successfully used in previous studies79. The primers for longer sequences (GAPDH229 primer and 
MTATP218 primer) were planned using Primer3 software (Table 4). qPCR was carried out in 20 μL of total reaction 
volume containing 6.5 μL H2O, 10 μL TaqMan® Universal PCR Master Mix (Applied Biosystems, Branchburg, 
New Jersey, USA), 0.25 μL of each of the two matched primers (one forward and one reverse primer for longer 

Figure 1.  Overview of the study design. ECG -electrocardiography, FVC – forced vital capacity, FEV1 – forced 
exhaled volume in the first second, VO2max – maximal oxygen consumption, fMLP –n-formyl-methionyl-
leucyl-phenylalanine, cfDNA – cell free DNA, PCR – polymerase chain reaction. VO2max was measured by a 
continuous incremental maximal exercise test using programmable treadmill with gas exchange analysis system 
and 12-lead wireless ECG at day 1st. Afterwards volunteers performed treadmill run to volitional exhaustion 
at speed corresponding to 70% of their personal VO2 max at days 7th, 10th and 13th. Volitional exhaustion was 
defined as volunteer inability to maintain the required speed of running (exercise intensity) or its wish to stop 
the test.
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amplicon or one forward and one reverse primer for shorter amplicon) (Sigma-Aldrich), 1 μL of a FAM-labeled 
MT-ATP 8-probe or 1 μL of a MVIC-labeled GAPDH-probe (both probes from Applied Biosystems, Branchburg, 
New Jersey, USA), and 2 μL of TE buffer containing cfDNA isolated from plasma. The final concentrations of 
primers and probes were 0.6 µmol/L and 0.4 µmol/L, respectively. Negative control samples received 2 μL of TE 
buffer without cfDNA from plasma. Reaction was done in duplicate and performed using the 7900 HT Real-time 
PCR System (Applied Biosystems) under the following conditions: an initiation step at 50 °C for 2 min., followed 
by a first denaturation at 95 °C for 10 min., then 40 cycles at 95 °C for 15 s. and annealing at 60 °C for 1 min. Serial 
dilutions of human genomic DNA (Roche) (final concentrations from 0.5 ng/mL to 5000 ng/mL) were used to 
construct the calibration curve (r2 = 0.9996) for measurement of PCR products.

Resting and fMLP-induced luminol enhanced whole blood chemiluminescence.  The resting 
(rLBCL) and fMLP-induced LBCL (fMLP-LBCL) reflecting ROS production by circulating phagocytes were 
measured according to the method of Kukovetz et al.21 with some modifications31.
Briefly, 30 µL of venous blood (collected into vacutainer tubes with EDTA) was initially diluted with 1 mL of 
mixture solution prepared fresh before the assay and containing 127.5 µg/mL of luminol31. Then 103 µL of diluted 
blood was added to 797 µL of mixture solution (to obtain a final blood dilution of 300 times), placed in a mul-
titube luminometer (AutoLumat Plus LB 953, Berthold, Germany) equipped with a Peltier-cooled detector to 
ensure high sensitivity, and a low and stable background noise signal, and incubated for 15 min. at 37 °C in the 
dark. Then 100 µL of the control solution (solvent for fMLP) or 100 µL of fMLP solution (final agonist concentra-
tion in the sample of 2 × 10−5 mol/L) for measurement of rLBCL and fMLP-LBCL was added by automatic dis-
pensers and the total light emission was automatically measured for 120 seconds. Individual results were obtained 
as the mean of triplicate experiments and rLBCL and fMLP-LBCL was expressed in relative light units (RLU) per 
104 phagocytes (PMNs and monocytes) present in the assayed sample31.

Statistical analysis.  Results are expressed as a mean (SD) and median (interquartile range). Analysis of 
variance (ANOVA) for repeated observations (parametric test) or Friedman’s ANOVA (non parametric test) was 
applied for the assessment of changes in variables over time (before and after three consecutive exercise bouts) 
depending on data distribution which was tested with Shapiro-Wilk’s W test. In case of statistically significant 
ANOVA, the post hoc analyses were done with Scheffe’s test or post hoc analysis for Friedman’s ANOVA (multiple 
comparisons at 2 different time points). Correlations between variables were determined using Spearman’s ƍ. A p 
value < 0.05 was considered significant.
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