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Abstract

Umbrella trials have been suggested to increase trial conduct efficiency when investigating

different biomarker-driven experimental therapies. An overarching platform is used for

patient screening and subsequent subtrial allocation according to patients’ biomarker status.

Two subtrial allocation schemes for patients with a positive test result for multiple biomark-

ers are (i) the pragmatic allocation to the eligible subtrial with the currently fewest included

patients and (ii) the random allocation to one of the eligible subtrials. Obviously, the subtrials

compete for such patients which are consequently underrepresented in the subtrials. To

address questions of the impact of an umbrella design in general as well as with respect to

subtrial allocation and analysis method, we investigate an umbrella trial with two parallel

group subtrials and discuss generalisations. First, we analytically quantify the impact of the

umbrella design with random allocation on the number of patients needed to be screened,

the biomarker status distribution and treatment effect estimates compared to the corre-

sponding gold standard of an independent parallel group design. Using simulations and real

data, we subsequently compare both allocation schemes and investigate weighted linear

regression modelling as possible analysis method for the umbrella design. Our results show

that umbrella designs are more efficient than the gold standard. However, depending on the

biomarker status distribution in the disease population, an umbrella design can introduce dif-

ferences in estimated treatment effects in the presence of an interaction between treatment

and biomarker status. In principle, weighted linear regression together with the random allo-

cation scheme can address this difference though it is difficult to assess if such an approach

is applicable in practice. In any case, caution is required when using treatment effect esti-

mates derived from umbrella designs for e.g. future trial planning or meta-analyses.
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Introduction

The gold standard trial design to investigate experimental treatments is the conduct of inde-

pendent parallel group trials, i.e. one trial for each experimental treatment (upper panel of

Fig 1). Ideally, such independent trials do not influence each other during trial conduct, i.e.

patients are always eligible for only one of these independent trials. To increase trial conduct

efficiency, a platform trial uses a platform to screen patients for several subtrials. If these sub-

trials investigate different biomarker-driven experimental treatments within one disease type,

such a platform trial is called “umbrella trial” (lower panel of Fig 1; e.g. [1, 2]). The combined

individual test results for the biomarkers under investigation (biomarker status) are used to

allocate the patient to a subtrial. Conceptually, umbrella trials have been extended to the

option of stopping or adding subtrials related to targeted treatments—especially in oncology

(e.g. [3–6]).

A challenge of umbrella designs that investigate single targeted treatments arises if patients

have a positive test result for multiple biomarkers under investigation. In this case, the patient

is eligible for more than one subtrial. However, this patient can (usually) only be allocated to

one of the subtrials. Hence, such patients will be underrepresented in some (or even all)

umbrella subtrials. Further hampering the interpretation, the scheme for allocating such

patients to subtrials may also vary. Despite pragmatism and plausibility of the umbrella design

idea, we realised that little is known about statistical properties of umbrella trials and possible

allocation schemes.

This study has three objectives. First, we analytically quantify the impact of conducting an

umbrella trial compared to the corresponding gold standard of independent parallel group tri-

als (Section “Impact of the umbrella design with the random allocation scheme”; details about

Fig 1. Trial designs. An example for independent parallel group trials (gold standard trial design; upper panel) and the

corresponding umbrella parallel group subtrials (lower panel). All patients in the Bi trial and in the Bi subtrial,

respectively, exhibit a positive test result for biomarker Bi (i = 1, . . ., m). Patients in the B− subtrial exhibit negative test

results for all Bi. Screen: screening platform, R: randomisation, EXPi: experimental treatment related to Bi, STD:

standard treatment.

https://doi.org/10.1371/journal.pone.0237441.g001
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the investigated study design scenarios are provided in the Section “Investigated study design

scenarios”). To quantify design differences, we compare the number of patients needed to be

screened, the biomarker status distribution and the treatment effect estimates. Secondly, we

contrast two subtrial allocation schemes in a simulation study and in real data with respect to

the number of patients needed to be screened and biomarker status distribution (Section

“Impact of the pragmatic subtrial allocation scheme and the analysis method”). Thirdly, we

propose possible analysis solutions to obtain similar treatment effect estimates for the gold

standard and the umbrella design based on simulations and on real data (also Section “Impact

of the pragmatic subtrial allocation scheme and the analysis method”). Finally, we discuss our

results, derive practical recommendations and generalisations beyond the two-biomarker set-

ting and their translation to other master protocols (Section “Discusion”). R source code for

the analytical derivations and for the simulation study is available as S1 File.

Investigated study design scenarios

As in Fig 1, we assume one standard treatment—which could also be placebo—and two experi-

mental targeted treatments linked to two different, binary biomarkers Bi (i = 1, 2). Let πi be the

prevalence of a positive test result for Bi. We denote the patient’s combined test results of all

biomarkers as the patient’s biomarker status. Let Bþi be an indicator for a positive test result for

Bi. Then, the tuple ðBþ
1
;Bþ

2
Þ denotes the biomarker (positive) status of a patient and

P½ðBþ
1
;Bþ

2
Þ� the probability of having a specific biomarker status as a screened but not yet

included patient. This probability corresponds to the expected biomarker status distribution in

the (disease) population. This distribution is given by

P½ð1; 1Þ� ¼ p1 p2 þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 ð1 � p1Þ p2 ð1 � p2Þ

p

P½ð1; 0Þ� ¼ p1 � P½ð1; 1Þ�

P½ð0; 1Þ� ¼ p2 � P½ð1; 1Þ�

P½ð0; 0Þ� ¼ 1 � p1 � p2 þ P½ð1; 1Þ�

ð1Þ

with the ϕ coefficient as correlation (dependency) measure between the two biomarkers (ϕ 2
[−1, 1]). For a randomly selected patient, ϕ corresponds to the correlation between the binary

random variables Bþ
1

and Bþ
2

, i.e.

� ¼
E½Bþ

1
�E½Bþ

2
� � E½Bþ

1
Bþ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Bþ

1
�Var½Bþ

2
�

p ð2Þ

with expectation E[�] and variance Var[�].

To evaluate the efficacy of the experimental treatments, each experimental treatment is

compared to the standard treatment with a 1:1 treatment arm allocation scheme for a nor-

mally distributed outcome. We consider an independent (randomised controlled) trial

design as well as corresponding umbrella trial designs. Hereinafter, we will use the term

“(sub-) trial” for combined consideration of both the independent trial and the corre-

sponding umbrella subtrial. The patient’s (sub-) trial allocation is provided in the Subsec-

tions “Independent trial design” and “Umbrella trial design”. The (sub-) trials are

analysed separately and comparisons between the (sub-) trials (e.g. comparisons of exper-

imental treatments) are not intended. Other analyses strategies—in particular for

umbrella trials—are discussed in the Section “Discussion”. To analyse each (sub-) trial,
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we consider un-weighted and weighted mean group differences. While the former repre-

sents a standard measure, weighting is a suggestion to generate similar treatment effect

estimates for the independent trial and the corresponding umbrella subtrial by mimicking

the biomarker status distribution of the independent trial. Details on the weighted regres-

sion approach and on the calculation of the weights in a practical application (with two or

more subtrials) are provided in S2 Note.

Independent trial design

As gold standard, we consider two independent parallel group trials which we denote “trial 1”

and “trial 2”. We assume that the trials do not compete for eligible patients. This means that

the trials run independently, a trial cannot be influenced by the respective other trial and,

hence, the patient’s trial allocation is biunique. Patients are eligible for and allocated to trial i if

they exhibit a positive test result for biomarker Bi and discarded otherwise. Trial i recruits

until its planned total sample size Ni is reached.

Umbrella trial design

We compare the gold standard of the Subsection “Independent trial design” to an umbrella

trial with two parallel group subtrials which we denote “subtrial 1” and “subtrial 2”. Let both

subtrials start at the same point in time. Subtrial i includes patients until its planned subtrial

sample size of Ni is reached. The umbrella trial closes if recruitment for both subtrials is

completed.

In an umbrella trial, patients with a positive test result for biomarker Bi are eligible for

subtrial i. Patients with a positive test result for Bi only are allocated to subtrial i if this sub-

trial is still recruiting and discarded otherwise. Unlike the independent trial design, the two

subtrials compete for patients with a positive test result for both biomarkers due to the joint

screening platform. We investigate two subtrial allocation schemes for such patients that

have been suggested: random and pragmatic allocation [2, 7]. Under the random allocation

scheme, allocation of a patient with a double positive test result to one of the two subtrials

happens with equal probability. Under the pragmatic allocation scheme, such a patient is

allocated to the subtrial that has included fewer patients at the time of allocation. In case of

an already completed recruitment for one subtrial, patients with a double positive test result

are allocated to the still recruiting subtrial for both allocation schemes. In the Section “Dis-

cussion”, we discuss generalisations to more than two biomarkers/experimental

treatments.

Impact of the umbrella design with the random allocation scheme

In this section, we derive analytical solutions for the number of patients needed to be screened,

the biomarker status distribution and the expected treatment effect for the independent trials

and the umbrella subtrials with the random allocation scheme. These formulae are subse-

quently illustrated.

Number of patients needed to be screened

The expected number of patients E[Nscreen] that need to be screened is a measure that can be

used to compare trial designs. The number of patients needed to be screened in an indepen-

dent trial follows a negative binomial distribution, and, hence, for the independent trial design,
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the total number across both trials is

E Nscreen½ � ¼
N1

p1

þ
N2

p2

ð3Þ

for given trial size Ni and prevalence πi of a positive test result for biomarker Bi [8]. This holds

because the two trials are independent.

For the umbrella design with the random allocation scheme, the subtrials compete for

patients with a positive test result for both biomarkers. Consequently, the prevalence of a posi-

tive test result for biomarker Bk influences the expected number of patients that must be

screened for subtrial i (i 6¼ k) and vice versa. Let r 2 [0, 1] denote the proportion of patients

with a positive test result for both biomarkers that are allocated to subtrial 1 when both sub-

trials are recruiting (here: r = 0.5). Let q0 denote the proportion of patients in the (disease)

population that are eligible for the trial, i.e. exhibit a positive test result for at least one bio-

marker. It is

q0 ¼ 1 � P½ð0; 0Þ� ð4Þ

Let pð1Þ1 denote the probability that a patient who is eligible for the umbrella trial is included

in subtrial 1 when both subtrials are recruiting. It is

pð1Þ1 ¼
p1 � ð1 � rÞP½ð1; 1Þ�

q0

ð5Þ

Let Eð1Þi denote the expected number of patients that are included in the trial during the

time segment when patients are recruited for both subtrials in case that subtrial i closes earlier

than subtrial k (i, k = 1, 2, i 6¼ k). Then,

Eð1Þ1 ¼ 1þ
1 � pð1Þ1

pð1Þ1

Ipð1Þ
1

ðN1 þ 1;N2 � 1Þ

Ipð1Þ
1

ðN1;N2Þ

 !

N1

Eð1Þ2 ¼ 1þ
pð1Þ1

1 � pð1Þ1

I
1� pð1Þ

1

ðN2 þ 1;N1 � 1Þ

I
1� pð1Þ

1

ðN2;N1Þ

 !

N2

ð6Þ

with the regularized incomplete beta function Ip(�, �) for p 2 fpð1Þ1 ; 1 � pð1Þ1 g. Analogously, let

Eð2Þi denote the expected number of patients with a positive test result for at least one bio-

marker during the time segment where subtrial i is already closed. Then,

Eð2Þ1 ¼
q0

p2

N2 �
1 � pð1Þ1

pð1Þ1

Ipð1Þ
1

ðN1 þ 1;N2 � 1Þ

Ipð1Þ
1

ðN1;N2Þ
N1

 !

Eð2Þ2 ¼
q0

p1

N1 �
pð1Þ1

1 � pð1Þ1

I
1� pð1Þ

1

ðN2 þ 1;N1 � 1Þ

I
1� pð1Þ

1

ðN2;N1Þ
N2

 ! ð7Þ

Let X be the number of patients included in subtrial 2 at the moment of subtrial 1’s closing

and Y the number of patients included in subtrial 1 at the moment of subtrial 2’s closing.

Then, P[X< N2] and P[Y< N1] = 1−P[X< N2] denote the probability that subtrial 1 closes
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earlier than subtrial 2 and vice versa, respectively. It holds that

P½X < N2� ¼ Ipð1Þ
1

ðN1;N2Þ

P½Y < N1� ¼ I
1� pð1Þ

1

ðN2;N1Þ
ð8Þ

Then, the expected total number of screened patients for the umbrella trial is given by

E½Nscreen� ¼

(

Eð1Þ1 þ Eð2Þ1

� �
P½X < N2� þ Eð1Þ2 þ Eð2Þ2

� �
P½Y < N1�g

1

q0

ð9Þ

For details on the derivation we refer to S1 Note.

A comparison of Eq (9) with Eq (3) indicates that fewer patients are discarded by an

umbrella trial compared to the independent trial design. The gain in efficiency of an umbrella

trial depends on the prevalence of a positive test for the biomarkers, i.e. an increasing similarity

in the prevalence of the biomarkers induces an increased efficiency gain with respect to the

number of discarded patients because the time span where patients are recruited for both sub-

trials is larger in this case.

Biomarker status distribution

The expected biomarker status distribution in the (disease) population as provided in Eq (1)

translates into the distributions in the (sub-) trials. The (sub-) trial-specific distribution is

related to the conditional probability for a specific biomarker status given the considered (sub-

) trial. For the independent trials, these conditional probabilities are

P½ð1; 0Þjtrial 1� ¼ 1 �
P½ð1; 1Þ�
p1

P½ð1; 1Þjtrial 1� ¼
P½ð1; 1Þ�
p1

P½ð1; 1Þjtrial 2� ¼
P½ð1; 1Þ�
p2

P½ð0; 1Þjtrial 2� ¼ 1 �
P½ð1; 1Þ�
p2

ð10Þ

For the umbrella design with the random allocation scheme, let pð1Þ0;i denote the probability

that a patient is allocated to subtrial i in case both subtrials are recruiting, i.e.

pð1Þ0;1 ¼ p1 � ð1 � rÞP½ð1; 1Þ�

pð1Þ0;2 ¼ p2 � r P½ð1; 1Þ�
ð11Þ
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Then, the conditional probabilities for the umbrella subtrials are

P½ð1; 0Þjsubtrial 1� ¼
P½ð1; 0Þ�

N1

(
N1

pð1Þ0;1

P½X < N2�

þ
Eð1Þ2 � N2

pð1Þ0;1

þ
Eð2Þ2

q0

 !

P½Y < N1�

)

P½ð1; 1Þjsubtrial 1� ¼
P½ð1; 1Þ�

N1

(
r N1

pð1Þ0;1

P½X < N2�

þ
r ðEð1Þ2 � N2Þ

pð1Þ0;1

þ
Eð2Þ2

q0

 !

P½Y < N1�

)

P½ð1; 1Þjsubtrial 2� ¼
P½ð1; 1Þ�

N2

(
ð1 � rÞN2

pð1Þ0;2

P½Y < N1�

þ
ð1 � rÞ ðEð1Þ1 � N1Þ

pð1Þ0;2

þ
Eð2Þ1

q0

 !

P½X < N2�

)

P½ð0; 1Þjsubtrial 2� ¼
P½ð0; 1Þ�

N2

(
N2

pð1Þ0;2

P½Y < N1�

þ
Eð1Þ1 � N1

pð1Þ0;2

þ
Eð2Þ1

q0

 !

P½X < N2�

)

ð12Þ

For details on the derivations we refer to S1 Note.

For given biomarker status ðBþ
1
;Bþ

2
Þ and (sub-) trial i, the difference in the biomarker status

distribution between the umbrella subtrial i and the corresponding independent trial i is given

by

DPðBþ
1
;Bþ

2
Þ;i≔P½ðBþ

1
;Bþ

2
Þ j subtrial i� � P½ðBþ

1
;Bþ

2
Þ j trial i� ð13Þ

The results provided in Eqs (10) and (12) indicate that the proportion of patients with a

double positive test result is smaller in the umbrella subtrials relative to the corresponding

independent trials. The prevalence πk (i 6¼ k) drives this proportion in (sub-) trial i. It also

becomes clear that the distributions depend on the recruitment of the subtrials, i.e. the dura-

tion in which only one subtrial is recruiting. Consequently, the similarity of the distributions

in subtrial i and trial i depends on the difference in recruitment time between the subtrials.

The larger this difference, the more similar are the distributions of the longer recruiting sub-

trial and the corresponding trial and vice versa for the other (sub-) trial.

Estimated treatment effect

Based on the differences in the biomarker status distribution between corresponding indepen-

dent trial and umbrella subtrial, we may also expect an impact on the estimated treatment

effects if treatment effects differ between the different subpopulations defined by the four pos-

sible biomarker status, i.e. in the presence of an interaction between biomarker status and

treatment. More precisely, if the treatment effect in patients with a positive test result for B1
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depends on the status of the other biomarker B2 (or vice versa), the effect estimation in subtrial

1 (and subtrial 2, respectively) of the umbrella design will differ from results derived in the cor-

responding independent trial due to the underrepresentation of patients with a positive test

result for both biomarkers.

Let δi denote the expected treatment effect against a standard treatment group in the inde-

pendent trial i. Furthermore, let dðBþ
1
;Bþ

2
Þ;i denote the corresponding biomarker status-depen-

dent expected treatment effect in trial i. Then, the difference between the expected treatment

effect in the umbrella subtrial i and in the corresponding independent trial i—denoted by

ΔXi—is given by

DX1≔DPð1;0Þ;1 dð1;0Þ;1 þ DPð1;1Þ;1 dð1;1Þ;1 for subtrial 1 against trial 1

DX2≔DPð0;1Þ;2 dð0;1Þ;2 þ DPð1;1Þ;2 dð1;1Þ;2 for subtrial 2 against trial 2
ð14Þ

with DPðBþ
1
;Bþ

2
Þ;i from Eq (13).

Accordingly, differences in estimated treatment effects between independent trials and

umbrella subtrials depend on both differences in the biomarker status distributions and on

the magnitude by which the treatment effects depends on the biomarker status. A difference

in treatment effect estimates between corresponding independent trials and umbrella sub-

trials only arises if a patient’s response to the Bi-related treatment depends on the patient’s

Bk status (i 6¼ k). Both larger and smaller treatment effect estimates may result for umbrella

subtrials relative to the corresponding independent trial. Obviously, such differences also

have an impact on the statistical (error) probabilities of test statistics because it changes the

difference between the estimated value and the expected value under the null hypothesis.

Thus, both type I and type II error probabilities can be affected. In other words, type I error

and hence the validity of a confirmatory conclusion from subtrial i will be affected in the

presence of an interaction between treatment and biomarker status in patients with a posi-

tive test result for Bi.

Illustration of the analytical derivations

To illustrate practically the analytical derivations, we choose prevalence constellations from

studies on breast cancer [9, 10] and pharmacogenomics, e.g. [11]. Let be

p1 2

(
f0:012; 0:024; 0:120; 0:240g for p2 ¼ 0:250

f0:012; 0:024g for p2 ¼ 0:025

We denote a prevalence of a positive test result for biomarker Bi “low” if πi 2 {0.012, 0.024,

0.025} and “high” otherwise. Furthermore, we assume independence of the biomarkers (ϕ =

0), equal sized (sub-) trials (N1 = N2 ≕ N), equal sized treatment arms (each of size 0.5N) and

equal treatment effects in the trials (δ1 = δ2 ≕ δ). In practice, these assumptions will probably

not hold, especially for small sample sizes, but this is not relevant for this illustration. Then, we

assume for the treatment effect δ that (i) a larger individual outcome is equivalent to a better

patient’s response to the treatment, (ii) patients with a single positive test result respond better

(in terms of assumption (i)) to treatment than those with a double positive test result and (iii)

it can be detected by Student’s t-test with a comparison-wise power of 0.8 at a two-sided signif-

icance level of 0.05 for a common standard deviation of 1 in an independent trial for given

trial size N. We refer to the Section “Discussion” for an in-depth discussion of these
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assumptions. Thus, the treatment effect δ is

d ¼

(
0:57 for N ¼ 100

0:36 for N ¼ 250

detectable with the given N. If we now arbitrarily fix parts of the expected treatment effect as

provided in Table 1 such that δ results for each independent trial, we can solve

d ¼ m1;EXP � m1;STD

¼ mð1;0Þ;1;EXP P½ð1; 0Þjtrial 1� þ �
d

2

� �

P½ð1; 1Þjtrial 1�

� �

� ð0:2P½ð1; 0Þjtrial 1� þ 0P½ð1; 1Þjtrial 1�Þ

ð15Þ

for μ(1,0),1,EXP in the independent trial 1 and

d ¼ m2;EXP � m2;STD

¼ mð0;1Þ;2;EXP P½ð0; 1Þjtrial 2� þ
d

2
P½ð1; 1Þjtrial 2�

� �

� ð0:2 P½ð0; 1Þjtrial 2� þ 0P½ð1; 1Þjtrial 2�Þ

ð16Þ

for μ(0,1),2,EXP in the independent trial 2 with μi,EXP and μi,STD denoting the expected outcome

in the independent trial i for patients receiving the experimental and standard treatment,

respectively. Here, mðBþ
1
;Bþ

2
Þ;i;EXP denotes the expected outcome in the independent trial i for

patients with biomarker status ðBþ
1
;Bþ

2
Þ receiving the experimental treatment. Note that the

impact of the biomarker status is larger in (sub-) trial 1 induced by the reverse effect on

patients with a positive test result for both biomarkers. This assumption may be unrealistic in

practice but is useful for this illustration.

The first aspect of the analytical derivations is the number of screened patients. A measure

of efficiency of a trial design is the ratio of discarded (screened but not included) to included

patients (see Fig 2). Of course, this ratio varies with the prevalence of positive test results for

the biomarkers. If the prevalence of positive test results is low for both biomarkers or for both

high, the application of an umbrella design reduces the ratio by one third to one half compared

to the independent trial design. Otherwise, it reduces the ratio by 4 to 8%.

The second aspect of the analytical investigation is the change in the biomarker status dis-

tribution introduced by the umbrella design (see Fig 3). If the prevalence of a positive test

result is low for biomarker B1 and high for B2, the frequency of patients with a positive test

Table 1. Assumed biomarker status- and (sub-) trial-specific individual outcomes.

Biomarker status ðBþ
1
;Bþ

2
Þ (Sub-) trial 1 (Sub-) trial 2

experimental treatment standard treatment experimental treatment standard treatment

(1, 0) μ(1,0),1,EXP 0.2 – –

(1, 1) � d

2
0.0 d

2
0.0

(0, 1) – – μ(0,1),2,EXP 0.2

Bi (i = 1, 2) denotes the biomarker i, Bþi is an indicator for a positive test result for biomarker Bi and ðBþ
1
;Bþ

2
Þ denotes the biomarker status. Let δ denote the given

expected treatment effect in the independent trials. μ(1,0),1,EXP and μ(0,1),2,EXP denote the expected outcome of patients with a single positive test result receiving the

experimental treatment in (sub-) trial 1 and 2, respectively, and are provided in Eqs (15) and (16). All other values are arbitrarily fixed.

https://doi.org/10.1371/journal.pone.0237441.t001
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result for both biomarkers in subtrial 1 decreases by 1 to 4% compared to trial 1. Otherwise,

the decrease in subtrial 1 is between 19 and 48%. In subtrial 2, we observe a reduction by 40 to

50% compared to trial 2. Obviously, this is directly related to the probability that a specific sub-

trial closes earlier than the other subtrial (see Fig 4). The question about which subtrial is

expected to close first can be answered biunique except for the case of two very similar preva-

lent biomarkers.

Fig 2. Ratio of discarded to included patients in the independent trial design and in the umbrella design with the random allocation scheme. πi
(i = 1, 2) denotes the prevalence of a positive test result for biomarker Bi. A “discarded patient” is a patient that was screened but not included in a (sub-

) trial. The ratio is derived as E[Nscreen]−2N divided by 2N with E[Nscreen] from Eqs (3) and (9), respectively. #: number of.

https://doi.org/10.1371/journal.pone.0237441.g002
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The third aspect are the differences in the expected treatment effect (see Fig 5). Given that

they only depend on probabilities and expectations (see Eq (14)) there is no sample size depen-

dency except that the expected effect size δ has an impact on sample size planning (i.e. larger

sample size for a smaller expected effect). If the prevalence of a positive test result is low for

biomarker B1, the relative difference is below 2%. If the prevalence of a positive test result is

high for both biomarkers, the difference between the expected treatment effect increases to 9

to 21% between trial 1 and subtrial 1 as well as to 3 to 7% between trial 2 and subtrial 2.

Impact of the pragmatic subtrial allocation scheme and the

analysis method

In the following, we use a simulation study and real data from a randomised controlled trial

(RCT) to (a) compare the random and the pragmatic subtrial allocation schemes in the

umbrella designs and to (b) investigate weighted linear regression as a possible subtrial analysis

method that is able to handle the design impact. Details on the weighted linear regression are

provided in S2 Note.

Data sets and analysis setup

Simulation study. We revisit the example from the Subsection “Illustration of the analyti-

cal derivations” in parts. For the (sub-) trials, we again assume equal sample sizes (N1 = N2 ≕
N) and equal treatment effects (δ1 = δ2 ≕ δ). The biomarker status- and (sub-) trial-specific

outcomes are summarised in Table 1. The biomarker status distributions in the independent

trial design and in the umbrella designs are estimated simulation-based as the mean propor-

tions across 10, 000 simulation runs and then taken as fixed expectation across the simulation

Fig 3. Proportion of patients with a positive test result for both biomarkers in the independent trial design and in the umbrella design with the

random allocation scheme. πi (i = 1, 2) denotes the prevalence of a positive test result for biomarker Bi. The underlying formulae are given in Eqs (10)

and (12). For each (sub-) trial, the associated prevalence is indicated in brackets next to the (sub-) trial number above the main plot region.

https://doi.org/10.1371/journal.pone.0237441.g003
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runs. The regression weights are calculated based on these a priori fixed distributions accord-

ing to Equation (S25).

To compare the subtrial allocation schemes, we only consider biomarkers with a high prev-

alence of a positive test result, i.e. the prevalence tuples (0.12, 0.25) and (0.24, 0.25). Again, we

assume for the expected treatment effect in the independent trials

d ¼

(
0:57 for N ¼ 100

0:36 for N ¼ 250

We compare the number of patients needed to be screened and the biomarker status distri-

bution. For the number of patients needed to be screened, we again consider the efficiency

Fig 4. Probability that subtrial 1 closes earlier than subtrial 2 of the umbrella design with the random allocation scheme for varying

prevalence of the two biomarkers. πi (i = 1, 2) denotes the prevalence of a positive test result for biomarker Bi. The underlying formula is given in

Eq (8).

https://doi.org/10.1371/journal.pone.0237441.g004

PLOS ONE Patient allocation in umbrella designs

PLOS ONE | https://doi.org/10.1371/journal.pone.0237441 August 14, 2020 12 / 24

https://doi.org/10.1371/journal.pone.0237441.g004
https://doi.org/10.1371/journal.pone.0237441


measure of a trial design describing the ratio of discarded (screened but not included) to

included patients.

To compare both (sub-) trial analysis methods (un-weighted and weighted mean group dif-

ferences), we focus only on the (sub-) trial size N of 100, the expected treatment effect δ of 0.57

in the independent trials and the prevalence tuple (0.12, 0.24). The difference in effect size esti-

mates is the difference between the mean estimated group difference and δ across all simula-

tion runs for each (sub-) trial.

The simulation study comprises three main steps: (1) screening and (sub-) trial allocation,

(2) treatment arm allocation and individual outcome assessment and (3) (sub-) trial analysis.

In step (1), we simulate the individual biomarker status ðBþ
1
;Bþ

2
Þ according to the expected

biomarker status distribution. We then allocate the patient to the appropriate (sub-) trial or

discard the patient if necessary. Once all (sub-) trials are closed—i.e. step (2) –, we randomly

assign (with equal probability) the patients to the (sub-) trial-specific experimental or standard

treatment arm. Then, we simulate the individual patient’s outcome as normally distributed

with a standard deviation of 1 and a mean according to biomarker status and (sub-) trial

(Table 1). Finally in step (3), we analyse the (sub-) trials separately. We ran the simulation 1,

000 times and report means as summaries of the runs. All simulations and analyses were done

with R (version 3.4.1). We applied the function lm() from the stats package for the

weighted linear regression [12].

Real data application. We use data of an RCT to mimic the independent as well as the

umbrella trial designs given in the Subsections “Independent trial design” and “Umbrella trial

design”. The underlying RCT is MAXSEP [13]; we refer to the original publications for details.

In short, MAXSEP was a randomized, open-label, multi-centre, parallel group trial in which

patients with severe sepsis or septic shock were randomised to receive either moxifloxacin and

meropenem or only meropenem. The primary endpoint was the mean sequential organ failure

Fig 5. Difference in the estimated treatment effects between an independent trial and the corresponding umbrella subtrial with the random

allocation scheme. The impact of the biomarker status is larger in (sub-) trial 1. The difference in the treatment effect estimate (ΔXi, i = 1, 2) is given in

Eq (14). The treatment effect estimate of subtrial i equals δ+ ΔXi. N denotes the (sub-) trial size and δ the true treatment effect in the corresponding

independent trial. πi denotes the prevalence of a positive test result for biomarker Bi. For each subtrial, the associated prevalence is indicated in brackets

next to the (sub-) trial number above the main plot region.

https://doi.org/10.1371/journal.pone.0237441.g005
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assessment (SOFA) score [14] over (maximal) 14 days after randomisation. The SOFA score

ranges between 0 and 24 points and larger values indicate worse outcome. 551 patients were

included in the final analysis.

As in the original data set, we compare the mean SOFA score between the two treatment

groups. For illustration of the considered trial designs, we use two biomarkers frequently

investigated in sepsis research: lactate and C-reactive protein (CRP). The biomarker-specific

positive test results are defined as

baseline lactate value>2 mmol/l for biomarker 1

baseline CRP value>128 mg/l for biomarker 2

according to [15, 16]. Note that these cut-off values were derived for other research ques-

tions than therapeutic studies. We exclude patients with missing values in one of the above

defined variables from analysis. An overview of the reduced data is given in Table 2. The esti-

mated mean difference (with 95% confidence interval) in the mean SOFA score between the

treatment groups in the reduced data set is 0.35 (−0.45, 1.16) which is similar to the original

publication [13].

From this reduced data set, we sample 1, 000 (bootstrap) samples with replacement (i.e. we

simulate data sets from the empirical distribution of the trial data). For the (sub-) trials, we

again assume equal sample sizes (N1 = N2 ≕ N) with N 2 {50, 100, 250}, treatment groups of

the same size and apply the design definitions from the Subsections “Independent trial design”

and “Umbrella trial design”. Both umbrella trials (with its subtrials), i.e. one with the random

and one with the pragmatic allocation scheme, and the corresponding independent trials are

built from the same bootstrap sample so that these designs are directly comparable. The (sub-)

trials are analysed with un-weighted and weighted linear regression. The regression weights

are 1 in the independent trial design. The regression weights in case of the umbrella designs

are calculated based on the proportions observed in the current umbrella trial (see S2 Note for

details). For design comparison, we again report (i) the ratio of discarded (screened but not

included) to included patients, (ii) the proportions of patients with a positive test result for

both biomarkers and (iii) the regression coefficients (as estimated treatment effect). Further-

more, we compare the means across the bootstrap samples with the corresponding analytical

Table 2. Characteristics of the patients in the reduced data set in the real data application—Overall as well as treatment group-specific.

Characteristic Overall Treatment 1 Treatment 2

Number of patients 359 179 180

Baseline

Mean SOFA score 7.9 (3.9) 8.1 (4.0) 7.7 (3.8)

Lactate, in mmol/l 2.7 (1.6, 4.7) 2.6 (1.6, 4.4) 2.7 (1.6, 4.8)

CRP, in mg/l 199.0 (111.8, 288.1) 200.0 (110.7, 303.0) 198.5 (112.9, 271.1)

Biomarkers

Lactate > 2 mmol/l 229 (63.8%) 113 (63.1%) 116 (64.4%)

CRP > 128 mg/l 247 (68.8%) 123 (68.7%) 124 (68.9%)

ϕ: lactate—CRP -0.09 -0.14 -0.05

Treatment 1 corresponds to the treatment with moxifloxacin and meropenem and treatment 2 to the treatment with only meropenem. The biomarker dependence is

quantified by the ϕ coefficient. For the mean SOFA score, mean and standard deviation are reported. For the remaining characteristics, median accompanied by the first

and third quartile or absolute and relative frequencies are provided. Abbreviations: CRP—C-reactive protein, SOFA—sequential organ failure assessment.

https://doi.org/10.1371/journal.pone.0237441.t002

PLOS ONE Patient allocation in umbrella designs

PLOS ONE | https://doi.org/10.1371/journal.pone.0237441 August 14, 2020 14 / 24

https://doi.org/10.1371/journal.pone.0237441.t002
https://doi.org/10.1371/journal.pone.0237441


expectations from the Section “Impact of the umbrella design with the random allocation

scheme” applied to the reduced data set.

Results

Simulation study. In an umbrella trial, the application of the pragmatic allocation scheme

is more efficient than the application of the random allocation scheme (Table 3). The relative

decrease of the ratio of the number of discarded patients to the number of included patients is

about 5 to 8%. However, the choice of the subtrial allocation scheme within the umbrella

design has a much smaller impact on the number of screened patients than the switch from

the independent trial design to an umbrella design. In the latter case, the reductions may range

between 33 and 50% depending on prevalence constellations.

In an umbrella trial, the application of the pragmatic allocation scheme may lead to even

larger differences in the biomarker status distribution compared to the independent trials

(Table 4). Comparing the umbrella designs, the distributions are similar for the prevalence

tuple (0.24, 0.25). In contrast to the random allocation scheme, the application of the prag-

matic allocation scheme for the tuple (0.12, 0.25) leads to an inclusion of all patients with a

double positive test result in subtrial 1 at the cost of missing these patients completely in sub-

trial 2. Consequently, the distribution of subtrial 1 is identical to the distribution of trial 1.

In the independent trial design, both the un-weighted and weighted estimated group differ-

ences reflect the true treatment effect (Fig 6). In the umbrella design with the random alloca-

tion scheme, weighted linear regression results in estimates closer to the true treatment effect

of the corresponding independent trial. However, when relying on estimated un-weighted

Table 3. Ratio of discarded to included patients in the independent trial design as well as in both umbrella designs.

(π1, π2) Independent design Umbrella design

random allocation pragmatic allocation

(0.12, 0.25) 5.2 3.4 3.2

(0.24, 0.25) 3.1 1.4 1.3

πi (i = 1, 2) denotes the prevalence of a positive test result for biomarker Bi. A “discarded patient” is a patient that was screened but not included in a (sub-) trial. The

ratio is derived as Nscreen−2N divided by 2N. Nscreen denotes the mean number of screened patients across the simulation runs. There are 2N included patients in each

design. The ratios for the independent trial design and for the umbrella design with the random allocation scheme correspond to the ratios given in the Subsection

“Illustration of the analytical derivations” (Fig 3).

https://doi.org/10.1371/journal.pone.0237441.t003

Table 4. Proportion of patients with a positive test result for both biomarkers in the independent trial design as well as in both umbrella designs.

(π1, π2) (Sub-) trial Independent design Umbrella design

random allocation pragmatic allocation

(0.12, 0.25) 1 0.25 0.20 0.25

2 0.12 0.06 0.00�

(0.24, 0.25) 1 0.25 0.15 0.16

2 0.24 0.14 0.12

πi (i = 1, 2) denotes the prevalence of a positive test result for biomarker Bi. For the independent trial design and the umbrella design with the random allocation

scheme, the distributions correspond to those provided in the Subsection “Illustration of the analytical derivations” (Fig 3). The proportions are based on mean

proportions across the simulation runs.

� in case of rounding to four digits: 0.0002

https://doi.org/10.1371/journal.pone.0237441.t004
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mean group differences, the difference between the designs is larger in subtrial 1 in which the

effect of the B2 value on the patient’s response to the experimental treatment is stronger than

the respective effect in subtrial 2. Applying the pragmatic allocation scheme, subtrial 1 and

trial 1 results are identical because all patients with a double positive test result are assigned to

subtrial 1. Consequently, the weighting has no effect in subtrial 2 given that there are no

patients with a double positive test result in this subtrial.

Real data application. Results of five exemplary (bootstrap) samples are provided in S1

Table. Overall and as already demonstrated above, the umbrella design can reduce the propor-

tion of discarded (screened but not included) patients (S1 Fig) as well as shift the biomarker

status distribution (S2 Fig) compared to the corresponding independent trial design. This

design impact depends on the chosen subtrial allocation scheme. The impact of the shift in the

Fig 6. Difference in the estimated treatment effects between an independent trial and the corresponding umbrella

subtrial in the application of different analysis methods in the simulation study. The weights for the weighted

linear regression are given in equation (S25) in S2 Note. The biomarker status impact on the treatment response is

larger in (sub-) trial 1. ΔXi (i = 1, 2) is the difference between the mean treatment effect estimate across the simulation

runs and δ. δ denotes the true treatment effect in the corresponding independent trial. πi denotes the prevalence of a

positive test result for biomarker Bi. For each subtrial, the associated prevalence is indicated in brackets next to the

(sub-) trial number below the main plot region. indep.: independent trial design, random: umbrella trial design with

the random allocation scheme, pragm.: umbrella trial design with the pragmatic allocation scheme.

https://doi.org/10.1371/journal.pone.0237441.g006
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biomarker status distribution on the estimated treatment effect is given in Fig 7. Overall, the

weighting reduces the difference between the estimate from an umbrella subtrial and that from

the corresponding independent trial compared to the un-weighted approach. Note that, in a

particular trial, the weighting can increase the difference between the results from an umbrella

subtrial and those from the corresponding independent trial and the un-weighted result from

the umbrella trial can be close to the result from the independent trial design (see also S1

Table). Furthermore, the weighting (i.e. a deviation from equal weights) increases the variabil-

ity of the estimate and, hence, reduces the power. This is more pronounced in subtrial 2 in this

real data application. This aspect is directly related to the aspect of the error probabilities (Sub-

section “Estimated treatment effect”). It should further be noted that due to the weights being

estimated from the screening process and plugged-in in the weighted linear regression model,

type I error may be affected for smaller sample sizes (in contrast to a priori fixed weights).

A second aspect in this real data application was the comparison of the analytical deduc-

tions and the bootstrap means for the umbrella design with the random allocation scheme and

the corresponding independent trial design. If the dependence (correlation) between the bio-

markers (here: ϕ = −0.09 from the reduced data set) is known, the expected number of dis-

carded (screened but not included) patients (Subsection “Number of patients needed to be

screened”) and the expected number of patients with a positive test result for both biomarkers

Fig 7. Estimated treatment effects in the independent trial and in both umbrella trial designs in the application of different analysis methods in

the real data application. The estimated treatment effect corresponds to the regression coefficient. The calculation of the weights for the weighted

linear regression are given in S2 Note. The trial size N, the trial design, the respective subtrial and the analysis method are indicated. The distribution

across the 1, 000 bootstrap runs are provided.

https://doi.org/10.1371/journal.pone.0237441.g007
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(Subsection “Biomarker status distribution”) are similar to the mean of the bootstrap runs (S2

(a) and S2(b) Fig). If independence of the biomarker is assumed, the means from the bootstrap

runs are overestimated. In case of the expected estimated difference in the treatment effects,

the assumed true treatment effect was based on the effect observed in the reduced data set

(Subsection “Estimated treatment effect”). This might have introduced the differences between

expectation and bootstrap mean (S2c Table).

Discussion

In order to quantify the properties of the umbrella design compared to the independent trial

design, we first investigated the impact of an umbrella design with two subtrials on several

aspects of trial conduct. Secondly, we analysed the influence of the umbrella subtrial allocation

scheme and finally proposed a possible solution to handle the consequences of the application

of an umbrella design. Regarding our first objective, we identified a clear efficiency benefit—in

terms of patients needed to be screened—of umbrella trials when applying the random subtrial

allocation scheme. We showed that the biomarker status distribution could differ between an

independent trial and the corresponding umbrella trial designs. This is caused by the screening

platform of umbrella trials where subtrials compete for patients with a positive test result for

multiple biomarkers. Such patients are eligible for multiple subtrials but can often only be allo-

cated to one subtrial. Consequently, such patients may be underrepresented in umbrella sub-

trials compared to the corresponding design with independent trials. If we assume that the

targeted treatments operate in a particular biological pathway, having a positive test result for

multiple biomarkers would imply the necessity to apply multiple treatments; if this is not the

case outcomes of patients might differ between those patients with multiple positive test results

and those with a positive test result for only one biomarker (see also e.g. [17]). The conse-

quence of such a biomarker status-dependent treatment effect is an observable difference in

(overall) treatment effect estimates between independent trials and the respective umbrella

subtrials. In general, the estimated treatment effect in an umbrella subtrial can be larger or

smaller than in the respective independent trial. As a result, statistical (error) probabilities—

i.e. the comparison-wise statistical power and type I error—can also be affected.

Regarding our second objective, the comparison of two allocation schemes (random versus

pragmatic) for umbrella trials, we observed that the pragmatic allocation scheme further

reduces the number of patients needed to be screened. This benefit may come at the expense

that no patients with a positive test result for multiple biomarkers are included in one of the

subtrials. Consequently, the difference between estimated treatment effects of independent tri-

als and the respective umbrella subtrials may even be larger than in the setting of the umbrella

design with random allocation scheme. However, the impact of the subtrial allocation scheme

is of minor importance compared to the impact of the screening platform itself.

Finally, we demonstrated that weighted linear regression in combination with the random

allocation scheme for the umbrella subtrials might be applied to get treatment effect estimates

that are similar for umbrella subtrial and the corresponding independent trial.

In this investigation we quantified the impact of umbrella designs on results of clinical tri-

als. The reduction of patients needed to be screened and the changes in the biomarker status

distribution is induced by the design definition (e.g. [1, 2]). The efficiency has also been previ-

ously evaluated for several umbrella (platform) designs [18]. It has been stated earlier that

results from umbrella trials must be interpreted with care if the outcome of patients tested pos-

itive for multiple biomarkers (possibly over- or underrepresented in subtrials) differs from

those with a positive test result for fewer (or a single) biomarker. There, it was mentioned that

their influence might be minimal if the number of such patients is small but might be
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substantial if it would be vice versa [19]. These statements are in accordance with our results.

Hence, one must account for this impact and acknowledge it already in the statistical analysis

plan [20].

Translation of our results to other trial design variants

These design differences will also be present with a weighted random, a hierarchical or a

Bayesian allocation scheme that are already applied in umbrella trials [7, 21–24]. Thus, our

principle findings also apply to these umbrella trial variants. At a more general level, the

umbrella design is an example for a master protocol design. Another master protocol design is

the basket design, e.g. [1, 2]. In a basket design, one biomarker-driven experimental treatment

is investigated for several diseases. Thus, each disease defines a subtrial. Consequently, our

observations for the umbrella design should also translate to basket trials by switching the role

of biomarker and disease when defining the subtrials—although patients exhibiting more than

one disease are probably rarer than patients with positive test results for more than one bio-

marker and might not be included in a basket trial at all. In general, the findings can be gener-

alised to other platform designs [25] and master protocol designs whenever their subtrials

compete for eligible patients. An overview of possible analysis approaches for these designs is

provided for example in [26].

Analysis strategies and modelling approaches in umbrella designs

In order to evaluate the impact of the joint screening platform itself keeping the analysis strat-

egy of independent trials, we followed the approach of analysing each subtrial separately,

although comparisons between the subtrials or to an overall/shared control arm including

patients exhibiting negative test results for all biomarkers under investigation receiving the

standard treatment (see Fig 1) are other possible analysis approaches to analyse umbrella

designs. Depending on the chosen (subgroup) comparison between subtrials, the comparison

might not be affected by the shift in the biomarker status distribution introduced by the

umbrella design (e.g. within patients with a specific biomarker status). The shared control arm

is a tool to further reduce the number of discarded (screened but not included) patients. How-

ever, it is based on the assumption that the patient’s response to the standard therapy is inde-

pendent of its biomarker status. A shared control arm can introduce questions about data

integrity [27–29].

One modelling strategy to address the shift in treatment effect estimates that could arise in

umbrella trials is to apply weighted linear regression. Obviously, weighting can only be applied

if there are patients to weight and may be questionable in the case of building the weighting on

very few patients with a specific biomarker status. Thus, weighting will require a minimum

sample size for the strata. These aspects especially apply to the pragmatic allocation scheme

where small proportions of patients with a specific biomarker status can be expected more fre-

quently than with the random allocation scheme. Consequently, the impact of each observa-

tion on the estimates can differ between the designs and these differences might even be

aggravated by the weighting. Furthermore, it should be noted that it is well known that the

weighting induces a loss in efficiency if not all weights are 1 [30] which is also supported by the

results of the real data application. Whether this loss in efficiency is of importance must be

assessed individually for each trial and weighed against the possible gain in consistency [31–

33].

It should be noted that the properties of weighted regression (including a correct type I

error) is based on weights that would be fixed in advance. If the biomarker distribution in the

overall patient population is considered to be known in advance, weighted regression with
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pre-specified weights would be a preferable option to be investigated further. The proposed

plug-in procedure using the estimated proportions of the combined biomarker status from the

screening process would rather rely on asymptotic properties but allows for an approximate

solution in a setting with unknown prevalence of biomarker status combinations. Obviously,

as indicated above, a very low number of double positive patients would hamper the plugged-

in approach.

Other modelling approaches comprise for example regression models with main and inter-

action terms or an analysis stratified by the biomarker status. In general, one should carefully

distinguish between the planned, confirmatory analyses and post-hoc sensitivity analyses. If a

biological interaction between a co-expressed biomarker and the treatment is expected, this

interaction should be modelled and even better already be addressed at the trial planning

stage. The same applies to possible interactions between the biomarkers. Known interactions

should be addressed by design; data-driven explorations are necessary but would be declared

as sensitivity analyses. Further approaches for umbrella designs are provided for example in

[26].

Strength and limitations of this study

Obviously, this study also has several limitations: (i) In the illustrative example and in the sim-

ulation study, we defined the biomarker status-dependent treatment effect under the assump-

tion that a patient with a positive test result for multiple biomarkers would show a smaller

treatment effect than a patient with a positive test result for only one biomarker. This assump-

tion is based on the idea that patients with a positive test result for multiple biomarkers would

require multiple treatments (e.g. [17]). If these patients only receive single treatments, their

outcomes might be smaller. However, our observations also apply in case the targeted treat-

ment has a different treatment effect, e.g. vice versa to the effect assumed in this investigation.

Then, the estimated treatment effect can be smaller in the umbrella subtrial than in the corre-

sponding independent trial. (ii) The evaluated treatment effects, an umbrella design with just

two independent biomarkers and no option to stop or add subtrials is likely unrealistic. How-

ever, the treatment effects were chosen as one would do in sample size calculations. Depen-

dence between the biomarkers would only shift the biomarker status distribution in the

disease population. More biomarkers will change and more subtrials or adding/stopping sub-

trials will increase the likelihood of positive test results for multiple biomarkers. In general,

our arbitrary or unrealistic choices will have no influence on the general message of the paper

that the estimated treatment effect depends on the selected design—independent trials or

umbrella subtrials—and that this must be handled with care at the planning stage of such a

trial (e.g. [34]). (iii) In the simulation study, we decided not to pursue the pragmatic allocation

scheme in the umbrella design for the case of biomarkers with a low prevalence of a positive

test result. This approach seems justified as the results for biomarkers with a high prevalence

can be up-scaled to the low prevalence setting. If the prevalence of positive test results for both

biomarkers is similar, the application of the pragmatic allocation scheme and of the random

allocation scheme in an umbrella design induce similar subtrial structures. Applying the prag-

matic allocation scheme in an umbrella design, the largest efficiency gain in terms of number

of patients needed to be screened is achieved if all patients with a positive test result for both

biomarkers are allocated to one subtrial but this induces the largest possible shift in the bio-

marker status distribution in the second subtrial compared to the corresponding independent

trial. However, in case a positive test result for at least one biomarker is a low prevalent event,

patients with a positive test result for both biomarkers are also low prevalent and the absolute

gain in efficiency is less pronounced compared to the setting where positive test results are
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high prevalent for both biomarkers. (iv) We considered a normally distributed endpoint while

on-going or published umbrella trials focussed on time-to-event, e.g. [23], or binary endpoints,

e.g. [22]. Given our general observation of the umbrella design impact on treatment effect esti-

mates, this difference in estimates will also be present for other endpoints. (v) Although we

consider that a weighted approach (either with fixed or empirical weights) could be a solution

to the difficulties in effect estimation and resulting potential type-1 error inflation in the pres-

ence of an interaction between treatment and biomarker status, we did not investigate empiri-

cal type I error rates and statistical power of the weighted approach in more detail. (vi) In

general, regarding the control of the overall (study-wise) type I error rate, different approaches

are currently discussed for umbrella trials, as e.g. the reliance on the biomarker-defined popu-

lation-wise error rate [35] instead of the study-wise error rate. Another proposal [36] is to

investigate the single experimental treatment only if the complete treatment strategy shows an

effect with respect to the endpoint. However, this approach does not allow for starting new

subtrials once the umbrella trial is running and treatment-by-biomarker interaction may also

have an impact on the properties of such a procedure. Either way, the issue of multiplicity in

umbrella trials is beyond the scope of this article. (vii) We could not present an application of

the methods to a real umbrella trial given that there were no published patient-level data from

umbrella designs available to us. To address this limitation to some extent, we relied on data

from a randomised controlled trial and used bootstrapping to mimic umbrella subtrials and

the corresponding independent trials. Furthermore, we illustrated the analytical derivations by

real data parameter choices from oncology and pharmacogenomics and with assumptions for

common sample size calculations. Additionally, we showed how to calculate the weights in

order to mimic the biomarker status distribution for the corresponding independent trial

design.

Conclusions

In summary, we identified several benefits of the umbrella design such as much fewer patients

needed to be screened relative to a setting of running independent trials. Conversely, the price

to be paid are treatment effect estimates that may deviate from those obtained from the corre-

sponding independent trials. This difference increases with increasing proportions of patients

with a positive test results for multiple biomarkers. As a starting point, we show that the ran-

dom allocation scheme combined with a weighted regression analysis could address this issue.

As a result of the more frequent use of umbrella designs, more research in order to practically

inform the analyst is needed.
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S1 Fig. Ratio of discarded to included patients in both umbrella designs and the corre-
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patient that was screened but not included in a (sub-) trial. The ratio is derived as Nscreen−2N

divided by 2N. Nscreen denotes the number of screened patients in a bootstrap run. There are

2N included patients in each design. The distribution across the 1, 000 bootstrap runs are pro-

vided.

(TIF)

S2 Fig. Proportion of patients with a positive test result for both biomarkers in both

umbrella designs and in the corresponding independent trial design in the real data appli-

cation. The trial size N and the respective subtrial are indicated. The distribution across the 1,

000 bootstrap runs are provided.

(TIF)

S1 Table. Results from five exemplary (bootstrap) samples in the real data application for

the independent trial design and both umbrella designs.
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S2 Table. Application of the analytical calculation formulae to the real data and its com-

parison with the bootstrap means for the independent trial design and the umbrella design

with the random allocation scheme.
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