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Abstract
A crucial aspect of reliable machine learning is to design a deployable system for general-
izing new related but unobserved environments. Domain generalization aims to alleviate 
such a prediction gap between the observed and unseen environments. Previous approaches 
commonly incorporated learning the invariant representation for achieving good empirical 
performance. In this paper, we reveal that merely learning the invariant representation is 
vulnerable to the related unseen environment. To this end, we derive a novel theoretical 
analysis to control the unseen test environment error in the representation learning, which 
highlights the importance of controlling the smoothness of representation. In practice, our 
analysis further inspires an efficient regularization method to improve the robustness in 
domain generalization. The proposed regularization is orthogonal to and can be straight-
forwardly adopted in existing domain generalization algorithms that ensure invariant rep-
resentation learning. Empirical results show that our algorithm outperforms the base ver-
sions in various datasets and invariance criteria.
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1 Introduction

Most research in deep learning assumes that models are trained and tested from a fixed 
distribution. However, such deep models generally fail to adopt in real-world applications, 
because the test environment is often different from the training (or observed) distribu-
tions. Thus, the capacity in generalizing the new environment with a small prediction error 
is crucial for developing reliable and deployable deep learning systems (Goodfellow et al. 
2014). For instance, in autonomous driving, the decision-making system is trained in sev-
eral specific regions. However, the prediction performance can dramatically degrade in 
other regions with the same object but different environmental backgrounds.

To this end, domain generalization is recently proposed and further analyzed to alleviate 
the prediction gap between the observed training ( S ) and unseen test ( T  ) dataset. Taking 
the advantage of the shared knowledge (or inductive bias) from multiple observed sources, 
the prediction on the test environment can be guaranteed (Baxter 2000).

Meanwhile, extrapolation to a new environment is often challenging since the distri-
bution shifts between the training and test environment are inevitable and unknown in 
advance. Such changes typically include the covariate shift (i.e, the marginal distributions 
w.r.t. x are different S(x) ≠ T(x) ) (Sugiyama et al. 2007), conditional shift (different deci-
sion boundaries with S(y|x) ≠ T(y|x) ) (Li et al. 2018; Arjovsky et al. 2019) or both. Based 
on different distribution-shift assumptions, a widely adopted principle is to learn the repre-
sentation to satisfy several invariance criteria (Bühlmann 2020) among the observed envi-
ronments (i.e, sources S ). Through minimizing the source prediction risk and enforcing the 
invariance, the prediction performance can be improved (Matsuura and Harada 2020; Li 
et al. 2018).

Although the idea of learning invariance is quite popular in domain generalization with 
practical success, several theoretical questions remain elusive. For instance, is it sufficient 
to merely learn an invariant representation and minimize source risks to guarantee a good 
performance in a new related environment? What are the sufficient conditions to guarantee 
a small test environment error?

Contributions In this paper, we aim to address these theoretical problems in the repre-
sentation learning-based domain generalization. Concretely, (1) we reveal the limitation of 
representation learning in domain generalization through barely ensuring invariance crite-
ria, which can lead to a over-matching on the observed environments. i.e: the complex or 
non-smooth representation function can even be vulnerable to the small distribution shift. 
(2) We derive novel theoretical analysis to upper bound the unseen test environment error 
in the context of representation learning, which highlights the importance of controlling 
the complexity of the representation function. We then further formally demonstrate the 
Lipschitz property as one sufficient condition to ensure the smoothness of the representa-
tion. (3) In practice, we propose the Jacobian matrix regularization of the representation as 
a new criterion. The empirical results in various invariance criteria and datasets suggest a 
consistent improved performance in the test environment.
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2  Background and motivation

Throughout this paper, we have T observed (source) environments S1(x, y),… ,ST (x, y) 
with x ∈ X  , y ∈ Y . The goal of domain generalization is to learn a proper represen-
tation function � ∶ X → Z and classifier h ∶ Z → Y to have a good performance on a 
(unseen) but related test environment T(x, y).

Specifically, let L denote the prediction loss function, then domain generalization can 
be generally formulated as minimizing the following loss w.r.t. (�, h):

where INV(�,S1,… ,ST ) is an auxiliary task to ensure the invariance among the observ-
able source environments, which can have various forms:

Marginal feature invariance Ganin et al. (2016) aims at enforcing

Intuitively, the marginal feature invariance encourages all environments shared the same 
marginal distribution w.r.t. z.

Feature conditional invariance Zhang et al. (2013) aims at enforcing

for ∀, t, y . Intuitively, the feature conditional invariance encourages the same distribution of 
z, given the label Y = y.

Label conditional invariance Arjovsky et al. (2019) and Kamath et al. (2021) aims at 
enforcing

with ∀t, y . Intuitively, the label conditional invariance encourages the same decision bound-
ary ℙ(y|z).

The aforementioned invariance principle and its variants have been widely applied 
in domain generalization with various empirical algorithms. We will show that merely 
optimizing Eq.  (1) with different invariance criteria can be insufficient to guarantee a 
small prediction error in the related test environment.

Limitation of Learning Marginal Invariance Simultaneously enforcing marginal invari-
ance and minimizing prediction risk have been proved problematic when label distribu-
tions ( ℙ(y) ) are different (Li et al. 2018). For instance, consider only one source environ-
ment S(x, y) and testing environment T(x, y) with binary classification, where the only 
difference between two environments lies in different label distributions S(y = 1) = 0.1 
and T(y = 1) = 0.9 . We further suppose there is an embedding � and classifier h such 
that S(�(x)) = T(�(x)) and RS(h,�) = 0 . Then it will enforce the S(ŷ) = T(ŷ) , where 
ŷ = h◦𝜙(x) . Based on this, the test prediction error will be at most 0.2, despite the iden-
tical marginal distribution and zero source risk.

Limitation of Learning Conditional Invariance Compared to marginal invariance, 
feature and label conditional invariance impose stronger principles. However, the 

(1)min
�,h

∑
t

�(x,y)∼St
L(h◦�(x), y) + �0 INV(�,S1,… ,ST )

�x1∼S1(x)
[�(x1)] = �xt∼S2(x)

[�(x2)] = ⋯ = �xT∼ST (x)
[�(xT )],∀t ∈ {1,… , T}.

�x1∼S1(x|Y=y)[�(x1)|y] = �x2∼S2(x|Y=y)[�(x2)|y] = ⋯ = �xT∼ST (x|Y=y)[�(xT )|y],

�x1∼S1(x)
[y|�(x1) = z] = �x2∼S2(x)

[y|�(x2) = z] = ⋯ = �xT∼ST (x)
[y|�(xT ) = z],
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prediction can be still vulnerable in the related test environment due to the over-match-
ing. Specifically, in Fig. 1, if we adopt the embedding function � and classifier h as:

In the latent space z, ∀y ∈ Y we have the conditional invariance with S1(y|z) = S2(y|z) 
and S1(z|y) = S2(z|y) and zero prediction error in the observed environments with 
�(x,y)∼St

L(h◦�(x), y) = 0 . However, in the test time, the unseen environment has a consist-
ent distribution shift in Fig. 1(b, Right) such that ∀y , dTV(T(x�Y = y)‖S2(x�Y = y)) = � with 
0 < 𝜖 < 0.5 , then the prediction error w.r.t. (0-1) binary loss is �(x,y)∼TL(h◦�(x), y) = � , 
which is vulnerable and non-ignorable in the consistent distribution shift. Moreover, this 
problem can be much more severe in high-dimensional dataset and over-parametrized deep 
neural networks.

The problem comes from the over-matching of the embedding function, where there 
exist infinite � to minimize Eq.  (1) in Fig.  1. However, some embedding functions are 
rather complex, which are poorly generalized to the related environment. In fact, only a 
subset of � are more robust for the consist environment shift, which suggests a proper 
model selection w.r.t. �:

In the following sections, we will derive theoretical results to demonstrate the influence of 
model selection w.r.t. �.

3  Theoretical analysis

We aim at proposing a formal understanding of the regularization term in predicting the 
unseen test environment. We assume the embedding as a random transformation (or tran-
sition probability kernel) �(z|x) ∶ X → Z . Then the deterministic representation function 
is a special case with �(z|X = x) = ��(x) , where � is the delta dirac function. The condi-
tional distribution defined on the latent space Z is denoted as S(z) = ∫ �(z|x)S(x)dx and 
S(z|Y = y) = ∫ �(z|x)S(x|Y = y)dx . Before presenting the theoretical results, we discuss 
several important notations in our paper.

𝜙(x) =

⎧⎪⎨⎪⎩

x 0 ≤ x ≤ 2

x − 2 3 ≤ x ≤ 4

5 − x 4 < x ≤ 5

, h(z) = −sign(z − 1).

(2)min
�,h

∑
t

�(x,y)∼St
L(h◦�(x), y) + �0 INV(�,S1,… ,ST ) + �1Model_Select(�).

Fig. 1  Limitations of optimizing Eq.  (1) with conditional invariance criteria. The conditional invariance 
learns an over-matched representation on the training environments (left), which can induce the non-ignora-
ble prediction error in the related test environment (right)
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Performance Metric Throughout this paper we use Balanced Error Rate (BER) rather 
than the conventional population loss to measure the performance, because the training 
and test environments can be highly label imbalanced. Namely, conventional population 
loss may not properly reflect the performance, through ignoring the fewer-samples cata-
logs. Therefore, the balanced prediction risk w.r.t. classifier h and embedding distribu-
tion � is

Intuitively, BER measure the uniform-average classification error for each class y.

Invariance Criteria In our analysis, we mainly focus on the feature conditional invari-
ance ℙ(z|y) since the label information is generally discrete or low-dimensional. Then it 
is relatively straightforward to realize in practice. We will further justify that the feature 
conditional invariance can also induce the label-conditional invariance and marginal 
invariance, shown in Lemma 1.

Distribution Similarity Metric Besides, we need to specify the metric to measure the 
similarity between different distributions. In this paper, we adopt the Total Variation 
(TV) distance (Lin 1991):

It is worth mentioning that Jensen–Shannon divergence is the upper bound of TV distance 
(Polyanskiy and Wu 2019).

Based on these components, we can demonstrate the risk of test environment in the 
context of representation learning.

Proposition 1 Supposing

 (i) observed source environments are S1(x, y),… ,ST (x, y) and unseen test environment 
is T(x, y);

 (ii) the prediction loss L is bounded in [0, 1]; 
 (iii) the embedding distribution � satisfies a small feature-conditional total 

variat ion distance on the  latent  space  Z ∶ ∀i, j ∈ {1,… , T} y ∈ Y, 
dTV(Si(z�Y = y)‖Sj(z�Y = y)) ≤ �;

 (iv) ∀y ∈ Y , on the raw feature space X ∶ min
t∈{1,…,T}

dTV(T(x�Y = y)‖St(x�Y = y)) ≤ �.

Then the Balanced Error Rate in the test environment is upper bounded by:

Where �TV(�) is Dobrushin coefficient (Polyanskiy and Wu 2019): 
�TV(�) ∶= supx,x�∈X dTV(�(⋅�x)‖�(⋅�x�))

BERD(h,�) =
1

|Y|
∑
y

�z∼D(z|Y=y)L(h(z), y)

dTV(S1(x)‖S2(x)) = ∫x

�S1(x) − S2(x)�dx

BERT(h,�) ≤ 1

T

T∑
t=1

BERSt
(h,�) + � + �TV(�)�
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Discussions The prediction risk of an unseen test environment is controlled by the fol-
lowing terms: 

(1) The first term suggests to learn h and � to minimize the BER over the labeled data 
from the source environments;

(2) A small � indicates learning � to match feature-conditional distribution. Specifically, 
when � = 0 , we have S1(z|Y = y) = ⋯ = ST (z|Y = y) , achieving feature-conditional 
invariance;

(3) � in the third term is an unobservable factor in the learning. As Fig. 2 shows, � reveals 
the inherent relations between the test and source environments. Intuitively, a small � 
means the test environment T  is similar to one of the observed sources, which indicates 
that we are easier to predict the test environment. If � is too large, then the source and 
the test distribution can be indeed quite different, which suggests the generalization to 
this new environment could be more challenging.

(4) �TV(�) in the third term is a controllable factor as a regularization w.r.t. � . Intuitively, 
�TV(�) reflects the smoothness of the embedding. In the test time, the regularization 
on � is crucial since the � is unknown, uncontrollable and even non-ignorable. That is, 
merely minimizing Eq. (1) by ensuring BERSt

(h,�) = 0 and � = 0 are not sufficient. 
If �TV(�) is relatively large, the upper bound will become vacuous, and generalization 
in the test environment is not necessarily guaranteed;

(5) The trade-off in learning � . Although �TV(�) suggests a regularization term, however 
over-regularization can be harmful in learning meaningful representations. Consider an 
extreme scenario, when the embedding distribution � is a constant, then �TV(�) = 0 , 
the network does not learn an embedding and BERSt

(h,�) will be inherently large.

Compared with most previous theoretical results, our results highlight the role of repre-
sentation learning in domain generalization. In particular, Theorem 1 further motivates the 
new principles to control the Dobrushin Coefficient, which will be illustrated in Sects. 3.2 
and 4.

3.1  Relation to other invariance criteria

Proposition 1 verifies the importance of considering regularizing of � under feature-con-
ditional invariance, the following lemma reveals the relations between feature-conditional 
invariance and other two invariance criteria.

Lemma 1 If the embedding distribution � satisfies a small feature-conditional total vari-
ation distance on the latent space Z ∶ ∀i, j ∈ {1,… , T} y ∈ Y , 
dTV(Si(z�Y = y)‖Sj(z�Y = y)) ≤ � and Si(Y = y) = Sj(Y = y) =

1

|Y|, then we have

�z∼𝛺⋆ |Si(y|z) − Sj(y|z)| ≤ C+𝜅, �z∼𝛺⋆ |Si(z) − Sj(z)| ≤ 𝜅,

Fig. 2  Illustration of � : distance 
between T  and its nearest source 
S3
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where C+ is a positive constant and 𝛺⋆ = supp(Si(z)) ∩ supp(Sj(z)) denotes the intersec-
tion of latent space between environment i and j.

Lemma 1 reveals that the feature conditional invariance can induce other types of invar-
iance if the label distribution among the sources is balanced, which is practically feasible 
through re-sampling the dataset as a uniform distribution. Specifically, if � = 0 , we can 
achieve the other two invariance criteria.

3.2  Sufficient conditions for controlling Dobrushin coefficient

We have proved the importance of a small Dobrushin Coefficient for guaranteeing the test 
environment risk. In this section, we will discuss the sufficient conditions that controls the 
Dobrushin Coefficient. Lemma 2 reveals one sufficient condition: a Lipschitz representa-
tion can control �TV(�).1

Lemma 2 Supposing the embedding distribution �(z|x) is d-dimensional parametric 
Gaussian distribution with z ∼ N(�(x), �2

�d) and dmax = supx,x�∈X ‖x − x�‖2, then the 
Dobrushin Coefficient is upper bounded by:

where L� is the Lipschitz constant of ��(x), i.e ∀x, x� ∈ X, ‖�(x) − �(x�)‖ ≤ L�‖x − x�‖2.

In the conventional deep neural-network, the deterministic parametric embedding can 
be approximated as the mean ( �(x) ) of the conditional distribution with a small variance 
(Achille and Soatto 2018). Therefore, Lemma 2 suggests that learning a Lipschitz embed-
ding can promote a better generalization property in the related test environment T .

4  Practical implementations

We have demonstrated the Lipschitz property of the embedding function � can induce a 
regularization property, resulting a better generalization. In this section, we will further 
elaborate practical implementations to realize the Lipschitz property of the embedding 
function through multiple observed source environments.

It has been proved that the Frobenius norm of Jacobian matrix w.r.t � is the upper bound 
of the Lipschitz constant of � (Miyato et al. 2018). In domain generalization, we generally 
have multiple environments. In this context, the regularization is conducted on the virtual 
samples x̃ , which are generated through these environments. Intuitively, the virtual samples 
can be created outside the support of different environments, shown in Fig. 3. Then con-
ducting a regularization on the virtual samples can effective ensure the Lipschitz property 
on these unobserved regions.

�TV(�) ≤ √
2

�
1 − exp(−

d2
max

8d�2
L2
�
)

�1∕2

1 It is worth mentioning that Lipschitz constant is one sufficient condition (or upper bound) to control 
Dobrushin Coefficient. It can be further incorporated with data-dependent regularization to better control 
�TV(�).
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For an efficient generation, we create virtual samples through a linear combination of x 
from each source, shown in Fig. 3. As for determining the linear combination coefficients, 
we generate the coefficients (�1,… , �T ) through the Dirichlet distribution with hyper-
parameter � = 1 , which is inspired from Zhang et  al. (2017). The proposed algorithm is 
presented in Algorithm 1.

Regularization is independent of learning invariance We denote the INV(�,S1,… ,ST ) as 
the algorithms that achieve invariance (e.g., marginal, label and feature conditional invari-
ance), which includes a wide range of practical algorithms. Then the improved loss can be 
expressed as:

In the experimental part, we will investigate different invariance principles and demon-
strate the benefits of our regularization.

5  Related work

Learning invariance is a popular and widely adopted principle in domain generalization. 
Inspired from the techniques in deep domain adaptation (Ben-David et  al. 2010), enor-
mous approaches have been proposed to enable different invariance criteria such as mar-
ginal invariance S1(z) = ⋯ = ST (z) (Ganin et al. 2016; Li et al. 2018; Sicilia et al. 2021; 
Albuquerque et  al. 2019). However, the proposed theoretical results are mainly inspired 
from unsupervised domain adaptation, which does not consider the specific scenarios in 
domain generalization. i.e, the label information is known during the source alignment, 
which can induce better matching approaches. As for feature conditional invariance 
S1(z|y) = ⋯ = ST (z|y) (Li et al. 2018; Wang et al. 2020; Zhao et al. 2020; Ilse et al. 2019), 
it considers the label information and enforces stronger conditions among the sources. 
However, as our counterexample indicates, merely learning the conditional invariance can 
be insufficient to guarantee the unseen test prediction risk. In contrast, we further formally 

min
𝜙,h

1

T

�
t

BERSt
(h◦𝜙) + 𝜆0 INV(𝜙,S1,… ,ST ) + 𝜆1�x̃‖𝜕𝜙(x̃)𝜕x̃

‖F .

Fig. 3  Illustration of the virtual 
sample generation
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reveal the limitation of representation learning w.r.t. conditional invariance, which remains 
elusive in the previous work.

A more recent approach is to learn label conditional invariance, i.e., ensuring the same 
decision boundary across different environments (IRM; Arjovsky et  al. 2019; Lu et  al. 
2021). However, recent work reveals the potential failure scenarios in IRM (Kamath et al. 
2021), which can be explained from our theoretical analysis.

Another promising direction in domain generalization is to incorporate with meta-learning 
(Deshmukh et al. 2019; Blanchard et al. 2011), which assumes the training and testing envi-
ronment are i.i.d. (Independent and identically distributed) sampled from a meta-distribution. 
Then through learning a good meta-parameter, we have a good prediction performance in the 
test distribution. However, the challenging lies in the i.i.d. assumption, i.e, the tasks may not 
be necessarily independently generated such as ColorMNIST. Thus, the meta-learning theory 
can be restrictive in domain generalization.

Relation with data-augmentation based Approach It has been recently observed that data-
augmentation based approaches are quite effective in various practical domain generalization 
(Volpi et al. 2018; Li et al. 2019; Zhou et al. 2020, 2021; Müller et al. 2020). Intuitively, data 
augmentation aims at generating new samples from observed environments to induce smooth 
predictions. In this part, we aim to analyze the role of data-augmentation, which is implicit to 
learn a Lipschitz representation and consistent with our theoretical results.

Specifically, we consider one typical case with a conditional interpolation function INP 
with x̃ = INP(x1,… , xT ;y) with x1 ∼ S1(x|y),… , xT ∼ ST (x|y) . For instance, considering 
object classification under different background, the conditional augmentation aims at creat-
ing the same but new object through considering information from different environments. We 
further suppose the binary classification problem with Y = {−1,+1} , the classifier is linear 
with h(z) = wTz and the prediction loss is logistic loss with L(ŷ, y) = log(1 + exp(−ŷy)) . The 
augmentation loss can be written as:

If we use second-order Taylor approximation at �x̃[𝜙(x̃)] , which is the centroid of the aug-
mentation feature on the embedding space, then the prediction loss can be approximated 
as:

The analysis reveals the augmentation training aims to: (1) encourage a small loss on the 
centroid of the generated feature, (2) indicates a smooth prediction on the new generated 
sample. Since L��(wT

�x̃[𝜙(x̃)], y) ≤ 1 and � is Lipschitz function, (2) can be further upper-
bounded by:

Therefore, if the embedding function has a small Lipschitz constant, the second-order 
approximation of the augmentation loss can be controlled. Therefore, minimizing the 

Raug =
∑
y

�x̃∼INP(x1,…,xT ;y)
L(wT𝜙(x̃), y)

Raug ≈
∑
y

L(wT
�x̃[𝜙(x)], y)

�������������������
(1)

+
1

2
�x̃[(w

T (𝜙(x̃) − �x̃[𝜙(x̃)]))
2L��(wT

�x̃[𝜙(x̃)], y)

�����������������������������������������������������������������������
(2)

(2) ≤ L2
𝜙

‖w‖2
2

4
Var(x̃)
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prediction loss on the augmented data can be viewed as an implicit approach to encourage 
the Lipschitz representation.

6  Experiments

In this section, we aim to empirically validate the effectiveness of the regularization term. 
And we want to address the following question: Is the regularization term effective to gen-
eralize in the related unseen environments?

6.1  Choice of invariance criteria and loss

We evaluate the proposed regularization through typical invariance representation algo-
rithms to verify the effectiveness of the regularization.

(1) Marginal Feature Alignment In the marginal matching, we adopted the well-known 
Domain Adversarial Neural Network (i.e, DANN) (Ganin et al. 2016), which encour-
ages S1(z) = ⋯ = ST (z) through min-max optimization. Concretely, we introduce a 
domain discriminator d ∶ Z → {1,… , T} , such that

where �t is the one-hot vector. Intuitively, the discriminator tries to minimize the 
cross-entropy loss to differentiate the different sources, then the embedding function 
aims to learn an invariant representation to ensure S1(z) = ⋯ = ST (z).

(2) Feature Conditional Invariance We adopt the conditional-DANN (CDANN), which 
is adapted from Mirza and Osindero (2014) and Li et al. (2018). We introduce a con-
ditional domain discriminator d ∶ Z × Y → {1,… , T} , such that:

Intuitively, the CDANN introduces a domain discriminator to differentiate different 
sources and their labels z⊗ y , then the representation learns the conditional invariant 
representation S1(z|y) = ⋯ = ST (z|y).

(3) Label-Conditional Invariance In this part, we adopted Invariant Risk Minimization 
(IRM), which is recently proposed by Arjovsky et al. (2019). Specifically, IRM adds a 
regularization term to encourage the S1(y|z) = ⋯ = ST (y|z) . They simply assume the 
predictor equals to 1 with

As for the prediction loss L , we adopted the conventional cross-entropy.2

min
�

INV(�,S1,… ,ST ) = min
�

max
d

1

T

T∑
t=1

�xt∼St(x)
�t log(d◦�(xt)),

min
𝜙

INV(𝜙,S1,… ,ST ) = min
𝜙

max
d

1

T

T∑
t=1

�(xt ,yt)∼St(x,y)
�t log

(
d◦(𝜙(xt)⊗ yt)

)

min
�

INV(�,S1,… ,ST ) = min
�

1

T

T�
t=1

‖∇h�h=1�St
L(h◦�(xt), yt)‖2

2 It should be pointed out the cross entropy loss is generally not bounded. However, the empirical results 
suggest its effectiveness in practice.
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6.2  Dataset description and experimental setup

The experiment validation consists in evaluating toy and real-world datasets to verify the 
effectiveness of the regularization.

ColorMNIST (Arjovsky et  al. 2019) Each MNIST image is either colored by red or 
green, in order to strongly correlate (but spuriously) with the class label. Thus the class 
label is strongly correlated with the color than with the digit configuration. The algorithm 
purely minimizing the training error will tend to exploit the false relation of the color, 
which will lead to a poor generalization of the unseen distribution with different color 
relations.

Following Arjovsky et al. (2019), the dataset is constructed as follows. (1) Preliminary 
binary label. We randomly select 5K samples from MNIST and construct preliminary 
binary label ỹ = 0 for digits 0-4 and ỹ = 1 for 5-9; (2) Adding label noise. We obtain the 
final label y by flipping ỹ with probability 0.25; (3) Adding color as spurious feature. We 
add the color to the gray-scale digit image by flipping y with probability PS (i.e, coloring 
y = 1 with red and y = 0 with green by probability 1 − PS).

The ColorMNIST creates a controllable environment through assigning various PS , 
which enables us to evaluate the generalization performance under different unobserved 
environments.

PACS (Li et al. 2017) and Office-Home (Venkateswara et al. 2017) are real-world data-
sets with high-dimensional images. In PACS, the dataset consists four domains Photo (P), 
Art (A), Cartoon (C), Sketch (S) with 7 classes. In Office-Home, the dataset includes four 
domains Art (A), Clipart (C), Product (P) and Real World (R) with 65 classes.

Experimental Setup We use the standard domain generalization framework DomainBed 
(Gulrajani and Lopez-Paz 2021) to implement our algorithm. In ColorMNIST, we adopt 
the LeNet structure with three CNN layers as � and three fc-layers as h. The mini-batch 
is set as 128 with Adam optimizer with �0 = 1 , �1 ∈ [10−3, 1] . In PACS and Office-Home 
datasets, we adopt the pretrained ResNet-18 as � and three fc-layers as h. We adopted 
training-domain validation set (Gulrajani and Lopez-Paz 2021) to search the best hyper-
parameter configuration. Specifically, we set the batch size as 64 and �0 ∈ [10−7, 10−2] 
and �1 ∈ [10−5, 1] . We adopt the train-validation split approach (i.e, we randomly split the 
observed environment as training and validation sets and tune the best configuration on the 
validation set w.r.t. S . We did not know the test environment during the tuning.) to search 
the best hyper-parameter. We run the experiments five times and report the average and std.

6.3  Empirical results

The results are presented in Tables 1, 2 and 3. In all datasets and different invariance cri-
teria, the regularization term suggests a consistent improvement (ranging from 1.2–6.2%). 
Specifically, the prediction improvement in the synthetic dataset (i.e. ColorMNIST) is sig-
nificant, which verifies the effectiveness. Besides, in the real-world datasets such as Office-
Home and PACS, the regularization suggests a consistent better performance.
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Table 1  Table empirical results 
(Accuracy Per-Class on %, bold 
indicates a statistical significant 
result) on ColorMNIST

We have three environments with different PS = {0.1, 0.2, 0.9} , 
which follows the experimental protocol of Arjovsky et al. (2019). In 
domain-generalization, we train on two environments and test on the 
untrained environment

Method/Test Env PS = 0.1 PS = 0.2 PS = 0.9 Average

ERM 60.2 ± 0.9 65.7 ± 0.6 26.8 ± 1.8 50.9
ERM+REG 65.0 ± 1.9 69.4 ± 1.6 29.1 ± 1.3 54.5
DANN 60.3 ± 2.3 66.2 ± 0.5 26.7 ± 2.5 51.1
DANN+REG 68.2 ± 1.3 70.9 ± 1.7 27.9 ± 2.1 55.7
CDANN 62.7 ± 1.9 66.7 ± 2.0 27.1 ± 3.2 52.2
CDANN+REG 70.3 ± 0.5 72.2 ± 1.2 30.6 ± 1.7 57.7
IRM 57.2 ± 1.7 63.3 ± 2.1 40.7 ± 10.5 53.7
IRM +REG 61.9 ± 1.6 66.5 ± 3.3 51.2 ± 1.5 59.9

Table 2  Empirical results (Accuracy Per-Class on %, bold indicates a statistical significant result) on PACS

We have four environments Photo (P), Art (A), Cartoon (C) and Sketch (S). In domain-generalization, we 
train the model on three environments and test on the untrained environment

Method/Test Env Art Cartoon Sketch Photo Average

ERM 74.2 ± 1.2 71.8 ± 1.1 93.4 ± 0.9 71.4 ± 0.6 77.7
ERM+REG 77.4 ± 1.4 73.1 ± 0.7 94.8 ± 0.8 73.5 ± 1.7 79.7
DANN 77.3 ± 1.7 74.4 ± 1.5 93.3 ± 1.1 71.7 ± 2.5 79.2
DANN+REG 81.1 ± 1.6 75.4 ± 0.7 94.8 ± 1.2 75.8 ± 1.1 81.6
CDANN 79.6 ± 2.1 75.4 ± 1.8 93.8 ± 1.2 72.3 ± 1.1 80.3
CDANN+REG 82.5 ± 0.5 78.1 ± 0.5 95.4 ± 0.8 77.0 ± 0.8 83.3
IRM 69.0 ± 1.3 68.3 ± 1.7 88.7 ± 2.5 64.3± 1.2 72.6
IRM+REG 73.7 ± 1.9 70.9 ± 2.5 92.1 ± 1.3 67.2 ± 2.0 76.0

Table 3  Empirical results (Accuracy Per-Class on %, bold suggests a statistical significant result) on Office-
Home

We have four environments Art (A), Clipart (C), Product (P) and Real-world (R). In the domain-generaliza-
tion, we train the model on three environments and test on the untrained environment

Method/Test Env Art Clipart Product Real-world Average

ERM 46.8 ± 0.9 41.2 ± 0.8 64.5 ± 1.1 66.1 ± 0.7 54.7
ERM+REG 48.7 ± 0.9 42.1 ± 1.0 65.5 ± 0.7 67.1 ± 0.6 55.9
DANN 48.0 ± 0.8 44.4 ± 0.9 65.7 ± 1.2 66.5 ± 0.8 56.1
DANN+REG 50.5 ± 1.1 46.0 ± 0.8 68.0 ± 0.8 68.5 ± 0.9 58.3
CDANN 48.6 ± 1.1 44.7 ± 0.7 65.6 ± 1.1 66.3 ± 0.8 56.3
CDANN+REG 52.0 ± 1.3 47.2 ± 0.7 67.9 ± 0.8 69.4 ± 1.0 59.1
IRM 47.2 ± 0.7 42.3 ± 1.9 63.4 ± 1.5 65.3 ± 2.2 54.6
IRM+REG 49.1 ± 1.2 43.8 ± 1.3 66.1 ± 1.2 68.4 ± 1.8 56.9
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6.4  Analysis

We further conduct various analysis to understand the properties and role of regularization.
Influence of regularization
For a better understanding the influence of regularization, we gradually change �1 and 

evaluate the test environment prediction error. The empirical results are consistent with 
our theoretical analysis: for a small regularization, the prediction performance can be 
improved. However, a strong regularization (over smoothing) on the representation learn-
ing can be harmful, with a clear performance drop.

Evolution of Training We additionally visualize the evolution of adversarial loss and 
the norm of Jacobian matrix in two training modes: conditional alignment with (w.) and 
without (w.o.) regularization. Clearly, training without explicit regularization leads to a 
relative large norm of Jacobian matrix. In the optimization procedure, the norm of Jaco-
bian matrix gradually but slowly diminishes, which is possibly caused by the implicit 
regularization through stochastic gradient descent (SGD) based approach (Roberts et al. 
2021). Therefore, adding an explicit regularization term can induce a better generaliza-
tion (Figs. 4, 5).

Generalization in controllable environment In order to better understand the behavior in 
domain generalization, we create the controllable environments in ColorMNIST. Spe-
cifically, we fix the observed environments PS = {0.2, 0.9} and test on various environ-
ments with different PT = {0.05,… , 0.85} , shown in Fig. 6. In the observed environments 
PS = {0.2, 0.9} , both approaches achieve high prediction accuracy with larger than 95%. 
However, their generalization behaviors in other environments are quite different: adding 
an regularization term consistently improves the performance in out-of-distribution predic-
tion through 3–5%.

7  Conclusion

In this paper, we analyzed the representation-learning based domain generalization. Con-
cretely, we highlight the importance of regularizing the representation function. Then we 
theoretically demonstrate the benefits of regularization, as the key role to control the pre-
diction error in the unseen test environment. In practice, we evaluate the Jacobian matrix 
regularization on various invariance criteria and datasets, which suggests the benefits of 
regularization. In the future work, we aim to explore the relation between meta-learning 
based domain generalization (Blanchard et al. 2011) or other types of discrepancy such as 
deep MMD (Liu et al. 2020).
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(a) (b) (c)

Fig. 4  Influence of regularization in PACS dataset in CDANN. We gradually change the weights of regu-
larization (i.e, different �1 ). The accuracy first increases with a larger �1 , then the accuracy drops due to a 
over-regularization on the representation

(a) (b)

Fig. 5  Loss Evolution in Office-Home dataset (Training Environments: Clipart, Product, Real-World) in 
CDANN. Left: The evolution of adversarial loss and regularization term if we adopt the regularization loss. 
Right: The evolution of adversarial loss and regularization term (Norm of Jacobian matrix) without adopt-
ing regularization loss. The results reveal that without explicit regularization loss, the norm of Jacobian 
matrix can gradually (but slowly) diminishes. In contrast, adding an explicit term can explicit ensure a small 
Lipschitz constant

Fig. 6  Generalization on dif-
ferent test environments. The 
observed environments are 
PS = {0.2, 0.9} with high predic-
tion performance. However, in 
the generalization on other test 
environments with different PS , 
the regularization term can con-
sistently improve the prediction 
performance
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Appendix: Proofs

Proof of Proposition 1 The prediction error in the test environment can be expressed as:

Where S⋆ is the nearest source environment that is the most similar to the test environ-
ment (i.e. in the raw feature space, dTV(S

⋆(x�Y = y)‖T(x�Y = y)) ≤ 𝜖 ) We have the follow-
ing upper since the prediction loss in upper bounded by 1 and the property of TV distance 
(Polyanskiy and Wu 2019, Remark 3.1).

We analyzed the first term, since S⋆ is unknown source during the training, then we can 
upper bound through all the sources, i.e, ∀t ∈ {1,… , T} , we have:

The proof of the above inequality is analogous to the first inequality and derived by the 
property of TV distance. Concretely, we use the inequality T-times and then derive the 
average upper bound.

Since we adopt the feature conditional invariance criteria, then we have 
dTV(S

⋆(z�Y = y)‖St(z�Y = y)) ≤ 𝜅 . This inequality holds since in training we have 
enforced a small conditional invariance among all sources. Then this term can be upper 
bounded by:

Next, we upper bound the second term through introducing the strong data-processing ine-
quality (Polyanskiy and Wu 2019). The strong data-processing suggests a tighter bound 
w.r.t. the conventional data-processing inequality. Specifically, it reveals the decay rate of 
information loss, characterized by the Dobrushin coefficient.

Strong data-processing inequality For distributions P0,P1 defined on X  and a channel Q 
from space X  to space Z , define a marginal distribution M0(z) = ∫ Q(z|x)P0(x)dx . The 
channel Q satisfies a strong data processing inequality with constant � ≤ 1 for the given 
f-divergence.

Where � is a constant defined with �f (Q) = supP0≠P1

Df (M0‖M1)

Df (P0‖P1)
 . For any convex f diver-

gence, we have:

BERT (h,𝛷) =
1

�Y�
Y�
y=1

�z

T(z�Y = y)L(h(z), y)

≤ 1

�Y�
Y�
y=1

�
�z∼S⋆(z�Y=y)L(h(z), y) + dTV(S

⋆(z�Y = y)‖T(z�Y = y))
�

�z∼S⋆(z�Y=y)L(h(z), y) ≤ 1

T

T�
t=1

�z∼St(z�Y=y)L(h(z), y) +
1

T

T�
t=1

dTV(S
⋆(z�Y = y)‖St(z�Y = y))

�z∼S⋆(z|Y=y)L(h(z), y) ≤ 1

T

T∑
t=1

�z∼St(z|Y=y)L(h(z), y) + 𝜅

Df (M0‖M1) ≤ �f Df (P0‖P1)

�f (Q) ≤ �TV(Q)
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Where �TV(Q) is the Dobrushin coefficient, which is equivalent as:

In the context of representation learning, the embedding distribution � can be viewed 
as the information channel, and we denote distributions P0 and P1 as S⋆(x|Y = y) 
and T(x|Y = y) . The conditional distributions defined on the latent space are 
S⋆(z|Y = y) = ∫ 𝛷(z|x)S⋆(x|Y = y)dx , T(z|Y = y) = ∫ �(z|x)T(x|Y = y)dx . Then we 
have:

Plugging in all the elements, we have the upper bound:

Rearranging the results, we have:

  ◻

Proof of Lemma 1 We first prove the relation with feature conditional invariance and mar-
ginal invariance.

Relation with marginal invariance According to the definition, we have:

Relation with label conditional invariance According to the definition, we have:

We start to upper bound this two terms. For the first term, we have:

�TV(Q) ∶= sup
x,x�

dTV(Q(⋅�x)‖Q(⋅�x�))

dTV(S
⋆(z�y)‖T(z�y)) ≤ 𝛼TV(𝛷)dTV(S

⋆(z�Y = y)‖T(z�Y = y)) ≤ 𝛼TV(𝛷)𝜖

BERT (h,�) ≤ 1

|Y|
Y∑
y=1

(
1

T

T∑
t=1

�z∼St(z|Y=y)L(h(z), y) + � + �TV(�)�)

BERT(h,�) ≤ 1

T

T∑
t=1

BERSt
(h,�) + � + �TV(�)�

�z∼𝛺⋆ �Si(z) − Sj(z)� = �z∼𝛺⋆ �
�
y

Si(y)Si(z�y) −
�
y

Sj(y)Sj(z�y)�

=
1

�Y��z∼𝛺⋆ �
�
y

(Si(z�y) − Sj(z�y))�

≤ 1

�Y�
�
y

�z∼𝛺⋆ �Si(z�y) − Sj(z�y)�

=
1

�Y�
�
y

dTV(Si(z�y)‖Sj(z�y)) ≤ 𝜅

�z∼𝛺⋆ �Si(y�z) − Sj(y�z)� = �z∼𝛺⋆

� Si(z�y)Si(y)∑
y Si(y)Si(z�y)

−
Sj(z�y)Sj(y)∑
y Sj(y)Sj(z�y)

�

= �z∼𝛺⋆

� Si(z�y)∑
y Si(z�y)

−
Sj(z�y)∑
y Sj(z�y)

�

≤ �z∼𝛺⋆

� Si(z�y)∑
y Si(z�y)

−
Si(z�y)∑
y Sj(z�y)

� + � Si(z�y)∑
y Sj(z�y)

−
Sj(z�y)∑
y Sj(z�y)

�
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Where C1 =
1

infz∈𝛺⋆
∑

y Sj(z�y) and we can verify C1 > 0 since 𝛺⋆ is the intersection region 
with non-zero measure.

Then we bound the second term:

Combining all results, we have:

Where C+ = C1(1 + |Y|) is a positive constant.   ◻

Proof of Lemma 2 Since we approximate the � as a multi-dimensional Gaussian distribu-
tion, then the Dobrushin Coefficient can be computed as:

Since the TV distance of multidimensional Gaussian is infeasible to compute, then accord-
ing to Devroye et  al. (2018), the upper bound of TV distance between two high-dimen-
sional Gaussian distributions is:

Where dH is the Hellinger distance, which has the closed form of between two Gaussian 
distributions with

Then the TV distance can be upper bounded as:

We assume � is L� Lipschitz such that w.r.t. x,

�z∼𝛺⋆

� Si(z�y)∑
y Si(z�y)

−
Si(z�y)∑
y Sj(z�y)

� = �z∼𝛺⋆

Si(z�y)
�∑y[Sj(z�y) − Si(z�y)]�
[
∑

y Si(z�y)][∑y Sj(z�y)]

= �z∼𝛺⋆

Si(z�y)∑
y Si(z�y)

∑
y �Sj(z�y) − Si(z�y)�∑

y Sj(z�y)

≤ �z∼𝛺⋆

∑
y �Sj(z�y) − Si(z�y)�∑

y Sj(z�y)
≤ C1

�
y
�z

�Sj(z�y) − Si(z�y)�

≤ C1�Y�𝜅

�z

� Si(z�y)∑
y Sj(z�y)

−
Sj(z�y)∑
y Sj(z�y)

� ≤ 1

infz∈𝛺⋆

∑
y Sj(z�y) �z

�Si(z�y) − Sj(z�y)� = C1𝜅

�z∼𝛺⋆ |Si(y|z) − Sj(y|z)| ≤ C1(1 + |Y|)𝜅 = C+𝜅

sup
x,x�

dTV(N(�(x), �2
�d)‖N(�(x�), �2

�d))

dTV(N(�(x), �2
�d)‖N(�(x�), �2
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√
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and the dmax = supx,x� ‖x − x�‖2 . Then we have:

  ◻

Relation with data‑augmentation

In this part, we propose a simple proof to show the role of data-augmentation, which also 
aims at regularizing the representation.

We suppose a differentiable embedding function � ∶ X → Z , the loss as logistic func-
tion L(ŷ, y) = log(1 + exp(−ŷy)) and the predictor as a linear function w, binary classifica-
tion with balanced label distribution. Then the objective function can be written as:

Where x̃ = INP(x1,… , xT ), x1 ∼ S1(x|Y = y),… , xT ∼ ST (x|Y = y) is any interpolation 
function of samples from multiple environments. We also suppose the data augmentation 
aims at improving the local property of the representation � . Then by using first-order Tay-
lor expansion at the local representation �0 , we have:

If we take 𝜙0(x) = �x̃[𝜙(x̃)] , then the second term vanish, then the first order approximation 
can be expressed as:

Then we compute the second-order approximation at point �0 , then we have

We can further compute that if L is logistic loss, the second-derivative is independent of 
label y and the second derivative is bounded by 1. Then we have

Relation with regularization term If the embedding function is L� Lipschitz then the func-
tion wT𝜙(x̃) is also L�‖w‖2-Lipschitz through:

Then we have the upper bound of G2 ≤ L2
𝜙

‖w‖2
2

4
Var(x̃) . Therefore, the minimize the loss 

on the augmented data set can be viewed as an implicit optimization to enforce a small 

‖�(x) − �(x�)‖ ≤ L�‖x − x�‖2

�TV(�) ≤ √
2

�
1 − exp(−

d2
max

8d�2
L2
�
)

�1∕2

G(w) = �x̃ L(w
T𝜙(x̃), y)

G1(w) = L(wT𝜙0, y) + �x̃(𝜙0 − 𝜙(x̃))L�(wT𝜙0, y)

G1(w) = L(wT
�x̃[𝜙(x)], y)

G2(w) =
1

2
�x̃[(w

T (𝜙(x̃) − �x̃[𝜙(x̃)]))
2L��(wT

�x̃[𝜙(x̃)], y)

G2(w) ≤ 1

2
Varx̃(w

T𝜙(x̃))2

�wT𝜙(x̃1) − wT𝜙(x̃2)� ≤ ‖w‖2‖𝜙(x̃1) − 𝜙(x̃2)‖2 ≤ L𝜙‖w‖2‖x̃1 − x̃2‖
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prediction variance, where the Lipschitz representation function � is one sufficient condi-
tion to realize it.

Proof We can compute the second derivative of L(ŷ, y) = log(1 + exp(−ŷy)) w.r.t. ŷ:

Since y is binary with possible values y = {−1,+1} , then we have y2 = 1 , the second-
derivative is independent of y with 𝜕

2L(ŷ,y=1)

𝜕ŷ2
=

𝜕2L(ŷ,y=−1)

𝜕ŷ2
=

exp(ŷ)

(1+exp(ŷ))2
≤ 1   ◻

Appendix: The network structure

Shown Tables 4 and 5.

Author Contributions Conceptualization: CS, CG; Methodology: CS; Writing—original draft preparation: 
CS, BW; Writing—review and editing: CS, BW, CG; Funding acquisition: CG; Supervision: CG, BW.

𝜕2L(ŷ, y)

𝜕ŷ2
=

y2 exp(yŷ)

(1 + exp(yŷ))2

Table 4  Network structure in 
digits recognition. Feature extractor �

 conv 1 3 × 3 × 64

 conv 2 3 × 3 × 128

 conv 3 3 × 3 × 256

Classifier h
 fc 1 ⋆ × 512

 fc 2 512 × 100

 fc 3 100 × 2

Domain discriminator d
 fc 1 ⋆ × 256

 fc 2 256 × environment_number

Table 5  Network structure in 
PACS and Office-Home Feature extractor �

ResNet18 pre-trained network
Classifier h
 fc 1 ⋆ × 256

 fc 2 256 × 256

 fc 3 256 × class_number

Domain discriminator d
 fc 1 ⋆ × 256

 fc 2 256 × 256

 fc 3 256 × environment_number
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