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A few methods and tools are available for the quantitative measurement of the brain
volume targeting mainly brain volume loss. However, several factors, such as the clinical
conditions, the time of the day, the type of MRI machine, the brain volume artifacts,
the pseudoatrophy, and the variations among the protocols, produce extreme variations
leading to misdiagnosis of brain atrophy. While brain white matter loss is a characteristic
lesion during neurodegeneration, the main objective of this study was to create a
computational tool for high precision measuring structural brain changes using the
fractal dimension (FD) definition. The validation of the BrainFD software is based on
T1-weighted MRI images from the Open Access Series of Imaging Studies (OASIS)-3
brain database, where each participant has multiple MRI scan sessions. The software
is based on the Python and JAVA programming languages with the main functionality
of the FD calculation using the box-counting algorithm, for different subjects on the
same brain regions, with high accuracy and resolution, offering the ability to compare
brain data regions from different subjects and on multiple sessions, creating different
imaging profiles based on the Clinical Dementia Rating (CDR) scores of the participants.
Two experiments were executed. The first was a cross-sectional study where the data
were separated into two CDR classes. In the second experiment, a model on multiple
heterogeneous data was trained, and the FD calculation for each participant of the
OASIS-3 database through multiple sessions was evaluated. The results suggest that
the FD variation efficiently describes the structural complexity of the brain and the related
cognitive decline. Additionally, the FD efficiently discriminates the two classes achieving
100% accuracy. It is shown that this classification outperforms the currently existing
methods in terms of accuracy and the size of the dataset. Therefore, the FD calculation
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for identifying intracranial brain volume loss could be applied as a potential low-cost
personalized imaging biomarker. Furthermore, the possibilities measuring different brain
areas and subregions could give robust evidence of the slightest variations to imaging
data obtained from repetitive measurements to Physicians and Radiologists.

Keywords: aging, biomarkers, fractal dimension, intracranial brain volume, MRI, neuroinformatics, OASIS brain
database, VoxelMorph

INTRODUCTION

The quantitative measurement of the human brain volumes using
segmentation software is highly correlated with the monitoring of
neurodegeneration disorders (Jack et al., 2000; Kovacevic et al.,
2009; Alexiou et al., 2017, 2019, 2020; Mantzavinos and Alexiou,
2017; Chatzichronis et al., 2019). Therefore, a few algorithms
and online MRI databases are available for the assessment of
the brain structure, measuring intrasessions and intersessions
for the same subject, also applying procedures for potential
manual repositioning differences from longitudinally acquired
MRI, identification of artifacts, and segmentation errors (Dale
et al., 1999; Fischl et al., 2002; Brewer et al., 2009; Fischl, 2012;
Maclaren et al., 2014). While a reliable brain volume decline can
be characterized as unbiased if and only if the loss is large enough
(Narayanan et al., 2020), and by taking into consideration that
brain lesions and brain atrophy associated with mild cognitive
impairment (MCI) are higher than the expected decline per year
in non-demented older adults (Liu J. Z. et al., 2003; Liu R.
et al., 2003; Fotenos et al., 2005, 2008; Maclaren et al., 2014),
any sources of high statistical variation, due to technical or
physiological fluctuations, could be crucial for the reliability of
the MRI results as a dementia biomarker (Caramanos et al., 2010;
Fonov et al., 2010; Borghi and Van Gulick, 2018; Narayanan et al.,
2020). In contrast, recent clinical studies suggest that the cortical
functional connectivity networks show fractal properties and that
any fluctuations to the fractal dimension (FD) of the brain gray
and white matter are highly correlated with cognitive decline (Ha
et al., 2005; Im et al., 2006; Li et al., 2007; King et al., 2009; Mustafa
et al., 2012; Varley et al., 2020).

FIGURE 1 | The algorithm of the proposed method – software.

Biological structures similar to the brain gray matter usually
have rough surfaces and are characterized by heterogenicity and
self-similar structures. This mathematical self-similarity is the
repetitive display of the whole structure after lowering the scaling.
When the scale is altered, the structures are changed repeatedly,
implying that the biological networks follow self-similarity
patterns (Cerofolini et al., 2008). As the scale diminishes, the
fractal becomes more complex (Kazemi Korayem et al., 2018).
The definition of FD gives the complexity of these structures.
The FD can reveal the properties and the mechanisms for the
roughness of a structure. For example, if a fractal shape has a
dimension of 2.3, it is more simplified than a 3D cube but more
complicated than a 2D square. This non-Euclidean approach can
be applied to minimize errors in the visualization of brain gray
matter. One of the most common algorithms for calculating the
FD and detecting image details is the box-counting algorithm.
First, the fractal object is covered by a grid structured with small
boxes of equal size. Each box should contain at least one region
belonging to the fractal. Then, the number of boxes is counted.
The next step is to design the grid again with the same properties
but smaller square boxes. The abovementioned procedure is the
traditional method where no lattices between squares or overlaps
exist (Yadav and Nishikanta, 2010).

In amyotrophic lateral sclerosis (ALS), it is proved that the
FD of brain white matter skeleton and general structure is
significantly different between ALS patients with corticospinal
tract hyperintensity and those with frontotemporal dementia
groups (Rajagopalan et al., 2013; Di leva et al., 2015).
Furthermore, while the numerical identification of differences
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in brain FD is still an open problem (Varley et al., 2020)
and simultaneously could be a very strong evidence biomarker
of consciousness disorder, we present new software in this
study for handling MRI images and measuring FD of brain
volume. We trained a learning-based registration tool using
data obtained from the Open Access Series of Imaging Studies
(OASIS) database (Marcus et al., 2007, 2010). The latest version

of this database, i.e., the OASIS-3 (LaMontagne et al., 2019),
includes a longitudinal neuroimaging, clinical, cognitive, and
biomarker dataset for normal aging and Alzheimer’s disease
(AD) from 2,168 MRI sessions and 1,608 PET sessions
to more than 100 participants (LaMontagne et al., 2019).
The participants in this database were classified according
to their Clinical Dementia Rating (CDR). The brain MRI

FIGURE 2 | Visualization of computing fractal dimension (FD).

TABLE 1 | Fractal dimension calculation software.

Software Approach Main properties

BENOIT Measures the FD and hurst exponent of datasets using
various methods to analyze self-similar patterns and
self-affine traces, also applying a white noise filter

There are two main versions, for Windows and Matlab. The input data formats can
be only:
For 1D traces and size-frequency data, text format or MS-Excel format, for 2D
patterns: BMP files and for 3D objects (available only in Matlab) BMP files, where
the 3D object should be represented as a number of 2D slices.

Fracdim
(Fractal Dimension Java
Applet)

Calculates the box-counting dimension using a Monte
Carlo algorithm.

This Java Applet imports only a set of points in a CSV file or an image, but the user
is prompt to supply an image that has been thresholded to show where the fractal
pattern is.

FracLac
(Fractal Dimension and
Lacunarity, part of ImageJ)

Describes morphology details represented in binary or
grayscale digital images, using mass and box-counting
FD and multi-fractal analysis data

Provide calculations and graphs. This plugin works on binary images and grayscale
images or grayscale images converted to RGB. The images must be thresholded
before analysis to ensure that only the pixels of interest are assessed.

Fractal analysis system
for Windows

Calculates FD by the method of box-counting after
preprocessing

This software calculates FD from rjb, png, pcx, jpg, and thinning images after
preprocessing.

Fractal Dimension
Estimator

Measures the FD of a 2D image using the box-counting
method

This software measures the FD of a 2D image using the box-counting method after
applying an RGB threshold to convert the image into binary data.

Fractaldim-package Estimates an FD of the given data, using different
methods regarding the type of dimensional time series

The package provides tools for estimating the FD of 1d or 2d data.

Fractalyse
(Fractal Analysis Software)

Computes the FD of the black and white image, curve,
and network

It is a software application for computing FD of 2D bitmap images, vector images,
and networks.

Gwyddion A modular program for scanning probe microscopy
(SPM) data visualization and analysis

It is a modular program for several SPM data formats visualization and analysis.

HarFA
(Harmonic and Fractal
Image Analysis)

Performs harmonic and wavelet analysis of digitized
images and calculations their fractal parameters

The software provides tools for estimating the FD and other statistical parameters of
2D images.

Hausdorff
(Box-Counting) Fractal
Dimension

Returns the Hausdorff FD of an object represented by
its binary image

A MATLAB module returns the Hausdorff fractal dimension of an object represented
by a binary image.

UJA-3DFD Computes the 3D FD from brain MRI, calculating the
3D box-counting of the brain’s entire volume and 3D
skeletonization

This software calculates the FD in 3D images. However, it offers only FD calculation
for the whole brain volume and not each brain region separately.
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imaging sessions include T1-weighted (T1w), T2-weighted
(T2w), fluid attenuated inversion recovery (FLAIR), arterial
spin labeled (ASL), susceptibility weighted imaging (SWI),
time of flight, resting-state blood oxygenation level dependent
(BOLD), diffusion tensor imaging (DTI) sequences, PET imaging
from three different tracers, C-Pittsburgh compound B (PIB),
amyloid imaging tracer (AV45), and fluorodeoxyglucose (FDG)
(LaMontagne et al., 2019). In the following sections, the
algorithms for measuring the intracranial brain volume using
the FD will be described based on the MRI brain data
(Figures 1, 2).

MATERIALS AND METHODS

There is a rapidly increasing interest in box-counting algorithms
in biology and medicine, such as applying fractal geometry
for efficient recognition and capture of circulating cancer cells

(Zhang et al., 2013; Maipas et al., 2018) and the correlation
between the fractal property distribution and aging (Varley
et al., 2020). Fractals have the property of self-similarity in
various scales, and when the scale is altered, the structures are
changed repeatedly. Furthermore, biological structures present
complex fractal patterns similar to brain structures (Hofman,
1991; Varley et al., 2020). Therefore, depending on the image
resolution and noise, FD may evaluate the condition of specific
tissues such as the cerebral cortex (Blanton et al., 2001;
Todoroff et al., 2014). In addition, the FD can influence
the neurodegeneration analysis progression (Carstensen and
Franchini, 1993; Jelinek and Fernandez, 1998; Pereira, 2010).
While brain white matter loss is one of the characteristic
lesions during neurodegeneration and other related disorders,
measuring any structural brain change with high precision
will act as a very effective and low-cost personalized imaging
biomarker. Additionally, any geometric structural brain changes
could be an excellent factor in measuring variations in the

FIGURE 3 | The algorithm calculating FD in 3D examples.

FIGURE 4 | Slices (A) Sagittal, (B) coronal, and (C) axial planes. The output of FreeSurfer of session OAS30001_MR_d0129. This volume is imported in FreeSurfer
and later exported as a.mgz file. The images are shown using NiBabel library version 3.2.1 (https://zenodo.org/record/4295521#.YCpJqeqxWMI).
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FIGURE 5 | Slices (A) Sagittal, (B) coronal, and (C) axial planes. The output of FreeSurfer of session OAS30001_MR_d0129 as NIfTI files. This volume shall be
imported later as a cropped image.npz file into the Box-Counting FD calculator. The images are shown using NiBabel library version 3.2.1
(https://zenodo.org/record/4295521#.YCpJqeqxWMI).

FIGURE 6 | Slices (A) Sagittal, (B) coronal, and (C) axial planes. The output of VoxelMorph of session OAS30319_MR_d0043. Each brain structure has a unique
label with grayscale values varying from 0 to 40. Later with filtering, each region is separated, and the Box-Counting FD is calculated. The images are shown using
NiBabel library version 3.2.1 (https://zenodo.org/record/4295521#.YCpJqeqxWMI).
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structural neural plasticity, while FD measures the roughness of
surfaces, and software can be used to calculate the FD of an
image (Table 1).

Compared to other tools, we succeeded in implementing the
image segmentation of brain regions in a 3D fashion.

The box-counting algorithm is the most commonly used
technique for FD measurement (Schaefer et al., 1991; Fernández-
Martínez and Sánchez-Granero, 2014; Joosten et al., 2016;
Soltanifar, 2021), calculating the Minkowski–Bouligand
dimension as follows:

Dbox (S) = limg→0

(
logN (ε)

log
( 1

ε

) ) , (1)

Dbox(S) is the FD of the box, S is the fractal, N(ε) is the
number of boxes, and ε is the scaling factor. The parameter
ε is computed with the formula ε = 1

s where s is the length

of each box. The majority of related studies mainly introduce
the FD calculation from 2D MRI images, while others apply
the multifractal analysis to examine different dynamics in the
system. In our case, we have only calculated FD with a box-
counting algorithm for the 3D brain structures. By calculating a
whole 3D image instead of 2D scans, we ensure better accuracy
in results.

The concept of this algorithm in our study is to divide
the 3D image into cubes. The 3D image includes a region of
interest (ROI). Then, we calculate the number of N cubes with
length ε of each box as part of the ROI. By applying equation
(1) in each iteration, we calculate the FD. If the variable D
in every iteration has a slight deviation, then logN/logs are
stable, which means a linear correlation between logN and
logs. In that case, the complexity of the structure can be
efficiently described by FD. If not, the multifractal analysis
is required to effectively describe the structure while other

FIGURE 7 | Slices (A) Sagittal, (B) coronal, and (C) axial planes. The output of VoxelMorph of session OAS30319_MR_d0043. Each brain structure has been
colored differently.rgb values. The images are shown using NiBabel library version 3.2.1 (https://zenodo.org/record/4295521#.YCpJqeqxWMI).
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dynamics are included in the system in which FD cannot
efficiently describe (Figure 3).

The data have been acquired from OASIS-3
(LaMontagne et al., 2019), which includes MRI (Berger,
2002; Grover et al., 2015; Chow et al., 2017) and PET
(Willemsen and van den Hoff, 2002) data. We have used
T1w MRI images (Chavhan et al., 2009; Yokoo et al., 2010),
which have been later imported into the FreeSurfer (Fischl,
2012) for further image processing (Deserno Né Lehmann et al.,
2013; Uchida, 2013). Then, the data were cropped to fit into
the VoxelMorph software (Dalca et al., 2019) to perform image
segmentation (Karsch et al., 2009; Despotović et al., 2015; Bui
et al., 2017; Mondal et al., 2018; Buda et al., 2019; Dalca et al.,
2019; Dolz et al., 2019; Rickmann et al., 2019, 2020; Cerri et al.,
2020, 2021).

Our study has included 609 adults with normal cognitive
ability (controls) and 489 multiple-staging dementia subjects
aged from 42 to 95 years old, totaling 1,961 scan sessions.
Each subject had multiple scan sessions, and each session
included raw images from the MRI scanner. Some of them
may have an additional file processed by FreeSurfer. Those
files are already processed, so they are used in our next
stage, avoiding image processing. The raw data obtained from
the OASIS-3 brain dataset (LaMontagne et al., 2019) in the
form of T1w 3D MRI images following the Neuroimaging
Informatics Technology Initiative (NIfTI) format (Larobina
and Murino, 2014), while the processed files by FreeSurfer
follows the.mgz format. The FreeSurfer has been used for
the initial image processing (Fischl, 2012), such as Motion
Correction and Conform Non-Uniform intensity normalization,
Talairach transform computation, Intensity Normalization, Skull
Stripping, Linear volumetric registration, and CA Intensity
normalization. The abovementioned methods export the data
into the preprocessed images of (256, 256, 256) resolution.
However, all the processing and post-processing steps of
FreeSurfer were not executed to reduce time complexity,
while VoxelMorph is more efficient for image segmentation.
Furthermore, the image files are converted from.mgz to.npz
format and then cropped to fit the (160, 192, 224) dimensions
required to apply the VoxelMorph algorithm to the segmentation
of brain volumes.

There are many segmentation algorithms based on supervised
learning, but with high complexity, similar to the FreeSurfer.
Their training procedures rely on labeled images, which means
that they are accurate for specific scenarios. However, when a
new dataset is tested with different contrast levels, additional
training is required. Other methods include convolutional
neural networks, which perform better during the testing,
but they lose accuracy when changes occur in the intensity
distribution of the tested images. In contrast, VoxelMorph is
an UNet architecture using an unsupervised Bayesian approach,
which tackles the drawbacks of those methods and has faster
performance. To train a model, a brain atlas with multiple 3D
MRI scans with no manual delineations is required. Instead,
each voxel of the atlas has a vector with prior probabilities
for each segmented label. Thus, when importing a new dataset
with distinct unobserved contrast, the VoxelMorph algorithm

does not require training the network again for new labels.
Instead, it is automatically adapted due to its unsupervised

TABLE 2 | The iteration steps to calculate the box-counting FD for the whole
volume of session OAS30001_MR_d0129.

Scale N

1.023292992280754 6.84523

1.146832521422478 4.85708

1.285286659943615 3.45522

1.440456010246376 2.45680

1.614358556826486 1.75729

1.809255910253820 1.26666

2.027682719521282 8.95650

2.272479635270844 6.40170

2.546830252585041 4.54770

2.854302513786581 3.25020

3.198895109691398 2.35480

3.585089482765549 1.63960

4.017908108489400 1.15920

4.502979812880891 8.62700

5.046612975635284 6.18900

5.655877570891540 4.14000

6.338697112569270 3.11100

7.103951700029557 2.23500

7.961593504173188 1.62600

8.922776195878269 1.10200

FIGURE 8 | After calculating the logN/logs plot spots using the least square
error, the fitted line is estimated for subject OAS30001_MR_d0129.
Experiments have shown that at least 20 iterations were enough to estimate
FD. Also, the linear relation of logN and logs suggests that FD efficiently
describes the complexity of the structure; therefore, the multifractal analysis is
not required. Root-mean-square error (RMSE) can describe how well a linear
regression model describes the data. For data points close to the output line
of the regression model, RMSE is expected to be low; therefore, the
estimated FD is close to the theoretical solution. The two variables used in the
linear regression model are the number of boxes (N) and the current scale (s).
If a linear relationship describes the two variables, then the structure can be
described by FD. If not, the structure is considered to have multifractal
properties.
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FIGURE 9 | 2D scan from the output volume of subject OAS30319_MR_d0043. We have chosen the third ventricle of the brain structure with an intensity value of 26.

FIGURE 10 | 2D scan from the output volume of subject OAS30319_MR_d0043. We have chosen the right putamen of the brain structure whose intensity value
equals 27.

nature. VoxelMorph has been mainly tested on T1w MRI
scans. The brain structures delineated from VoxelMorph are
the cerebral cortex, white matter, lateral ventricle, cerebellar
cortex, white matter, thalamus, caudate, putamen, pallidum,
brain stem, hippocampus, and amygdala. One exclusive session
from each patient is used to train the model to avoid including
dependent measurements.

TABLE 3 | Box-counting FD testing on multiple sessions corresponding to
various subjects.

Session FD

Whole volume Third ventricle Right putamen

OAS30319_MR_d0043 2.95129 2.37498 2.59033

OAS30524_MR_d0198 2.95208 2.35327 2.50763

OAS31101_MR_d0076 2.95413 2.36024 2.52151

OAS31170_MR_d2410 2.95321 2.34761 2.54668

RESULTS

We executed two experiments. The first was a cross-sectional
study that separated data into two CDR classes, 0 and greater
than 1. VoxelMorph is used to train a model for each class.
In the second experiment, we trained a model on multiple
heterogeneous data and evaluated the FD development for each
subject through multiple sessions. Random subjects have been
chosen, and their development through FD metrics was assessed.
In the following tables and figures for the OAS30001_MR_d0129
session, the whole process is implemented. The id of the
session is defined from the id of the patient, i.e., 30001
and 0129, in the days since the subject was included in the
study. OAS stands for OASIS database and MR for MRI.
The raw data images from the MRI scan were imported on
the software (Figure 4). The output is shown in Figure 5.
We imported the images into VoxelMorph with a pretrained
model run in Kaggle Kernel (i.e., 120 epochs, batch size
of 1, and 19 sessions) to distinguish the brain areas. These
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Kaggle Kernel parameters were chosen only due to the
restrictions of memory.

Figures 6, 7 show the segmented brain, with each region
having a unique value ranging from 0 to 40. After segmentation,
the FD is calculated for the brain regions, as shown in Table 2.
Multiple experiments have shown that 20 iterations gave an
efficient convergence to the box-counting FD, resulting in less
time complexity (Figure 8). Iterations are related to the number
of data points produced for each regression model. For example,

20 iterations correspond to 20 data points that are used to
estimate the FD. During experimentation, it was observed that
fewer iterations led to slightly different results. Using 20 or 25
iterations, the estimated FD was similar. However, more data
points require more time to estimate. Therefore, choosing 20
data points is an efficient choice to balance time complexity and
accuracy for the estimation of FD.

The FD is calculated for the brain regions corresponding to
26 and 27 intensity values (Figures 9, 10) separately for four

TABLE 4 | Box-counting FD testing on multiple sessions of the same subject OAS30109.

Session FD

Whole volume Third ventricle Right putamen

OAS30109_MR_d0270 2.946480299699088 2.3627751053697 2.5383689529296

OAS30109_MR_d0432 2.956639640069534 2.3414306913102 2.5583078971937

OAS30109_MR_d0997 2.957821984011597 2.3122620327539 2.5603106683312

OAS30109_MR_d2310 2.954899003322276 2.2987594704108 2.5215747308024

TABLE 5 | Box-counting FD testing on multiple sessions of the same subject OAS30052.

Session FD

Whole volume Right thalamus proper Left ventral DC Clinical diagnosis

OAS30052_MR_d0693 2.95047009894 2.519209063 2.397232208 No MCI Depression

OAS30052_MR_d1296 2.9475385443 2.518800477 2.407069774 No MCI No Depression

OAS30052_MR_d2709 2.9478168557 2.505436960 2.383144328 No MCI Depression

OAS30052_MR_d2737 2.9484438042 2.500205780 2.384530171 No MCI Depression

FIGURE 11 | 2D scan from the output volume of subject OAS30052_MR_d0693. Right Thalamus Proper and Left Ventral DC equal to 23 and 24 intensity values.

FIGURE 12 | 2D scan from the output volume of subject OAS30052_MR_d0693. We have chosen the Right Thalamus Proper and Left Ventral DC of the brain
structures equal to 23 and 24 intensity values. The 2D scans are from different axial slices of the same subject compared with the 2D scans in Figure 11.
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FIGURE 13 | Comparison of the distribution of health vs. control group. There is a slight overlap of the two classes in both features.

FIGURE 14 | The SVM model separating the two groups. Features are Volume and FD. Hyperparameters are regularization hyperparameter C = 100 and
gamma = 6 with polynomial kernel.
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FIGURE 15 | The validation plot. It shows that for a training sample of approximately 480, maximum accuracy with no overfitting is achieved. With FD and Volume,
the two groups are separated efficiently with 99.5% accuracy.

FIGURE 16 | The box plots for Left Ventral DC region.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 November 2021 | Volume 13 | Article 765185

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-765185 February 3, 2022 Time: 13:2 # 12

Ashraf et al. Brain Fractal Dimension

FIGURE 17 | The box plots for Right Ventral DC region.

FIGURE 18 | The box plots for Right Putamen.
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different subjects, namely, OAS30319, OAS30524, OAS31101,
and OAS31170 (Table 3). In addition, the software has the
functionality of measuring the FD for different subjects on the
same brain regions, with high accuracy and resolution, offering
the ability to compare brain data regions from different subjects
and on multiple sessions.

Extending the functionality described in Table 3, the software
calculates and compares FD for the same subject and repetitive
MRI measurements. This procedure is not yet presented widely
(Krohn et al., 2019). Table 4 calculates the FD of the whole brain

volume for the Third Ventricle and Right Putamen, respectively,
of the same subject, OAS30109, and four different MRI sessions.
OAS30109 is recorded at the initial clinical diagnosis as
Female, Aged 72.27, Handedness Right, Education level 13, and
Caucasian Race. During the repeated clinical evaluations for
OAS30109 on days 1,102, 2,237, and 3,000, there was no report
for MCI, dementia, or other neurological conditions, resulting
in cognitive impairment or neuropsychological problems. We
observed an average of 0.3% variation from the minimal
variation of FD.

FIGURE 19 | The Fbeta score, recall, and precision metrics of the classifications performed in each brain region.

FIGURE 20 | Comparison of the current classification (BrainFD) with other methods. Each compared method corresponds to the following bibliography, respectively
(Huang et al., 2008; Kloppel et al., 2008; Magnin et al., 2009; Desikan et al., 2009; Lopez, 2009; Ortiz et al., 2013; Dukart et al., 2013; Yong et al., 2014;
Bharanidharan and Rajaguru, 2018; Chen et al., 2020).
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OAS30052 is also recorded at the initial clinical diagnosis as
Female, Aged 59.02, Handedness Right, Education level 18, and
Caucasian Race, diagnosed with depression. However, during the
repeated clinical evaluations for OAS30052 on days 0728, 1,512,
2,650, and 3,028, there was no report for MCI, dementia, or other
neurological conditions. Still, there was a report for depression,
except for the clinical diagnosis on day 1,512.

The results (Table 5) are verified from the corresponding
variation of FD concerning the whole brain volume and the
regions corresponding to Left Ventral DC and Right Thalamus
Proper (Figures 11, 12). There was an increase of FD of more
than 0.4% during the first and the second clinical assessment
and again a continuous decrease. Figures 11, 12 correspond
to 2D scans from different axial slices of the same subject,
even though the FD calculation has been obtained, as in every
case, from the 3D brain model for maximizing the accuracy.
Thus, even though the pathophysiology of depression may be
identified in many brain regions (Pandya et al., 2012), we have
chosen the Right Thalamus Proper and Left Ventral DC as
the subareas of the thalamus. Recent researches have revealed
that brain areas implicated in depression are the amygdala, the
hippocampus, and the thalamus, even though an exact formula of
the correlation between volumetric abnormalities in these regions
and the development of depression is not yet proved (Sheline
et al., 1998; Kronmuller et al., 2008; MacQueen et al., 2008;
Lorenzetti et al., 2009).

This experiment removed repeated sessions from each subject
to delete any within-subject factor and perform a cross-sectional
study. As a cross-sectional study, each session corresponded to
one patient and vice versa. The subjects were separated into the
classes of CDR = 0 (control group) and CDR ≤ 1 (patients with
at least mild dementia). MRI sessions were not labeled, while
CDR sessions are usually performed on different dates from the
MRI sessions. Therefore, to label each MRI session, some criteria

had to be applied. First, each MRI session had to have occurred
between two CDR sessions of the same score. If the MRI session
took place between two different CDR sessions with different
MRI scores, the score from the closest CDR session could be
selected, considering that the chosen CDR session was performed
no further than 45 days from the MRI session. In the MRI session
being close to only one CDR session, the threshold of 45 days had
again been chosen to ensure that the dementia level was correctly
assessed. In any other scenario, subjects were dropped out of this
study. The control group consisted of 593 subjects and 73 subjects
with at least mild dementia.

After labeling the data, we trained a segmentation model using
VoxelMorph for each class. Then, each volume was segmented
into brain regions with its corresponding class model. Second,
using Python and scikit-learn package (Pedregosa et al., 2011),
we trained efficient support vector machine (SVM) classifiers in
Left Ventral DC, Right Ventral DC, Right Putamen, and Brain
Stem to diagnose subjects with at least mild dementia (CDR = 1)
and to discriminate them from the control group. Other regions
within the ROI did not show any significant differences. Finally,
we used SVM models with radial basis function (RBF) kernels to
find the margin between the two classes and evaluated the results
with five-fold validation. Figures suggest that even measurement
with one variable, either volume or FD, subjects can be accurately
classified with a precision of 100%.

In Figure 13, the box plots imply an overlap of the volumetric
and fractal measurements of the brain stem. Two linear SVM
models were trained. Volume and FD were used as features for
each case. It is shown that the FD feature discriminates more
efficiently between the two classes (Figures 14, 15). The increased
nature of the decision boundary may imply a constant increase in
FD during the years.

Left Ventral DC, Right Ventral DC, and Right Putamen
box plots have shown significant differences in volume and FD

FIGURE 21 | Size of the dataset of the most efficient methods.
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(Figures 16–18). Linear SVM classifiers using volume and FD as
features achieve 100% precision and recall due to the vast distance
between the two groups.

Our results suggest state-of-the-art performance in classifying
healthy and dementia subjects, as shown in Figure 19. Since
the dataset was unbalanced and the control group had a size
of 8.25 greater than the dementia class, the Fbeta score metric
has been used with factor β = 8.25 instead of precision. Another
reason for penalizing more the errors in the dementia class is
that it is significant to minimize type I error by maximizing
recall. Furthermore, it is crucial to identify the patient group
efficiently in medical problems and avoid assigning a patient
wrongly to the control group. In Figures 20, 21, a comparison
of our classification with the other existing methods is displayed.
Our method outperforms all other methods in terms of the
accuracy and size of the dataset. More precisely, although the first
three algorithms have similar performance with our classification,
they yield results from smaller datasets.

CONCLUSION

This study presents a new software using the OASIS brain
database for brain volume measurement using the definition
of FD. The possibilities measuring different brain areas and
subregions could give robust evidence of the slightest variations
to imaging data obtained from repetitive measurements to
Physicians and Radiologists.

Three experiments on the OASIS brain dataset have shown
the use of FD as a tool for the diagnosis and prediction of
early dementia. The first experiment trained the segmentation
model on a heterogeneous dataset to ensure its universal validity
for repeated measurements. The second experiment showed
different imaging profiles on the early stages of dementia. The
third is a classification to distinguish healthy subjects from
patients of various dementia stages. The latter shows high
accuracy compared to any existing method.

Each segmentation model is trained on an online Kaggle
Kernel with a 16 GB NVIDIA TESLA P100 GPU. The
primary limitation of the procedure is that the algorithm
required more memory to allocate images of (160, 192,
224) resolution; therefore, we manually reduced them. The
corresponding atlas to (144, 112, 96) dimensions the specific
regions of the brain. Due to these memory constraints, the
model has also been executed with a batch size of 1 and 120
epochs for both experiments. The programming code for the
FD calculation can be found in the following GitHub link:

https://github.com/BrainLabVol/BrainFD and basic instructions
of the Graphical User Interface in the Appendix.

Future study is planned to validate this model for control
and dementia groups, using R correlation to validate the FD and
more data to train and validate the cross-sectional study. Also, an
improved computational system will perform the segmentation
of the whole brain volume instead of an ROI and will adequately
evaluate the trained segmentation model.
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APPENDIX

Documentation
Installation guide
Necessary libraries:

– pip install VoxelMorph
– pip install TensorFlow

GUI

Option Description

Single File Manipulate a single file

Choose subject Select a file

Raw Data Select a NIfTI, DICOM file to perform Image Segmentation with FreeSurfer

Fs file (Norm.mgz) Load a mgz file, this file is extracted after Image Segmentation

Fs file (npz) Load a npz file that has been previously converted from mgz to npz

Vxm file Load the output npz file that VoxelMorph outputs after segmentation

Fd file Load the npz file produced after Fractal analysis

Mgz to npz The mgz file is converted into npz format

VoxelMorph After importing npz files, perform image segmentation with VoxelMorph

Estimate Df and L Estimate Fractal Dimension of the imported npz file

Option Description

Multiple Files Manipulate multiple files

Choose subjects Select a parent folder containing NIfTI or DICOM files

Raw Data Select a folder with NIfTI, DICOM files to perform Image Segmentation with FreeSurfer

Fs file (Norm.mgz) Load a folder with mgz files, those files are extracted after Image Segmentation

Fs file (npz) Load a folder with npz files that have been previously converted from mgz to npz

Vxm file Load a folder with the output npz files that VoxelMorph outputs after segmentation

Fd file Load a folder with the npz files produced after Fractal analysis

Mgz to npz After importing mgz files convert them into npz format

Train a segmentation model with VoxelMorph After importing npz files, train a segmentation model with VoxelMorph

Segment with VoxelMorph Import previous trained model and previously imported npz files to perform image segmentation with VoxelMorph

Estimate Df and L Estimate Fractal Dimension of the imported npz files, the output is a folder for each file

Create a dataset Select a folder containing the output of Estimate Df and L, to create a dataset from multiple images

• The folder and the directories shall follow the hierarchical file structure of XNAT.
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