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Influenza typically causes mild infection but can lead to severe outcomes for those with compromised lung health. Flooding, a
seasonal problem in Iowa, can expose many Iowans to molds and allergens shown to alter lung inflammation, leading to asthma
attacks and decreased viral clearance. Based on this, the hypothesis for this research was that there would be geographically specific
positive associations in locations with flooding with influenza diagnosis. An ecological study was performed using influenza
diagnoses and positive influenza polymerase chain reaction tests from a de-identified large private insurance database and Iowa
State Hygienic Lab. After adjustment for multiple confounding factors, Poisson regression analysis resulted in a consistent 1%
associated increase in influenza diagnoses per day above flood stage (95% confidence interval: 1.00–1.04). )is relationship
remained after removal of the 2009–2010 influenza pandemic year. )ere was no associated risk between flooding and influenza-
like illness as a nonspecific diagnosis. Associated risks between flooding and increased influenza diagnoses were geographically
specific, with the greatest risk in the most densely populated areas. )is study indicates that populations who live, work, or
volunteer in flooded environments should consider preventative measures to avoid environmental exposures to mitigate illness
from influenza in the following year.

1. Introduction

Influenza viruses, members of the Orthomyxoviridae family
[1], are among the leading causes of human respiratory
infections globally [2]. )e estimated burden of influenza in
the United States falls between nine and 49 million cases,
causing 1,700 to 59,000 deaths annually [3]. A recent report
from the Iowa Department of Public Health indicated 1,889
influenza-associated hospitalizations and 270 influenza-re-
lated deaths in Iowa [4]. Influenza typically causes mild
infection but can lead to hospitalization or death for indi-
viduals that are younger than five, older than 65, or those
who have concomitant lung disease (i.e., asthma, chronic

obstructive pulmonary disease, etc.) [5–8]. Environmental
and occupational factors also influence influenza prevalence.
)ose who work or live in close proximity to large animal
production facilities, as can be common in Iowa, are at an
increased risk of lung disease [9, 10]. Poor air quality around
and in animal production facilities posed greater risk for
lung disease compared with areas where animal production
facilities are not present [11, 12].

Geographic spread and evolution of influenza viruses is
driven by complex relationships among viral evolution,
climatic factors, and transmission differences at the
local, regional, and global scale [13–16]. In temperate re-
gions, increased influenza transmission has been shown
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experimentally and epidemiologically to occur in cooler, less
humid settings with seasonal peaks in winter months
[17–21]. Compartmental modeling has demonstrated an
interaction between viral transmission and specific humidity
that was sufficient to explain observed differences in epi-
demic intensity in several US cities [22]. In addition, changes
in specific humidity have been found to correlate with in-
tense epidemics [22], and decreases in both indoor and
outdoor absolute humidity have been associated with in-
creased influenza virus airborne survivability and trans-
mission [23, 24]. Anti-influenza vaccination, the most
prevalent prevention strategy for influenza, reduced influ-
enza transmission at both local and regional scales [25–27]
At regional and local scales, influenza burden and timing are
closely correlated with human contact patterns, population
density, timing of school sessions, and level of susceptibility
[28–32].

Water-saturated areas caused by flooding are prone to
mold growth and growth of other spore-forming microbes
that affect respiratory health [33]. One study found via
passive air samples and quantitative PCR that flooded homes
had significant differences in bacterial and fungal commu-
nity composition and significant increases in fungus con-
centrations compared with nonflooded homes [34].
Additionally, it has been suggested that homes impacted by
floods never return to a baseline fungal concentration
[34, 35]. A recent meta-analysis indicated that residential
dampness and mold increased the odds of respiratory in-
fections by 45% [36]. Increases in flooding-induced allergens
led to increased asthma attacks and subsequently increased
risk of influenza infection even months later [37–39].
Flooding affects many members of a population [40, 41],
exposure to these postflood environments could influence
influenza rates at a population level months after initial
flooding events.

Iowa is an ideal state to evaluate a flooding and influenza
relationship due to the large number of floods that have
occurred each year after large precipitation events [42],
which is projected to rise [43–45]. It is critical to understand
to what extent flooding and subsequent water-saturated
areas increase the risk of influenza diagnosis in Iowans. We
hypothesized there would be a positive association between
flooding and influenza diagnoses for the Iowa population as
exposure to flooded environments can alter susceptibility to
influenza. It is further hypothesized that flooding in Iowa
would be spatially associated with geographically specific
increased influenza diagnoses.

2. Methods

2.1. Influenza Outcome Data. Influenza diagnoses were
quantified from two sources: a database of de-identified fully
insured administrative claims data from a private insurance
company and polymerase chain reaction (PCR) test results
from Iowa State Hygienic Lab provided by Dr. Lucy Des-
jardin. International Classification of Disease (ICD)-9 and
ICD-10 codes were used to ensure complete case inclusion
for influenza diagnosis between 2007 and 2017 (Supple-
mental Table 1). Influenza diagnoses and positive PCR tests

were summed for each three-digit ZCTA based on county of
diagnoses or testing (here on referred to as influenza di-
agnoses). Similar data were collected for influenza-like ill-
ness (ILI) diagnoses (Supplemental Table 2).

To temporally assess how flooding impacts the following
influenza season, a hypothesized flood-flu year was defined
as May 1st to April 31st of the following year (Figure 1).
Aggregation was performed at this temporal level to ensure a
given flood season only influences the following influenza
season.

2.2. Population-Level Covariates. Multiple variables were
used to account for known population-level factors that can
influence influenza rates. Yearly asthma diagnosis and
asthma attack rates were calculated for each three-digit
ZCTA of Iowa using diagnosis codes from the aforemen-
tioned de-identified insurance claims database (Supple-
mental Table 3) [25–27, 37–39]. Yearly vaccination rates
were calculated using National Drug Code (NPC), Current
Procedural Terminology (CPT) codes, and ICD-9 and ICD-
10 codes to ensure complete capture of all of vaccinated
against influenza (Supplemental Table 4).

Topologically Integrated Geographic Encoding and
Referencing (TIGER) shape files from the 2010 US census
were used to calculate the population counts and population
density for each three-digit ZCTA. Total population for each
three-digit ZCTA served as the denominator when calcu-
lating population percent working in animal production and
vaccination, asthma, and asthma attack rates. Data from the
2017 agricultural census was used to determine the total
number of individuals per three-digit ZCTA whose primary
vocation was animal production.

2.3. Environmental-Level Covariates. Daily records from
meteorological aerodrome report (METAR) stations, surface
synoptic observations (SYNOP) stations, and United States
Geology Survey (USGS) stream gauges were collected for the
three-digit ZCTA regions across Iowa (Figure 2). Monthly
averages of temperature and relative and absolute humidity
were taken by averaging the daily data for each weather
station. Weather stations were geotagged in ArcMap to
locate them via three-digit ZCTA (determined by US Census
2010 TIGER shape files) based on latitude and longitude. For
each three-digit ZCTA, seasonal averages for temperature
and absolute and relative humidity were calculated per
flood-flu index year by averaging monthly weather station
data into two seasons: flood (May, June, and July) and in-
fluenza (October, November, December, January, February,
and March).

Stream height data were collected, and flood-stage-level
indicators were identified from 63 USGS stream gauges
across Iowa (Figure 2). Average, daily stream height was
calculated for each stream gauge and dichotomized based on
the flood stage indication. Flooding was considered present
when the daily average stream height was greater than the
flood stage level for each stream gauge. Based on these daily
dichotomized flood indications, monthly days above flood
stage was calculated for every stream gauge. )ese data were
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aggregated for the three-digit ZCTA level by averaging days
above flood stage for all stream gages in each three-digit
ZCTA.

2.4. Statistical Model. Biological relevance, bivariate cor-
relation, and multicollinearity of covariates were used to
determine inclusion into final models. Pearson correlations
were performed for each covariate and influenza diagnoses
data. Collinearity of covariates was measured using vari-
ance inflation factors (VIFs). If a variable had a VIF greater
than five, it was considered for removal from the final
modeling procedure depending on biological relevance
and Pearson correlation significance to ensure final model
convergence.

Poisson regression with a conditional autoregressive
spatial component (three-digit ZCTA level) was implemented

using a Bayesian approach via R2OpenBugs to determine the
relationship between days above flood stage (flooding) and
influenza diagnoses [46]. )ese models were run at the three-
digit ZCTA level and aggregated to flood-flu year for each
spatial unit. Model outcomes were total influenza (or ILI)
diagnoses per three-digit ZCTA for each flood-flu year
(2007–2017). Offset was total population per three-digit
ZCTA. )e conditional autoregressive component provided
accounting of adjoining geographic locations that were likely
to impact neighboring areas. All priors used for modeling had
noninformative distributions; mean 0 and precision 0.001.
Each model used three chains and 2,500,000 iterations using
Markov Chain Monte Carlo (MCMC) sampling. Conver-
gence of MCMC output was assessed via Gelman–Rubin
diagnostics. Models were considered convergent when the
Gelman–Rubin diagnostic was less than 1.05 for all model
variables [47, 48].

Typical Flood Season

May June

Heavy rainfall and snowmelt
can lead to flooding events

Compromises to lung health brought on by post-
flooding environments can lead to an increase

influenza susceptibility

July Aug Sept Oct Nov Dec Jan Feb Mar April

Typical Influenza Season

Figure 1: Flood-influenza (flu) year. All data for this study were aggregated to this yearly structure for each three-digit ZCTA in Iowa.

METAR and SYNOP Stations
USGS Stream Gauges

Figure 2: Spatial distribution of USGS stream gauges and METAR and SYNOP weather stations in Iowa. Locations of all SYNOP and
METAR weather stations and USGS stream gauges used in the study. Each unique three-digit ZCTA is shown as a different color. Map
created using ArcMap 10.7.1 (Esri, Redlands, CA).
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3. Results

)e combination of influenza diagnoses from de-identified
insurance claims and Iowa State Hygienic Lab influenza PCR
test results was used to quantify influenza diagnoses for the
Iowa population for each flood-flu year. )e largest rate of
influenza diagnoses was during the 2009–2010 pandemic
influenza season (Table 1) [49].

To establish flooding frequency in each Iowa ZCTA,
stream height data were collected from 63 USGS stream
gauges. Known environmental factors that influence risk of
influenza diagnosis [17–21] were addressed by collecting
temperature and humidity data from 60 METAR and five
SYNOP weather stations across Iowa (Figure 2). An average
of 45 (±5.60) USGS stream gauge stations reported stream
height data each year. Average days above flood stage av-
eraged 17 to 22 days each year (Table 1).

3.1. Multiple Environmental and Population-Level Factors
Associated with Influenza Diagnoses. )e relationship be-
tween flooding and influenza diagnoses is complicated by a
variety of intersecting environmental and population de-
terminants. To drive informed modeling choices, bivariate
analyses were conducted to evaluate associations between
aggregated covariates and influenza diagnoses (Table 2). Ten
of fourteen suspected and literature-based environmental-
and population-level determinants were significantly cor-
related with influenza diagnoses (Table 2).

Collinearity was calculated via variance inflation
factors (VIFs) among the above fourteen influenza risk
factors (correlation matrix of covariates provided in
Supplemental Table 5). All humidity and temperature
values, except relative humidity during influenza season,
had VIFs greater than 10. Every humidity and temper-
ature value was excluded from modeling, except for
absolute humidity during the influenza season, which had
the highest level of correlation to the outcome of influ-
enza infection (−0.27, p< 0.005) (Table 2). Absolute
humidity during the influenza season was selected to
remain in the final models for biological relevance as a
better measure compared with relative humidity when
assessing influenza risk [3, 22, 23, 28]. Temperature and
humidity are directly related with high collinearity [50].
Many of the population-level covariates had VIF values
between five and ten (Table 2). Percent of the population
in animal production and asthma attack rate were in-
cluded in the multivariable model due to their biological
relevance for influenza transmission and environmental
exposures.

)e list of final model variables included: (influenza)
vaccination rate, asthma attack rate, flooding, average ab-
solute humidity during the influenza season (flu), pop-
ulation density, and percent of the population in animal
production. VIFs for each variable when modeling stan-
dardized influenza diagnoses as an outcome using only these
specified environmental exposure variables were all less than
two and a half (range 1.09–2.32).

3.2. Increased Influenza Diagnoses Are Associated with In-
creased Flooding. A Bayesian conditional autoregressive
(CAR) Poison model was fit to estimate the association
between flooding exposures and influenza diagnoses. )is
model indicated that flooding exposures (mean: 1.01 [95%
CI: 1.00–1.02], posterior probability of risk >1: 0.768),
asthma attack rates (1.04 [95% CI: 0.989–1.09], 0.914), and
percent of the population in animal production (1.01 [95%
CI: 0.890–1.15], 0.536) had the greatest estimated risk as-
sociated with influenza diagnoses. Asthma attack rates
(0.914) and the total average days above flood stage (0.768)
had the greatest probability of the estimated risk being
greater than one for an associated increase in influenza
diagnoses (Table 3).

)ese results can be interpreted as a four percent in-
crease in influenza diagnoses per each increase of asthma
attacks or a one percent increase in influenza diagnoses per
day above flood stage across Iowa.

)e greatest concentration of influenza diagnoses were
in densely populated areas, in particular the Des Moines
(ZCTA 503) and Cedar Rapids (524) metro areas, and to-
ward the eastern section of the state (Figure 3(a)), consistent
with the role of population density as a risk factor for in-
fluenza transmission [32]. Flooding predominantly occurred
in the northwest section of the state in the region of forks of
the Des Moines River and within the Iowa City/Cedar
Rapids corridor, with the Iowa and Cedar rivers, and their
tributaries (Figure 3(b)). )e associated risk for an increase
in influenza diagnoses due to flooding is concentrated along
the north-central portion of the state as well as the eastern
border (Figure 3(c)). It was found that ZCTA 503 had the
highest risk of an increase of influenza diagnoses associated
with flooding (risk� 4.293). ZCTA 524 was found to have
the lowest risk of an increase of influenza diagnoses asso-
ciated with flooding (risk� 0.437). Maps of other covariates
used in the final modeling are provided in Supplemental
Figure 1.

It is well understood that when there is a major reas-
sortment of different influenza strains to make a novel strain,
there is limited preexisting immunity to this strain, greatly
increasing the population susceptibility and changing the
seasonal dynamics of transmission [51]. To determine if the
relationship between flooding and influenza rates was biased
by the novel pandemic strain from the 2009–2010 influenza
season, an analysis was performed omitting this year. Similar
associations were found between influenza diagnoses and
floodingwith the 2009–2010pandemic year omitted (Table 4).

Unlike the previous analysis (0.718 [95%CI: 0.371–1.47]),
average absolute humidity was found to have the highest
associated risk (1.40 [95% CI: 0.467–4.97], 0.727). Percent of
the population working in animal production (1.04 [95% CI:
0.844–1.24], 0.712) was found to have the highest associated
riskof thepopulation-level factors,which isa3%increase from
the previous analysis. Both asthma attack rates (1.03 [95% CI:
0.980–1.08], 0.841) and the total averagedays abovefloodstage
(1.01 [95% CI: 1.00–1.02], 0.755) maintained levels of risk
greater than one. Similar to the original influenza regression
analysis, asthma attack rates had the greatest probability of the
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estimated risk being greater thanone (0.841), followedby total
average days above flood stage (0.755).

3.3. Flooding Has No Associated Risk with Influenza-Like
Illness Diagnoses. To determine if the relationship between
flooding and influenza diagnoses is specific to influenza or is
broadly related to seasonal infectious respiratory diseases, a
separate analysis was performed to assess the association of
flooding with influenza-like illness (ILI). )is analysis found
no association between total average days above flood stage
and ILI (1.00 [95% CI: 0997–1.00], 0.007) (Table 5).

Furthermore, the probability of the estimated risk be-
tween total days above flood stage and ILI being greater than
one was close to zero (0.007). Like previously presented
analyses, both asthma attack rates (1.02 [95% CI:

0.993–1.04], 0.948) and percent of the population working in
animal production (1.05 [95% CI: 0.933–1.09], 0.946) had
associated risks greater than one. )e probability for the
estimated risk being greater than one for asthma attack rates
increased by 0.054, and for percent of the population
working in animal production increased by 0.41.

3.4. Sensitivity Analyses to account forMissing Flooding Data.
All results presented above used complete data only.
Flooding data were missing for four three-digit ZCTAs of
Iowa across the study period. Two separate sensitivity an-
alyses were performed to determine the impacts that the
missing flood data could have on the estimated risk as-
sessments between flooding and influenza diagnoses. )e
first analysis implied a best-case scenario in which all the

Table 1: Summary table of influenza diagnosis and USGS stream gauge reporting.

Date range Physician diagnosed PCR+ tests Average days above flood
stage

Number of unique USGS
stations

Stations reporting
flooding

5/2007–4/2008 11,114 568 12.8 38 15
5/2008–4/2009 5045 507 20.0 44 30
5/2009–4/2010 11,534 1880 20.8 45 23
5/2010–4/2011 6567 1070 27.4 45 36
5/2011–4/2012 1693 1346 18.4 45 12
5/2012–4/2013 8604 2016 19.3 43 17
5/2013–4/2014 3972 681 21.8 44 23
5/2014–4/2015 9871 890 21.3 44 21
5/2015–4/2016 3302 385 17.9 44 19
5/2016–4/2017 575 1052 18.7 60 24

Table 2: Bivariate correlations between influenza diagnoses and potential covariates.

Variable (season) Average Standard deviation Correlation value Variance inflation factor
Average temperature (flood) 68.79 2.37 0.05 54.76
Average temperature (flu) 33.03 4.08 −0.27∗∗ 25.64
Relative humidity (flood) 70.23 24.36 −0.20∗ 54.73
Relative humidity (flu) 74.45 3.82 0.12 4.34
Absolute humidity (flood) 12.59 0.92 −0.19∗ 60.85
Absolute humidity (flu) 4.25 0.55 −0.27∗∗ 22.51
Flooding 19.91 39.96 0.13 1.43
Vaccination rate 551.13 179.55 0.40∗∗ 2.24
Asthma rate 92.35 53.75 0.62∗∗ 7.48
Asthma attack rate 12.21 7.30 0.54∗∗ 8.00
Population density 224.07 456.15 0.31∗∗ 3.34
Percent older 75 8.00 1.75 −0.33∗∗ 5.21
Percent younger 5 6.51 0.57 0.12 2.17
Percent animal production 5.20 2.69 −0.30∗∗ 6.59
Environmental factors of temperature and humidity were aggregated to flood and flu seasons before bivariate correlations were performed. All remaining
variables were not aggregated to a seasonal temporal scale. Bolded covariates with ∗p< 0.05 and ∗∗p< 0.005.

Table 3: Results of Bayesian CAR model with influenza diagnoses as an outcome.

Variable Mean risk 2.5% quantile 97.5% quantile Gelman Diag Probability of risk >1
Asthma attack rate 1.04 0.989 1.09 1.00 0.914
Vaccination rate 0.999 0.998 1.00 1.00 ≤0.001
Population density 1.00 0.999 1.00 1.01 ≤0.001
Percent in animal production 1.01 0.890 1.15 1.00 0.536
Average absolute humidity 0.718 0.371 1.47 1.02 0.165
Total average days above flood stage 1.01 1.00 1.02 1.00 0.768
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missing flood data were set to zero.)is implied spatial units
without flooding data did not experience flooding (Sup-
plemental Table 6). Results from this analysis were similar to
the original analysis results except average absolute humidity
(1.56 [95% CI: 0.889–2.77], 0.941) had greater risk associated

with influenza diagnosis and the risk for percent population
in animal production increased by 10%. It was found that the
probability of the estimated risk being greater than one for
percent of the population in animal production increased
from the original analysis by 0.453 (0.536 to 0.989). )e
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Figure 3: Estimated risk of increased influenza diagnoses from days above flood stage. (a) Average influenza diagnoses. Average influenza
diagnoses and positive PCR tests per each three-digit ZCTA from 2007 to 2017. (b) Average total days above flood stage. Average days above
flood stage per each three-digit ZCTA from 2007–2017. Dashed areas indicate missing data. (c) Risk of influenza diagnosis from flooding.
Risk calculations for each three-digit ZCTA were calculated from the multivariate Poisson regression model. Dark shading indicates a high
associated risk, while light shading indicates a low associated risk.)ree-digit ZCTA boundaries were taken fromTIGER shape files from the
US Census Bureau. Maps created using ArcMap 10.7.1 (Esri, Redlands, CA).

Table 4: Results of Bayesian CAR model with influenza diagnoses as an outcome and 2009-2010 flu season removed.

Variable Mean risk 2.5% quantile 97.5% quantile Gelman Diag. Probability of risk >1
Asthma attack rate 1.03 0.980 1.08 1.00 0.841
Vaccination rate 1.00 0.998 1.00 1.01 ≤0.001
Population density 1.00 0.999 1.00 1.00 ≤0.001
Percent in animal production 1.04 0.896 1.20 1.00 0.678
Average absolute humidity 1.40 0.467 4.36 1.00 0.727
Total average days above flood stage 1.01 1.00 1.02 1.00 0.755
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associated one percent risk for an increase in influenza
diagnoses per one day above flood stage remained the same,
while the probability of the estimated risk being greater than
one decreased (0.680 from 0.768 previously).

It is more likely that these areas with missing data would
experience similar flooding to areas around it. Missing flood
data were imputed based on neighboring three-digit ZCTAs.
)is analysis produced similar trends as the above analyses
(Supplemental Table 7). )e average absolute humidity had
the largest risk associated with it (1.58 [95% CI: 0.903–2.77],
0.947). Compared with the missing values set to zero
analysis, this is a 0.02 increase in risk and a smaller 95%
confidence interval. )e percent of the population working
in the animal production industry (1.11 [95% CI: 1.02–1.20],
0.992) was found to have the second highest associated risk.
)is is the same compared with the missing set to zero
analysis, however, with a higher value for the 97.5% quantile.
)e total average days above flood stage (1.01 [95% CI:
0.999–1.02], 0.740) was the only other factor that had an
associated risk, which remained the same compared with the
missing set to zero analysis. It was also found that the
probability of risk being greater than one for an increase in
influenza diagnoses remains high (0.740) but decreased
slightly compared with the original analysis (0.768).

4. Discussion

Influenza viruses are estimated to infect one billion indi-
viduals each year [52], and their spread are driven by climate
factors, viral evolution, and population susceptibility [13–16].
Flooding is both a disaster and a common event in Iowa that
can cause an increase in respiratory health problems with
long-lasting impacts that influences population susceptibility
to influenza [33, 42, 53, 54]. We hypothesized that those who
are exposed to postflooding environments, through living
circumstances, volunteer clean-up efforts, or work hazards,
may be at greater risk for future influenza infection. Risk can
come from being exposed to mold in postflooded environ-
ments or exposure to increased levels of allergens in the air
following floods. )ese exposures can lead to both acute and
chronic complications, most notably potential fibrosis due to
asthma attacks or even micro foreign bodies, that can persist
for months after the initial exposure [33, 53–57]. )is study
demonstrates a positive association between flooding and an
increase in influenza rates for Iowans.

All results in this study found a similar 1% estimated
risk of increase in influenza diagnoses per day above flood
stage for the state of Iowa; this relationship persisted when
omitting the pandemic influenza year of 2009–2010

(Tables 3-4). )is suggests that the flooding and influenza
relationship is not driven by pandemic strains of the in-
fluenza virus and could persist for seasonal influenza as well.
If there was widespread flooding across the state, as seen
during major flooding events in 1994 and 2010, the impact
across Iowa, 3.155 million people, would be 31,555 diagnoses
for each day above flood stage. Two other known factors that
can influence lung health, asthma attack rates [5–8] and
percent of population in animal industry [9, 10], also
consistently showed associated risks (Tables 3–5). )ese
results suggest when adjusting for other known risk factors
of influenza, asthma attack or humidity for example,
flooding still has a direct level of estimated risk. )e state of
Iowa experiences approximately 20 days of flooding each
year. )is implies, on average, that Iowans are at 20% in-
creased risk of influenza each year compared with other
populations that do not experience flooding.

)e associated risk between flooding and influenza di-
agnoses was heterogeneous at the three-digit ZCTA spatial
scale of Iowa, and it was found that the northeast and eastern
three-digit ZCTAs had consistently higher levels of risk
(Figure 1). )ese ZCTAs experienced a larger burden of
flooding compared with the other Iowa ZCTAs. Further,
many of the animal feed operations are densely located in the
northeast region of the state. Of note, ZCTA 503, the Des
Moines regional area, has a very large risk (risk� 4.29). )is
ZCTA has the highest population density (1830.56 individuals
per mi2 compared with state average 228.27 individuals per
mi2), and this was in the highest flu diagnoses category,
suggesting that despite having lower average days above flood
stage, the floods that did occur could have had a greater
impact on more individuals. A significant percentage of the
population living in this area has been shown to be living in
poverty (12%) or as asset-limited/income-constrained
households (17%) [58]. )is analysis did not consider so-
cioeconomic status of residents within each three-digit ZCTA
as it was outside the limits of themodel.)ese factors together
may describe why such a large risk could be attributed to
flooding in the capital region of Iowa. )e three-digit ZCTA
524 had a rather low associated risk attributed to flooding
(risk� 0.437) despite having a large average influenza diag-
noses and moderate rates of flooding. ZCTA 524 has the
second highest average rate of influenza vaccination (759.58
vaccinations per 100,000) for the whole state (531.85 vacci-
nations per 100,000), and thus the risk from flooding may be
mitigated by the high vaccination rates.)ese findings suggest
that in areas where large amounts of the population could be
exposed to flooded environments, there is a large, estimated
risk for an associated increase in influenza diagnoses. )ese

Table 5: Bayesian CAR model with influenza-like illness diagnoses as an outcome.

Variable Mean risk 2.5% quantile 97.5% quantile Gelman diagram Probability of risk >1
Asthma attack rate 1.02 0.993 1.04 1.00 0.948
Vaccination rate 1.00 1.00 1.00 1.01 ≤0.001
Population density 1.00 1.00 1.00 1.00 ≤0.001
Percent in animal production 1.05 0.993 1.09 1.00 0.946
Average absolute humidity 0.992 0.570 1.32 1.03 0.527
Total average days above flood stage 1.00 0.997 1.00 1.00 0.007
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findings highlight the need for those who work, volunteer, or
live in postflooding environments to take preventative
measures during clean-up efforts such as wearing N95 or
filtered masks and preventative measures, like vaccination, to
avoid influenza infection in subsequent influenza seasons.

Unlike the association between flooding exposure and
influenza diagnoses, there was no estimated association be-
tween influenza-like illness (ILI) diagnoses andflooding (1.00
[0.997–1.00], 0.007). ILI is a very broad respiratory illness
diagnosis, which can be caused by a myriad of respiratory
alignments [59]. )e lack of an association between flooding
and ILI diagnoses suggests evidence toward a specific rela-
tionship between flooding exposures and influenza. )is
relationship may be due to how populations respond to in-
fluenza rather than flooding exposures specifically altering
transmission of the influenza virus.)is relationshipmay not
be generalizable to other microbe-specific diagnoses, such as
SARS-CoV-2. Further studies need to be performed to access
the generalizability of these findings.

All analyses and results presented here are at the pop-
ulation level may not apply equally to every individual re-
siding within each three-digit ZCTA. Further, studies
performed at a different spatial scale may find different
results. More granular studies need to be conducted to
provide greater understanding of the risk at an individual
level, including a more nuanced measure of flood exposure
and potential corresponding respiratory risk factors.

)ere are many strengths to this study. First, unlike prior
studies that have only evaluated health outcomes immedi-
ately following single flooding events [60–63], this study
analyzed over ten years of flooding exposure and influenza
records. )is helps better account for overall changes that
have occurred due to climate and influenza strain differ-
ences. Daily averages of stream height were used to deter-
mine the existence of flooding, and thus small-scale or flash
floods (floods typically lasting less than a couple hours) were
not captured in these data. It is unlikely that flash floods
would create conditions of a postflooded environment
evaluated in this study as they are not as likely to cause as
much property damage [64]. Analyses used in this study also
incorporated an autoregressive component during modeling
to allow for neighboring ZCTA influenza diagnoses to in-
fluence each other since disease transmission does not
uphold to arbitrary postal codes.

)is study also has limitations. Data collection and
analysis for this study were limited to administrative
boundaries and in some areas noncontiguous spatial units
were present (ZTCAs 501, 502, 522, and 523). Areas with
noncontiguous spatial units can create issues when evalu-
ating associations between exposure (i.e., flooding) and
outcome (i.e., influenza diagnoses) [65]. For this research,
associations could be biased in these areas as individuals may
be exposed to flooding environments in different ZCTAs
compared with where they were diagnosed with influenza.
Aggregating to different spatial units, such as counties or
grid squares, may affect findings and interpretation of these
current results [65, 66]. Flooding data were aggregated,
which assumes that everyone within each spatial unit ex-
periences flooding in the exact same way. Currently, there is

not an alternative measure to account for individual expe-
riences of flooding at the state level. Similarly, we used a
standard definition for a flooded state that may not precisely
reflect the conditions that can influence influenza suscep-
tibility. For example, water levels directly beneath flood stage
levels may still create for local damp humid environments
that can influence mold growth or similar settings that can
influence population susceptibility for the upcoming in-
fluenza season. In addition, the presence of a priori un-
certainty concerning the true generating model and the
important covariates required the use of model selection,
rather than a purely confirmatory statistical analysis. Further
study is needed, particularly at the individual level to
characterize the exposure and determine individual-level
influenza risk associated with flooding.

5. Conclusions

)ese results found a 1% increase in estimated risk of in-
fluenza diagnoses associated with each day of flooding.
Additionally, these results found that the risk associated with
flooding is geographically specific with excess risk affecting
more densely populated areas. )ese findings suggest that in
areas where large amounts of the population could be ex-
posed to flooded environments, there is a large, estimated
risk for an associated increase in influenza diagnoses. While
additional research needs to be performed to determine the
risk at the individual level, in the meantime those who work,
volunteer, or live in postflooding environments should be
advised to take preventative measures to avoid influenza
infection in subsequent influenza seasons.
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