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ABSTRACT
The revolutionary technology for genomeeditingknownas the clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated
protein 9 (Cas9) systemhas sparked advancements in biological and biomedical research. The scientific breakthrough of the development of CRISPR-
Cas9 technology has allowed us to recapitulate human diseases by generating animal models of interest ranging from zebrafish to non-human
primates. The CRISPR-Cas9 system can also be used to delineate the mechanisms underlying the development of human disorders and to precisely
correct disease-causingmutations. Repurposing this technology enableswider applications in transcriptome and epigenomemanipulation and holds
promise to reach the clinic. In this review, we highlight the latest advances of the CRISPR-Cas9 system in different platforms and discuss the hurdles
and challenges this technology is facing. J. Cell. Biochem. 118: 4152–4162, 2017. © 2017 Wiley Periodicals, Inc.
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Earlier genome-editing technologies, such as zinc-finger
nucleases (ZFN) and transcription activator-like effector

nucleases (TALEN), have enabled the manipulation of genes by
targeting DNA double-stranded breaks (DSBs) via non-homologous
end-joining (NHEJ) or homology-directed repair (HDR) pathways
[Rudin et al., 1989; Rouet et al., 1994; Choulika et al., 1995; Bibikova
et al., 2002; Moscou and Bogdanove, 2009]. NHEJ-mediated error-
prone DNA repair generates insertion/deletions (indels) at the site of
the break that disrupts the translational reading frame, leading to
frameshift mutations. Alternatively, DNA damage can be repaired
through the HDR pathway in a DNA template-dependent manner
that results in precise gene insertions or corrections (Fig. 1a). Despite
these advances, wider adoption of this technology has been limited
by low specificity and complex procedures [Sanchez-Rivera and
Jacks, 2015]. In the past several years, the most revolutionary
technology for genome editing, the clustered regularly interspaced
short palindromic repeat (CRISPR)-CRISPR-associated protein 9
(Cas9) system, has achieved great accomplishments worldwide. The
development of the CRISPR-Cas9 system has opened a new era of
precise genome manipulation that has almost reached the clinic [Go
and Stottmann, 2016].

The CRISPR story began in 1987 when a Japanese group reported
an odd 29-nucleotide repeat sequence that had 32-nucleotide
spacing [Ishino et al., 1987]. Thereafter, scientists spent nearly 20
years identifying the CRISPR as being part of an adaptive immune
system that defends against invading infections [Lander, 2016]. Of

the three types of CRISPR systems, the type II CRISPR nuclease
system is the simplest for genome editing technology, which requires
only a Cas9 protein and two RNAs: CRISPR RNAs (crRNA) and trans-
activating crRNAs (tracrRNA) [Brouns et al., 2008; Wiedenheft et al.,
2011; Jinek et al., 2012]. In the native system, the Cas9 nuclease is
guided by a duplex formed by a crRNA that contains a 20-nucleotide
region for DNA binding and a tracrRNA that activates Cas9 to cleave
the DNA [Barrangou et al., 2007]. Target recognition and DNA
cleavage require the presence of the protospacer-adjacent motif
(PAM), a consensus NGG or NAG sequence adjacent to the 30 end of
the target DNA [Gasiunas et al., 2012; Jinek et al., 2012]. The crRNA:
tracrRNA duplex was further simplified with a programmed chimeric
single-guide RNA (sgRNA), which directs Cas9 nuclease to create
DSBs in DNA at the desired positions of interest [Jinek et al., 2012;
Mali et al., 2013] (Fig. 1b). This development has facilitated the
targeting of DNA by simply designing a sgRNA and introducing it in
the presence of a Cas9 protein. The experimental protocol for sgRNA
design and construction has been well-documented [Sanjana et al.,
2014; Shalem et al., 2014].

GENERATION OF ANIMAL MODELS

Inspired by the successful release of many solid studies of the
CRISPR-Cas9 system in bacteria [Gasiunas et al., 2012; Jinek et al.,
2012] and mammalian cells [Cong et al., 2013; Mali et al., 2013],
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scientists have attempted to apply a CRISPR-Cas9 system in multiple
organisms ranging from zebrafish [Hwang et al., 2013], drosophilae
[Akiyama and Gibson, 2015; Gantz andBier, 2015],mosquitos [Gantz
et al., 2015;Hammondet al., 2016], rodents [Jackson et al., 2005; Soda
et al., 2007; Li et al., 2013;Maddalo et al., 2014;Xue et al., 2014], dogs
[Zou et al., 2015], pigs [Redel and Prather, 2015; Park et al., 2017a], to
non-human primates [Niu et al., 2014; Chen et al., 2015].

Compared with conventional embryonic stem cell (ESC) manipu-
lation, CRISPR-Cas9-mediated gene editing in ESCs has dramatically
increased the gene editing efficiency by reducing the time required
from years to months [Fellmann et al., 2017]. In addition to targeting
only a single gene, the CRISPR-Cas9 technology has been extended
to simultaneously disrupt five genes in mouse ESCs with high
efficiency in only one step [Wang et al., 2013]. This finding, as well
as the later report of a CRISPR-Cas9-mediated inducible mouse
modeling platform [Yang et al., 2013], has facilitated the rapid
generation of large repositories of ESCs with unprecedented speed
and precision [Sanchez-Rivera and Jacks, 2015]. Alternatively, Cas9
and the appropriately designed sgRNA can be directly microinjected
or simply electroporated into fertilized zygotes to achieve heritable
gene modification. Co-injection of Cas9 mRNA and sgRNAs into
mouse zygotes resulted in up to 80% of the total mice carrying
biallelic mutations in the targeted genes; importantly, these models
can be generated in only 1 month, a much shorter time than it
takes using the conventional method of gene targeting in ESCs

[Wang et al., 2013]. Last year, one research team reported the
generation of a robust mouse model for Middle East respiratory
syndrome coronavirus (MERS-CoV) [Cockrell et al., 2016]. Because
small animal models are naturally resistant to MERS-CoV, the
authors introduced two human mutations (at positions 288 and 330)
into the mouse Dpp4 gene via pronuclear microinjection into
fertilized zygotes, making the mice highly susceptible to MERS-CoV
infection and replication. This discovery holds great promise in the
field of therapeutic design and offers new strategies to combat
emerging viruses in the near future.

In addition to mice, CRISPR-Cas9 editing has been performed to
target malaria mosquito embryos, leading to malaria eradication by
either impairing the fertility of female mosquitos [Hammond et al.,
2016] or inserting an antimalarial gene into malaria mosquitos
[Gantz et al., 2015]. Recently, researchers revealed the first CRISPR-
Cas9-targeted porcine model by directly injecting the Cas9
ribonucleoprotein complex and sgRNA sequences into porcine
zygotes [Park et al., 2017a]. Zoology experts from China further
extended the application of the CRISPR-Cas9 system to monkeys by
targeting one-cell-stage embryos [Niu et al., 2014] and have
generated primate models for Duchenne muscular dystrophy (DMD)
[Chen et al., 2015]. These promising CRISPR-Cas9 models, which
faithfully recapitulate human disease, pave the way for better
understanding diseases and identifying vaccines or drugs that have
high efficacy in humans.

Fig. 1. Genome editing with the CRISPR-Cas9 system. (a) DNA double-stranded breaks (DSB) can be repaired by non-homologous end-joining (NHEJ) or homology-directed
repair (HDR). The NHEJ repair pathway results in random insertion/deletions (indels) at the site of the break, leading to frameshift mutations. The HDR-mediated pathway
achieves precise gene insertion/correction in the presence of a donor DNA template. (b) Cas9 endonuclease (in dark tan) can be guided by a crRNA: tracrRNA duplex to the specific
target DNA sequence that is adjacent to the protospace-adjacent motif (PAM, in dark blue). The crRNA: tracrRNA duplex can be simplified with a chimeric single-guide RNA
(sgRNA, in yellow), which directs the Cas9 protein to create a DSB at the desired position of the DNA target, thereby stimulating intracellular DNA repair pathways.
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Nonetheless, genome editing in zygotes always causes genetic
mosaicism, or even embryonic lethality, making zygotes difficult to
assess and manipulate [Fellmann et al., 2017]; on the other hand,
germline editing is infeasible in human embryos due to bioethical
concerns [Olson, 2016]. Such limitations allow researchers to
directly perform somatic genome editing ex vivo or in vivo within
certain tissues in adult animals.

Malina et al. [2013] first reported a CRISPR-Cas9-mediated ex
vivo disruption of Tp53 in the Em-mycmouse model. Subsequently,
several leading groups have reported CRISPR-Cas9-mediated ex
vivo somatic genome editing in mice for modeling hematological
malignancies [Chen et al., 2014; Heckl et al., 2014]. These findings
highlight the feasibility of using CRISPR-Cas9-based ex vivo
genome editing for modeling human cancer. In 2014, the Jacks
group successively delivered plasmids encoding Cas9 and sgRNAs
directly into murine liver cells in vivo [Xue et al., 2014] and
delivered all-in-one lentiviruses expressing the CRISPR compo-
nents into murine lung cells [Sanchez-Rivera et al., 2014]. Later
that year, another group mimicked oncogenic chromosomal
translocation (Eml4-Alk) in vivo using an adenoviral-mediated
CRISPR-Cas9 delivery system in wild-type mice [Maddalo et al.,
2014]. Meanwhile, researchers noted that both viral and non-viral
nanoparticle-sgRNA delivery methods are efficient in facilitating
genome editing in multiple murine tissues in vivo, including
neurons, immune cells and lung endothelial cells [Platt et al., 2014].
In 2016, Science simultaneously published three exciting in vivo
somatic gene-editing studies using a mouse model of DMD, a fatal
X-linked recessive inherited disease caused by mutations in the
human dystrophin (DMD) gene [Long et al., 2016; Nelson et al.,
2016; Tabebordbar et al., 2016]. The lack of functional DMD protein
leads to progressive muscle deterioration, and no effective
treatments have been developed. Using a DMD mouse model
harboring the nonsense mutation in exon 23 of the Dmd gene,
researchers developed adeno-associated virus (AAV)-mediated
CRISPR-Cas9 strategies and restored expression of a truncated
DMD variant by excision of exon 23. Amazingly, the amount of
DMD expression that could be restored could be enough to provide
a potential therapeutic benefit in humans [Koch, 2016], although
the safety and efficacy of systemic administration of AAV vectors
as well as the risk of off-target integrations still need to be assessed
[VandenDriessche and Chuah, 2016]. Overall, these studies
empower a broader range of disease modeling applications via
CRISPR-Cas9-mediated genome engineering, allowing researchers
to uncover fundamental mechanisms in disease initiation, mainte-
nance and procession, and explore the therapeutic potential of the
CRISPR-Cas9 system to correct disease-causing mutations. The
application of CRISPR-Cas9 strategies in the generation of animal
models is summarized in Figure 2.

PRECISE MODELING OF GENE FUNCTIONS IN VITRO

Despite the exciting advances in generating in vivo models, most
CRISPR-Cas9 applications to date have been limited to bench studies
due to their streamlined and straightforward process.

NHEJ-MEDIATED GENE DELETION
The introduction of a targeted knockout is the simplest way to
delineate the roles of certain genes. Because it is a precise and
flexible editing tool for complete silencing, CRISPR-Cas9-based
mutagenesis has been overwhelmingly applied in biological and
biomedical fields throughout the world. Unlike RNA interference
(RNAi)-based silencing, which is limited by partial depletion of
target gene levels, CRISPR-Cas9 enables a complete loss of gene
function by NHEJ-mediated error prone repair. Moreover, this
system works in all cell culture systems in a similar manner, with
the major difference in the delivery methods of the CRISPR-Cas9
system [Fellmann et al., 2017]. For example, the transient
transfection of plasmids encoding Cas9 and sgRNAs in cells has
been reported in many studies [Cho et al., 2013; Cong et al., 2013;
Mali et al., 2013]; in contrast, virus-based stable delivery is a more
efficient way to modify cells [Shalem et al., 2014], especially in the
hard-to-transfect blood cells [Tagde et al., 2016; Zhang et al.,
2016a,b].

Human cancers are the most targeted diseases using the CRISPR-
Cas9 technology because isogenic knockout cells allow for the rapid
identification of the causative roles of oncogenes or tumor
suppressors, excluding other interferences. In addition, the faster
and more economical reprogramming abilities of CRISPR-Cas9
provide exciting opportunities to unravel the mechanisms of drug
resistance and to identify potential therapeutic targets. Last year, one
research group unveiled the oncogenic features of transglutaminase
2 (TGM2) in mantle cell lymphoma (MCL) using a lentiviral-based
CRISPR-Cas9-mediated knockout system. They uncovered a positive
feedback loop involving TGM2-NFKB signaling, IL6, and autophagy
[Zhang et al., 2016a]. Disruption of this network may be a promising
therapeutic target and introduce novel strategies to overcome
chemoresistance in MCL [Zhang and McCarty, 2017]. Recently, a
multicenter team identified a novel mechanistic contribution of the
glucose transport inhibitors NR3C1, TXNIP and CNR2 to pre-B-cell
acute lymphoblastic leukemia (ALL) [Chan et al., 2017]. These genes
are downstream targets highly induced by PAX5; CRISPR-
Cas9-mediated deletion of these genes significantly enhanced
glucose uptake and increased ATP levels, revealing an important
function of PAX5 as a metabolic gatekeeper and providing
promising therapeutic targets. Another illustrative example is the
application of genome editing tools to modify chimeric antigen
receptor (CAR) T cells, which has emerged as a powerful therapy in
treating various hematological malignancies [Maus et al., 2014]. To
prevent unwanted response fromCAR T cell immunotherapy, such as
graft-versus-host disease (GVHD) or graft rejection, researchers have
attempted to knock out endogenous T cell receptor (TCR) genes using
ZFN and TALEN genome editing [Torikai et al., 2012; Qasim et al.,
2017]. Last year, one Chinese group was the first to inject CRISPR-
Cas9-edited T cells back into a patient that had metastatic lung
cancer. The researchers disabled the gene encoding programmed cell
death protein 1 (PD-1), which prevents T cells from attacking other
cells. Without PD-1, the edited T cells will defeat and attack the
cancer; however, the efficacy of CRISPR-enabled attack has not been
fully determined until 6 months of observation [Cyranoski, 2016].

A major limitation for CRISPR-Cas9-edited cell lines is adaptive
changes caused by secondary mutations. Two recent publications

JOURNAL OF CELLULAR BIOCHEMISTRY4154 CRISPR-Cas9 TECHNOLOGY AND ITS APPLICATION



reported unexpected results: researchers showed human immuno-
deficiency virus (HIV) evolution and escape from CRISPR gene-
programmed attack due to Cas9/sgRNA-derived mutations [Wang
et al., 2016a,b]. Further deep sequencing analysis showed that such
mutations are generated by cellular NHEJ mutagenesis at the
cleavage site. These indels result in a change in the target DNA
sequence, thereby preventing sgRNA from binding and ultimately
leading to resistance to Cas9/sgRNA [Wang et al., 2016b]. These
findings highlight the importance of further strategies and solutions
to overcome viral resistance to the CRISPR-Cas9 system [Liang et al.,
2016].

Owing to its ability to completely disrupt target genes and the
simplicity of designing potent sgRNAs, the CRISPR-Cas9 system has
been extended to large-scale loss-of-function (LOF) genome screens
in human cells [Koike-Yusa et al., 2014; Shalem et al., 2014; Wang
et al., 2014; Zhou et al., 2014]. One pioneer study established a
lentivirus-mediated library containing 73,000 sgRNAs to generate
knockout collections for genome-wide screening in myeloid
leukemia cells [Wang et al., 2014]. The following year, the same
group further identified essential genes required for cell proliferation

and survival in four leukemia and lymphoma cell lines [Wang et al.,
2015]. Compared with RNAi-based screens, CRISPR-Cas9 screens
achieve robust hits and exhibit significantly lower false-negative
rates [Munoz et al., 2016]. Nonetheless, one study highlighted the
importance of combining data from both CRISPR-Cas9 and RNAi
screens [Morgens et al., 2016]. In this study, the authors performed
parallel CRISPR-Cas9 and RNAi screens to identify essential genes in
the human chronic myelogenous leukemia (CML) cell line K562.
Although CRISPR-Cas9 and RNAi screens achieved similar levels of
precision, numerous identified genes were not overlapped in these
two screens. This observation suggests that CRISPR-Cas9 and RNAi
screens can detect distinct aspects of biology; one plausible reason is
that certain genes that are only partially knocked down lead to
totally different phenotypes compared to those resulting from
complete loss via knockout. More recently, one team from Stanford
University developed a CRISPR-based double knockout system that
can disable two genes at one time in cells. Using this modified
system, they knocked out 21,321 pairs of drug targets in K562
leukemia cells and identified synthetic lethal drug target pairs. This
work demonstrates a promising high-throughput CRISPR-based

Fig. 2. Applications of the CRISPR-Cas9 system in disease modeling. CRISPR-Cas9-mediated germline editing can be achieved by the electroporation of embryonic stem cells
(ESC), which are further validated and expanded before being injected into host blastocysts. Alternatively, CRISPR components can be introduced by direct microinjection into
fertilized zygotes. In addition to germline editing, primary stem/progenitor cells can be ex vivo manipulated and expanded prior to transplantation into somatic cells. Editing
reagents can also be delivered to certain host tissues (e.g., liver, lung or brain) via local injection. These CRISPR strategies allow for a direct and accurate recapitulation of human
diseases and offer a potential therapeutic benefit to humans.
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screening tool to determine functional pairwise genetic interactions
[Han et al., 2017].

One should keep in mind that genotoxic stress can be induced by
large numbers of DNA breaks when performing CRISPR-based LOF
screening. Two independent experiments noted that genome
targeting by CRISPR-Cas9 in highly amplified regions leads to
increased DNA damage and a profound anti-proliferative response,
revealing an unanticipated class of false-positive hits [Aguirre et al.,
2016; Munoz et al., 2016]. These findings are alarming for CRISPR-
based screening in highly amplified loci. In this regard, appropriate
sgRNA design and careful control to not make excessive genomic
cuts are urgently needed. Another important challenge for the
CRISPR-Cas9-mediated knockout system is cell lethality at an early
stage caused by the loss of essential genes. One solution is to use
temperature-sensitive mutant alleles, which have recently been
well-described [Housden et al., 2017]. The inducible CRISPR-Cas9
system provides an alternative option to identify the biological
functions of critical genes [Zhang and McCarty, 2016].

HDR-MEDIATED GENE CORRECTION
Compared to NHEJ-mediated gene disruption, HDR-induced gene
correction has a broader application spectrum, although the HDR
pathway is less efficient in mammalian cells. Human inherited
disorders such as b-hemoglobinopathies (i.e., b-thalassemia and
sickle cell disease) [Dever et al., 2016; Traxler et al., 2016; Ye et al.,
2016; Park et al., 2017b], anemias [Bluteau et al., 2016; Osborn
et al., 2016], and coagulation disorders [Guan et al., 2016; Park
et al., 2016] represent ideal targets for CRISPR-Cas9-based gene
therapy because the partial restoration by gene correction is
sufficient to reverse the symptoms. In addition to blood disorders,
which have been extensively discussed in detail [Zhang and
McCarty, 2016], other disease-causing mutations can be precisely
targeted and corrected using CRISPR-Cas9. In 2013, one group
repaired a mutation in the cystic fibrosis transmembrane conductor
receptor (CFTR) locus via HDR in primary intestinal stem cells
derived from cystic fibrosis patients that had a single-gene
hereditary defect [Schwank et al., 2013]. Later, HDR-induced
gene correction was successfully applied to efficiently correct the
mutations and phenotypes in mouse models of hereditary
tyrosinemia [Yin et al., 2014, 2016], hearing loss [Mianne et al.,
2016] or eye diseases [Kim et al., 2017]. Recently, one research team
fully replaced, instead of excised, a defective mutation by
introducing AAV-mediated CRISPR components and a DMD
homology region in a mouse model of DMD [Bengtsson et al.,
2017]. Indeed, this approach allows for the replacement of a
mutation with a correct sequence. Regardless, moving CRISPR-
Cas9-based gene correction from the bench to the clinic has a long
way to go. Reasons for this are that (i) the human immune system
may recognize the corrected proteins as foreign and thus eliminate
the proteins by cytotoxic T lymphocytes; (ii) the phenotype of the
edited cells may not fully reflect the actual response in humans
since epigenetic and microenvironment alterations are not consid-
ered through simple ex vivo or in vitro experiments; and (iii) despite
successful modeling in vivo, many uncertain safety issues and
delivery efficiency remain unaddressed in humans [Fellmann et al.,
2017; Housden et al., 2017].

TRANSCRIPTIONAL MODULATION

To expand the potential of the CRISPR-Cas9 system, Weissman’s
group introduced two mutations at the RuvC and HNH sites of the
Cas9 endonuclease and created a catalytically inactive Cas9 protein
(dCas9) that had no endonuclease activity. This repurposed CRISPR-
dCas9 system is called CRISPR interference (CRISPRi) and this
system efficiently represses the expression of targeted genes by
directly blocking transcription initiation or elongation with no off-
target effects [Qi et al., 2013]. Unlike the permanent genetic
modifications induced by Cas9 endonuclease, CRISPRi-mediated
gene repression is inducible and reversible, offering an adjustable
platform for RNA-guided transcription regulation [Qi et al., 2013].
To achieve enhanced transcription regulation, the researchers fused
dCas9 to either repressor domains such as KRAB (Kr€uppel associated
box) or activator domains such as VP64 (four copies of the VP16
activators) and p65 (p65AD), resulting in a system capable of
repressing (CRISPRi) or activating (CRISPRa) the transcription of
target genes [Gilbert et al., 2013] (Fig. 3a). This CRISPRi/a approach
was further optimized to control the transcription levels of
endogenous genes, including non-coding transcripts, across a
high dynamic range; more importantly, CRISPRi/a can be used to
rapidly screen for both LOF and gain-of-function (GOF) phenotypes
in a pooled setting, providing complementary information for
mapping complex pathways that has not yet been achieved [Gilbert
et al., 2014]. In contrast, Konermann et al. [2015] developed an
independent CRISPRa system mediated by a synergistic activation
mediator (SAM) complex consisting of multiple distinct transcrip-
tional activators, thus achieving robust gene upregulation mediated
by a single sgRNA. These advances facilitate whole-transcriptome
control in the human genome and help discover therapeutic targets
through genome-scale CRISPRi/a screening [Heckl and Charpentier,
2015]. Amazingly, repression and activation of genes can be
simultaneously achieved using programmed scaffold RNAs (scRNAs)
that encode both target DNA and regulatory effectors [Zalatan et al.,
2015]. This strategy enables the simultaneous control of multiple
genes in the same cell by turning on one set of genes while turning
off another set, thus offering a wide range of biomedical and
biotechnological uses [Koch, 2015].

Given its uncomplicated design and versatile features, the
CRISPRi/a method has been applied to multiple organisms. For
instance, CRISPRi has been extensively used to repress multiple
genes in Mycobacterium [Choudhary et al., 2015], Cyanobacterium
[Yao et al., 2016], Corynebacterium glutamincum [Cleto et al., 2016],
and Escherichia coli [Kim et al., 2016b] and is thus capable of
regulating molecules of interest in bacterial microbes. Meanwhile,
multiple animal models, such as worms and zebrafish [Long et al.,
2015; Rossi et al., 2015], have been successfully generated using
CRISPRi. Soon after these studies in simple organisms, this approach
was further exploited to precisely modulate endogenous gene
expression in human breast cancer cells [Shen et al., 2016] and in
human induced pluripotent stem cells (iPSC)-derived neurons
[Heman-Ackah et al., 2016]. Recently, one group from Netherlands
compared the performance of CRISPR, CRISPRi, and a traditional
short hairpin RNA (shRNA) system in their abilities to identify
essential genes in human bladder cancer cells [Evers et al., 2016].
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Interestingly, they found that the CRISPR-based knockout system
outperformed the CRISPRi- and shRNA-based technologies in
discriminating hits from non-hits in functional genetic screens
because of its low noise, absence of off-target effects and better
consistency across cell lines.

Likewise, the CRISPRa method has been utilized to create in vivo
models in drosophilae [Lin et al., 2015], worms and zebrafish [Long
et al., 2015]. In addition to the typical dCas9-VP64 activator, other
“second-generation” activators have been tested across multiple cell
types and species [Chavez et al., 2016]. In particular, three activators,
SunTag [Tanenbaum et al., 2014], VPR (VP64-p65-Rta) [Chavez
et al., 2015], and SAM [Konermann et al., 2015], appear to be the
most potent systems compared to dCas9-VP64. This study provides
an extensive set of systems to generate more reliable tools for
improved activation, especially for the highly repressed genes,
although most uses of the CRISPRa method have thus far been
limited to preliminary function studies [Hu et al., 2016; Guo et al.,
2017; Koirala et al., 2017]. Very recently, a group from the University
of Oxford reported on the novel design of a spacer-blocking hairpin

(SBH) structure at the 50 end of sgRNA [Ferry et al., 2017]. This
strategy can abrogate the function of CRISPR transcriptional
activators. By replacing the SBH loop with conditional RNA-
cleaving unit enables an inducible SBH (iSBH) platform, which can
modulate the CRISPRa effect in the presence of specific inducers.
This iSBH-based CRISPR system presents a versatile and simple
“plug and play” tool for the accurate, conditional activation of the
CRIPSR-based system in different disease states, and enriches the
design of more complex networks for research and therapeutic
purposes.

EPIGENETIC MODIFICATION

Apart from its use in transcriptional modulation, CRISPR-dCas9 has
been utilized to alter epigenetic marks for remodeling the aberrant
epigenetic landscape. In 2015, two groups fused dCas9 with the
histone demethylase [Kearns et al., 2015] or acetyltransferase p300
[Hilton et al., 2015] to target enhancers or promoters, thus leading to

Fig. 3. Repurposed CRISPR-Cas9 system. (a) Transcriptional modulation. A catalytically inactive Cas9 protein (dCas9, in light purple) with no endonuclease activity can be fused
to activating effectors (in red) or repressive effectors (in dark blue), leading to the activation (CRISPRa) or the repression (CRISPRi) of transcription of the target genes.
(b) Epigenetic modification. The dCas9 protein can be extended to fuse with epigenetic effectors (e.g., DNA demethylase) for epigenomic engineering. (c) Live cell imaging. The
CRISPR-Cas9 system has been repurposed as a genome imaging tool by fusing with fluorescent reporters (e.g., GFP, in light green) to track DNA or RNA in live human cells.
(d) Endogenous RNA targeting. The Cas9 protein (in dark tan) can be directed to bind or cleave target RNA at specific sites using specially designed PAMmers, enabling
transcriptome editing.
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robust changes in gene expression. Another group targeted dCas9-
KRAB to the distal enhancer of DNase I-hypersensitive sites (DHS),
resulting in highly specific histone methylation at the enhancers and
decreased chromatin accessibility at both the enhancer and its
associated promoters [Thakore et al., 2015]. Recently, one team
developed a CRISPR-based tool to specifically increase CpG
methylation by fusing dCas9 with the catalytic domain of the
DNA methyltransferase DNMT3A, enabling methylation of a larger
part of promoters in the genomes of mammalian cells [Vojta et al.,
2016]. Furthermore, CRISPR-based epigenomic editing has recently
been used in high-throughput LOF/GOF screens of regulatory
elements in the human genome, serving as a highly scalable platform
for epigenomic engineering [Klann et al., 2017]. These studies
strengthen the potential of the CRISPR-Cas9 system to target
regulatory regions rather than the target gene itself and provide a
powerful tool for dissecting the regulatory networks that coordinate
gene expression (Fig. 3b).

LIVE-CELL IMAGING OF GENOMIC LOCI

Beyond gene editing and regulation, another urgent challenge in the
field of cell biology is efficiently labeling and tracing specific DNA
sequences within live cells, although conventional fluorescence in
situ hybridization (FISH) has been developed during the last few
decades. To overcome these hurdles, scientists have further
repurposed the CRISPR-Cas9 system as a genome imaging tool for
imaging live human cells [Chen et al., 2013]. This CRISPR imaging
system, consisting of an enhanced green fluorescent protein (EGFP)-
tagged dCas9 protein and an optimized sgRNA, has enabled the
robust imaging of repetitive elements in both telomeres and protein-
coding genes and allowed for the visualization of arbitrary non-
repetitive genomic sequences in the human genome (Fig. 3c).
Undoubtedly, this new CRISPR-based imaging technology serves as
a complementary approach to FISH, allowing simpler and more
direct tracking of telomere dynamics, subnuclear localization and
chromatin organization throughout the cell cycle. The same system
was later reported in live mouse embryonic stem cells [Anton et al.,
2014]. Unlike the previous study that mainly focused on detection
sensitivity [Chen et al., 2013], Anton et al. [2014] performed a
thorough comparison of the CRISPR-based imagingmethod with the
3D-FISH and immune-labeling methods and explored the potential
applications of using the CRISPR-based imaging technology in high
resolution microscopy studies. Later that year, Tanenbaum et al.
[2014] developed a synthetic SunTag system to recruit up to 24
copies of GFP to a target polypeptide chain. Using a modified dCas9
tagged with the SunTag, the authors created nearly 20-fold brighter
fluorescent signals than those resulting from the dCas9 directly fused
to GFP, thus providing amagnifiedfluorescence imaging platform in
live cells. Subsequently, dCas9 variants fused with different
fluorescent proteins were introduced into human U2OS cells,
allowing for the simultaneous detection of multiple colors in
genomic loci with high spatial resolution; the distance between two
loci on the same chromosome was also mapped using this same
strategy [Ma et al., 2015]. In addition, one group achieved imaging of
low- and non-repetitive chromosome loci by integrating a sgRNA

with up to 16 MS2 motifs to enable robust fluorescent signal
amplification [Qin et al., 2017]. Recently, researchers even painted
an entire chromosome by introducing hundreds of specific and non-
repetitive sgRNAs in a live cell for fluorescence imaging; amazingly,
the arrangements of the homologous chromosomes as well as the
movement of a particular chromosome in dividing cells could be
clearly visualized [Zhou et al., 2017]. Overall, a CRISPR-based
imaging tool facilitates modeling spatiotemporal dynamics in
different cell stages and enables a panorama of interactions between
genomic loci within live human cells.

TARGETING ENDOGENOUS RNAs

In addition to targeting double-stranded DNA (dsDNA), the CRISPR-
Cas9 system has been revolutionarily developed to cleave single-
strandedRNA (ssRNA) at specific target sites by providing the PAMas
part of an oligonucleotide (PAMmer) that hybridizes to the target
RNA (Fig. 3d). This system enables Cas9 to recognize and cleave RNA
targets in a programmable fashion and facilitates direct transcript
detection [O’Connell et al., 2014]. On the other hand, this systemmay
be a helpful alternative when RNAi cannot be used for RNA
degradation [Ghodsizadeh, 2014]. Last year, the same group further
developed RNA-targeting Cas9 (RCas9) as a fluorescence-based
probe to track RNA in live cells [Nelles et al., 2016] (Fig. 3c). This
innovative strategy allows RCas9 to recognize RNA while avoiding
the encodingDNA; importantly, the subcellular distribution of RCas9
was highly correlated with RNA-FISH, depicting the ability of RCas9
to track the trafficking and localization of RNA in living cells. This
RCas9-based method lays a solid foundation for transcriptome
editing by CRISPR-Cas9 and enables scientists to measure diverse
transcript types in multiple cell systems and manipulate target RNA,
not only by detecting RNA but also by altering RNA modifications
[Burgess, 2016]. In addition to the type II CRISPR-Cas9 system,
scientists have uncovered the features of type I CRISPR-Cas systems,
which comprise approximately 90% of all CRISPR-Cas loci identified
in bacteria and archaea, and can target both DNA and RNA
[Makarova et al., 2017]. Beyond tracking RNA in live cells, future
developments of the RCas9 system, such as the modulation of
multiple RNA-processing steps, the generation of disease modeling,
and thepromotionof clinical translation, deserve further exploration.

FINAL REMARKS

Although CRISPR-Cas9-based tools have been adopted across
numerous fields worldwide, the challenges regarding ethical
concerns and clinical applications of CRISPR-Cas9 have been
underscored [Olson, 2016]. Successful bench-to-bed translations
rely on efficient delivery systems and refined administrative
procedures to target human diseases with high specificity. In this
respect, applying CRISPR-Cas9 editing to large animal species, such
as dogs, pigs, or non-human primates, will help gain better
understanding of human diseases and provide a more comprehen-
sive safety report and therapeutic strategies. One should note that
adaptive evolutionary changes in pathogens, such as viruses, may
develop anti-CRISPR strategies to escape from CRISPR-mediated
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attack, resulting in treatment failure. Despite these unaddressed
barriers, CRISPR-Cas9-enabled functional research has strengthened
our grasp of potential underpinnings of the initiation and
development of human diseases. More inspiringly, novel editing
tools such as Cas9-fused deaminases [Komor et al., 2016] or Cpf1
nucleases [Zetsche et al., 2015; Kim et al., 2016a] have demonstrated
the unlimited possibilities of using CRISPR technology for
genome editing, defining an unprecedented path to the next
generation of transformative therapies and treatment in the
foreseeable future.
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