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Abstract: Poly(α-L-glutamic acid) (PGA) is a class of synthetic polypeptides composed of the
monomeric unit α-L-glutamic acid. Owing to their biocompatibility, biodegradability, and non-
immunogenicity, PGA-based nanomaterials have been elaborately designed for drug delivery sys-
tems. Relevant studies including the latest research results on PGA-based nanomaterials for drug
delivery have been discussed in this work. The following related topics are summarized as: (1) a brief
description of the synthetic strategies of PGAs; (2) an elaborated presentation of the evolving appli-
cations of PGA in the areas of drug delivery, including the rational design, precise fabrication, and
biological evaluation; (3) a profound discussion on the further development of PGA-based nanomate-
rials in drug delivery. In summary, the unique structures and superior properties enables PGA-based
nanomaterials to represent as an enormous potential in biomaterials-related drug delivery areas.

Keywords: cancer therapy; drug delivery system; nanomaterials; prodrugs; poly(α-L-glutamic acid)

1. Introduction

Cancer is one of the leading causes of death in humans. Although chemotherapy has
gained enormous achievements in cancer treatment, the non-specific drug distribution-
induced systemic side effects of anticancer drugs are still a Gordian knot [1,2]. Unremitting
efforts have been made in the development of novel therapeutic regimens for a satisfactory
curative effect [3–7]. Nanomaterials based on the incorporation of small molecule cancer
drugs into the biocompatible polymers have attracted considerable attention because they
can precisely deliver drugs to sites of action [8–11].

Poly(α-L-glutamic acid) (PGA) is a kind of synthetic polypeptide containing the
monomeric unit α-L-glutamic acid [12]. Owing to their inherent properties including
biocompatibility, biodegradability, non-immunogenicity, and till date, PGA-based nanoma-
terials have been extensively applied in biomedical fields such as cancer therapy, wound
healing, medical devices, bio-sensing, and tissue regeneration [13–15]. Traditionally, PGAs
are chemically synthesized by the ring-opening polymerization (ROP) of the γ-protected
L-glutamate N-carboxyanhydrides (LG NCAs) [16,17]. After post deprotection, the bare
carboxyl groups in each repeat unit of PGAs provide the high functionality for the chemical
conjugation of molecules [18]. On the other hand, the water-soluble PGA moieties can serve
as the hydrophilic building blocks of amphiphilic polymeric nanocarriers to physically
entrap the therapeutic agents [19]. The pKa of the pendent carboxyl side chains of PGAs is
around 4.5. PGAs are negatively charged under physiological conditions; however, the pen-
dent carboxyl side chains are positively charged when subject to acidic microenvironments,
such as extracellular tumors (pH 6.8) and endosomes (pH 5.5) [12,20]. In addition, the ionic
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alternation transforms PGA moieties from hydrophilic and random-coiled conformation
into hydrophobic and α-helical conformation, facilitating the stimuli-release of preloading.

In this review, we highlight the recently vital achievements in the development of
PGA-based nanomaterials for drug delivery (Figure 1). A brief description of the synthetic
strategies of PGAs will be firstly summarized. Then, the evolving applications of PGA
in drug delivery systems (DDS), including the rational design, precise fabrication, and
biological evaluation, will be extensively discussed. The current challenges and future
perspectives of PGA-based nanomaterials are also presented.
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2. Synthesis of PGA

Synthetic polypeptides are generally prepared from three methods: solid-phase pep-
tide synthesis (SPPS), NCA polymerization, and microbial fermentation [12,20]. SPPS
enables the automated preparation of the defined sequenced polypeptides via convenient
isolation and purifications steps but is restricted to low molecular weight polymers (typi-
cally lower than 50 m) [21,22]. Microbial fermentation is an effective protocol to prepare
high molecular weight and sequenced polypeptides, yet specialized and sophisticated
equipment is not feasible for most synthetic laboratories [23–25]. NCA polymerization
has been recognized as an economical and expedient technique that allows the fabrication
of polypeptides with high yields, predetermined composition, narrow molecular weight
distribution, and tuned functionality [26,27]. Furthermore, it’s a versatile and scalable
method to synthesize polypeptides and is suitable for diverse types of NCAs. The past ten
years has seen considerable developments in the polymerization of NCAs. This section will
highlight the important advances on the chemical synthesis of PGAs.

Chemical synthesis of PGAs involves ROP of LG NCAs. Benzyl and tert-butyl are
the most frequently used groups to protect the γ-carboxylic acid of L-glutamic acid be-



Biomolecules 2022, 12, 636 3 of 26

cause they are readily removable [28,29]. ROP of NCAs is generally triggered by the
protic/nonprotic nucleophile or strong/weak base. The amine-initiated ROP of LG NCAs
is the most prevalently used method to synthesis PGAs. There are two widely accepted
mechanisms, the “normal amine mechanism” (NAM) and the “activated monomer mech-
anism” (AMM), which occur simultaneously and complicate the polymerization process
(Scheme 1) [30,31]. NAM typically initiates by a primary amine and presents a slow but
controlled polymerization, whereas AMM generally mediates by a tertiary amine and gives
a fast but uncontrolled polymerization.
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Recent decades have witnessed great strides in the polymerization of NCAs, and
various new initiators and catalysts have been reported for mediating controlled NCA
polymerization. Transition metal complexes pioneered by Deming have emerged as ef-
ficient initiators to obtain a narrow molecular weight distribution, yet the inevitable re-
moval of the metallic residues have restricted the general application of metal initiators
(Scheme 2) [32,33]. Considering the drawbacks of NAM and AMM, Hadjichristidis et al.
proposed a peculiar mechanism, the “accelerated amine mechanism by monomer acti-
vation” mechanism (AAMMA), based on an “alliance” of primary and secondary amine
initiators, including triethylaminetriamine, hexamethyldiamine and N,N′-dimethyl-1,2-
ethanediamine (Scheme 3) [34,35]. Silazane derivatives provide a possibility for the con-
trolled NCA polymerization. As reported by Lu, hexamethyldisilazane, trimethylsilyl
(TMS) and their derivatives could polymerize γ-benzyl-L-glutamate NCAs (BLG NCAs) in a
well-controlled manner (Scheme 3) [36,37]. Moreover, the Cheng group recently developed
an auto-accelerated polymerization of α-helical polypeptides based on the TMS protected
amine groups, where the synergistic interaction of macrodipoles between neighboring
α-helices of polypeptides remarkably accelerate the ROP of NCAs [38]. The cooperative
interaction involving α-helical of polypeptides also has been extended to diamine-initiated
ROP of NCAs [39]. It is well known that NCA polymerization is significantly sensitive to
humid environments and must be carried out under an inert atmosphere. Surprisingly,
Liu et al. demonstrated that lithium hexamethyldisilazide can offer an extremely rapid
ROP of NCAs either in the glovebox or in open vessel conditions (Scheme 3) [40].
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merization. Our lab firstly discovered that imidazolium hydrogen carbonate salts, the
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precatalysts of N-Heterocyclic carbenes (NHC), can hydrogen bond with primary amine
initiators as well as ω-terminus of the propagated polypeptide chain, generating linear
structured polypeptides, whereas cyclic polypeptides are obtained in the absence of the
primary amine initiators (Scheme 4) [41,42]. Compared to amine initiators, the less nu-
cleophilic alcohols usually lead to a slow initiation and poorly controlled polypeptides.
Continuous efforts have been devoted to break the ice and enhance the nucleophilicity of
alcohol. Based on the massive experiments and rigorous reasoning, it was reported that
hydrogen bonding interactions with diazabicycloundecene, triazabycyclodecene, thioureas,
and fluorinated alcohols can synchronously improve the nucleophilicity of the alcohol ini-
tiators, propagate hydroxyl terminus and activate the NCA monomers (Scheme 5) [43–45].

Biomolecules 2022, 12, x FOR PEER REVIEW 5 of 26 
 

Scheme 3. Novel NCA polymerization methods based on amine initiators. 

Hydrogen bonding interaction is a potent weapon to achieve controllable NCA 
polymerization. Our lab firstly discovered that imidazolium hydrogen carbonate salts, the 
precatalysts of N-Heterocyclic carbenes (NHC), can hydrogen bond with primary amine 
initiators as well as ω-terminus of the propagated polypeptide chain, generating linear 
structured polypeptides, whereas cyclic polypeptides are obtained in the absence of the 
primary amine initiators (Scheme 4) [41,42]. Compared to amine initiators, the less nucle-
ophilic alcohols usually lead to a slow initiation and poorly controlled polypeptides. Con-
tinuous efforts have been devoted to break the ice and enhance the nucleophilicity of al-
cohol. Based on the massive experiments and rigorous reasoning, it was reported that hy-
drogen bonding interactions with diazabicycloundecene, triazabycyclodecene, thioureas, 
and fluorinated alcohols can synchronously improve the nucleophilicity of the alcohol in-
itiators, propagate hydroxyl terminus and activate the NCA monomers (Scheme 5) [43–
45]. 

 
Scheme 4. NHC–mediated NCA polymerization to access linear and cyclic polypeptides. 

 
Scheme 5. Fluorinated alcohol–initiated NCA polymerization. 

Scheme 4. NHC–mediated NCA polymerization to access linear and cyclic polypeptides.

Biomolecules 2022, 12, x FOR PEER REVIEW 5 of 26 
 

Scheme 3. Novel NCA polymerization methods based on amine initiators. 

Hydrogen bonding interaction is a potent weapon to achieve controllable NCA 
polymerization. Our lab firstly discovered that imidazolium hydrogen carbonate salts, the 
precatalysts of N-Heterocyclic carbenes (NHC), can hydrogen bond with primary amine 
initiators as well as ω-terminus of the propagated polypeptide chain, generating linear 
structured polypeptides, whereas cyclic polypeptides are obtained in the absence of the 
primary amine initiators (Scheme 4) [41,42]. Compared to amine initiators, the less nucle-
ophilic alcohols usually lead to a slow initiation and poorly controlled polypeptides. Con-
tinuous efforts have been devoted to break the ice and enhance the nucleophilicity of al-
cohol. Based on the massive experiments and rigorous reasoning, it was reported that hy-
drogen bonding interactions with diazabicycloundecene, triazabycyclodecene, thioureas, 
and fluorinated alcohols can synchronously improve the nucleophilicity of the alcohol in-
itiators, propagate hydroxyl terminus and activate the NCA monomers (Scheme 5) [43–
45]. 

 
Scheme 4. NHC–mediated NCA polymerization to access linear and cyclic polypeptides. 

 
Scheme 5. Fluorinated alcohol–initiated NCA polymerization. Scheme 5. Fluorinated alcohol–initiated NCA polymerization.

Emulsification offers an alternative to traditionally amine initiated-NCA polymeriza-
tion [46]. More recently, Cheng et al. have reported a water-in-oil emulsion to polymerize
BLG NCAs by using a macroinitiator, affording an accelerating polymerization rate and the
well-controlled polypeptide extension [47]. The concepts of frustrated Lewis pairs and self-
assembly have also been explored to control the ROP of NCAs [48,49]. Aimed to achieve the
controlled NCA polymerization, reaction conditions such as vacuum, temperature, photo,
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nitrogen flow, and solvent have also been carefully designed and optimized, except in de-
veloping emerging initiators and catalysts [50–52]. Given the impressive achievement in the
preparation of polypeptides, diverse polypeptides-derived nanomaterials with predictable
molecular weights, low dispersity, and defined functionalities can be constructed. Never-
theless, there is a huge gap between the synthetic polypeptides-derived nanomaterials and
the clinically used one. In addition, the property and function of synthetic polypeptides
are still far from matching the natural proteins. Further efforts in chemical synthesis of
polypeptides with controllable monomer sequence, anticipated structure, and protein-like
functions are required to achieve the preparation of clinically feasible biomaterials.

3. PGA-Based Nanomaterials for Drug Delivery

Chemotherapy is one of the crucial tumor therapeutic regimens in clinic [53–56]. To im-
prove therapeutic efficacy and minimize nonspecific toxicity, the development of DDS that
could enable the controllable release of chemical drug, alleviate premature drug leakage,
and target specific tissues remains an enormous challenge [57–60]. PGA-based nanoma-
terials have gained increasing popularity in DDS due to their defined structure, tuned
functionality, superior biocompatibility, and low immuneogenicity [61–64]. It is reported
that PGA-based nanocarriers can specifically adhere to the β-glutamyl transpeptidase at
the tumor cell membranes and overcome the serum inhibitory effect [65–67]. Various
of chemotherapeutic drugs, such as doxorubicin (DOX), camptothecin (CPT), vascular
disrupting agents (VDA), and platinum (Pt) drugs, have been chemically conjugated or
physically encapsulated to PGA-based nanomaterials (Table 1) [68–87].

Table 1. Summary of PGA-based nanocarriers with unique characteristics.

Main Polymers Loading Drugs Preparation Methods Targeting Agents/Inhibitors Ref.

mPEG-b-PGA DOX Electrostatic interaction &
intermolecular hydrophobic stack / [71]

mPEG-b-PPLG DOX Chemical conjugation / [72]

PGA-(G-AGM) DOX Chemical conjugation Aminoglutethimide [73]

PEG-pHe-PGA Cisplatin Chelation interaction / [74]

PGA-g-Ve/PEG Cisplatin
DTX

Hydrophobic &
chelation interaction

avb3 integrin
targeting peptide [75]

Mal-PEG114-b-PGA12 Cisplatin Chelation interaction Folic acid [76]

PGA-g-mPEG DOX
CPT Self-assembly / [77]

PEtOx-b-PGA SN38 Chemical conjugation / [78]

PGA CA4 Chemical conjugation / [79]

PGA CA4 Chemical conjugation Phosphoinositide
3-kinase gamma isoform [80]

(PLL/PGA)n NO Layer by layer self-assembly / [81]

mPEG-b-PLG DOX
SO2

Self-assembly / [82]

PGA-g-mPEG CA4
porphyrin Chemical conjugation / [83]

mPEG-g-PGA Cisplatin Chelation interaction Folic acid [84]

PGA-b-PCL DOX
Gd(III) Self-assembly Folic acid [85]

PEG-b-PGA Cisplatin Chelation interaction Cyclic Arg-Gly-Asp [86]

PGA-g-PEG-Mal CA4 Chemical conjugation Targeting peptide
(GNQEQVSPLTLLKXC) [87]
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3.1. PGA-Based Nanomaterials as DOX Delivery Systems

DOX, an anthracycline antibiotic, is the most prevalently used chemotherapeutic drug
for the treatment of various cancers, such as cancers of the breast, stomach, lung, thyroid,
ovary, and bladder [88–90]. DOX can penetrate the endonuclear DNA and suppress DNA
replication, leading to cell apoptosis. Nevertheless, the short blood circulation period and
inevitable adverse effects including cardiotoxicity, nephrotoxicity, and myelosuppression
significantly reduce its therapeutic outcomes [91,92]. Chemical conjugation and physi-
cal encapsulation of DOX to biodegradable PGA present a viable method to enhance its
bioavailability and reduce side effects [93–98]. Traditionally, hydrophobic drug loading
procedures contain the dissolution of the amphiphilic polymers and small molecular drugs
in organic solvents, and the subsequent removal of the organic solvents by solvent evapo-
ration or dialysis [99]. Unlike conventional encapsulation procedures, PGA-based anionic
polymers are specifically complex, with cationic DOX through electrostatic interactions,
omitting the use of detrimental organic solvents and achieving approximately 100% load-
ing efficacy [100]. Chen et al. designed a poly(ethylene glycol)-b-poly(α-L-glutamic acid)
(mPEG-b-PGA) nanocarrier entrapped with DOX through electrostatic interaction and
an intermolecular hydrophobic stack (Figure 2A) [71]. The PEG segments were mainly
oriented at the outer periphery of nanocarriers preventing the adsorption of protein and
identification by the phagocyte system, whereas the PGA segments were primarily situated
in the aqueous interior of nanocarriers warranting high loading of DOX. Cellular uptake
tests suggested that the resultant nanocarriers were up-taken into A549 cells via endocytosis.
Subsequently, the endosomal acidic condition triggered the destabilization of nanocarriers,
resulting in the release of DOX to cytoplasm. Because of the enhanced permeability and re-
tention (EPR) effect, the resultant ionomer complex exhibited a prolonged blood circulation
period, decreased systemic toxicity, and enhanced therapeutic efficacy in the treatment of
nonsmall cell lung cancer. To enhance the stability of PGA-based nanocarriers, hydrophobic
units such as leucine (Leu) and phenylalanine (Phe) are incorporated to construct three
monomeric units of the copolypeptides [100,101].

Pioneered by Kataoka, who firstly conjugated DOX to the pendent carboxyl acids of
poly(ethylene glycol)-b-poly(L-aspartate) (mPEG-b-PLA), chemical conjugation of DOX
onto polypeptides also have attracted considerable attention in cancer therapy [102–106].
Xiao et al. developed a pH and redox dual-stimuli poly(ethylene glycol)-b-poly(γ-propargyl-
L-glutamate) (mPEG-b-PPLG) prodrug nanogel by simultaneously coordinating DOX
through an acid-labile hydrazone bond and cross-linking with a redox sensitive 2-azidoethyl
disulfide bond via one-step “click chemistry” [72]. The resultant mPEG-b-PPLG prodrug
nanogels exhibited elevated stability during blood circulation and stimuli release of DOX
in tumor cells. Recently, Vicent also developed a family of PGA-based combination conju-
gates bearing chemotherapeutic drug (DOX) and aromatase inhibitors (aminoglutethimide,
AGM) for the treatment of breast cancer (Figure 2B) [73,107]. DOX was directly bound to
the carboxyl groups of PGA either by amide bond or acid-labile hydrazone bond, whereas
AGM was incorporated into PGA via a library of glycine (Gly) linkages (such as Gly
linker, Gly–Gly linker, and Gly-Phe-Leu-Gly linker), which are readily cleaved by protease
Cathepsin B. The controllable release of DOX and AGM in intracellular microenvironments
enabled the superior therapeutic effects on primary tumor growth, apoptosis of cancer cells,
and lung metastasis. PGA-based biomaterials provide a superior nanoplatform for small
molecular drugs and achieved an enhanced therapeutic effect in tumor therapy. These
pioneering examples pave the way for chemical conjugation and physical encapsulation of
chemotherapeutics by using PGA-based nanomaterials.
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*** p < 0.001. Reprinted with permission from Ref. [73]. Copyright 2018, Elsevier.

3.2. PGA-Based Nanomaterials as Pt Drugs Delivery Systems

Hydrophobic Pt drugs like cisplatin (CDDP), carboplatin, and oxaliplatin have become
promising candidates for the treatment of malignant tumors [108–110]. Pt drugs can contact
DNA to disrupt its replication and eventually result in the apoptosis of tumor cells [111],
whereas extremely low solubility and severe side effects significantly reduce its tumor
therapeutic efficacy [112,113]. To overcome this restriction, a variety of polymeric nanocar-
riers have been explored to entrap Pt drugs [114,115]. Kataoka et al. firstly attempted to
conjugate CDDP to the pendent carboxyl groups of mPEG-b-PLA [116]. To note, a series of
Pt drugs coordinated mPEG-b-PGA, such as NC-6004 and NC-4016, have been assessed in
phase III clinical trials for patients with advanced or metastatic pancreatic cancer [117,118].
The hydrophilic shell endows both NC-6004 and NC-4016 with a long blood circulation
period and increased drug accumulation in the targeted tumor tissues through EPR effect.

Even so, the resistance and internalization dilemmas like free cisplatin still exist. A
major reason lies in the steric repulsion of the dense PEG shell, which inevitably results in
the PEGylated Pt drugs-conjugated nanocarriers bypassing the tumor tissues or failing to
be phagocytosed by the tumor tissues [119]. To overcome these obstacles, chemical and
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physical dePEGylation induced by particular tumor microenvironments, such as pH, redox,
and enzyme, have been deeply explored [120,121]. More recently, Xu et al. fabricated
two types of poly(L-glutamic acid)-cisplatin (PGA-Pt) nanocarriers with cleavable PEG,
which are sensitive to extracellular pH (pHe) and matrix metalloproteinases-2/9 (MMP-
2/9) [74]. As displayed in Figure 3A, the pHe-sensitive 2-propionic-3-methylmaleic anhy-
dride (CDM)-derived amide linkage and MMP-2/9-responsive cleaved peptide PLGLAG
were designed to bridge PGA and PEG, generating pHe-sensitive PEG-pHe-PGA and
MMP-2/9-sensitive PEG-MMP-PGA. CDDP was coordinated with the corresponding graft
copolymers, yielding the polymer–metal complexed nanoplatforms, PEG-pHe-PGA-Pt and
PEG-MMP-PGA-Pt. Cellular uptake assays revealed that PEG-PGA-Pt exhibited the limited
cell internalization in SKOV3 cells due to the steric repulsion between the dense PEG shell
and cell membrane. Conversely, PEG-pHe-PGA-Pt exhibited a significantly higher cell
internalization in SKOV3 cells due to the dePEGylation triggered by the cleavage of the
CDM-derived amide bond. The endosomal pH condition induced the instability of the
bare PGA-Pt core, leading to the increased release of CDDP into cytol. Compared to the
traditional PEG-PGA-Pt, the detachable PEG-pHe-PGA-Pt and PEG-MMP-PGA-Pt not only
retained the prolonged circulation time, the pH and MMP detachable PEGylated PGA-Pt
nanoformulations enabled the enhanced cell internalization toward the high-grade serous
ovarian cancer, eventually leading to the up-regulated antitumor efficacy.

Tang et al. integrated the merits of the “receptor-mediated cellular uptake” and “multi-
drug delivery” into one nanoformulation (Figure 3B) [75]. Docetaxel (DTX) and CDDP were
co-encapsulated into the amphiphilic poly(L-glutamic acid)-g-α-tocopherol/polyethylene
glycol (PGA-g-Ve/PEG) nanocarriers through hydrophobic and chelation interaction, fol-
lowed by the periphery decoration of an avb3 integrin targeting peptide c(RGDfK). Thanks
to the targeting c(RGDfK), DTX/CDDP co-encapsulated nanoformulation exhibited a
synergistically increased accumulation rate and retention time in mouse melanoma cells.
Folic acid (FA), an active targeting ligand, has also been extensively utilized for targeted
CDDP delivery. Qiao et al. recently designed the CDDP-loaded maleimide-poly(ethylene
oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) vesicles for the targeted delivery
of CDDP to tumor sites [76]. CDDP complexed to PGA moieties induced the self-assembly
of the copolymer into vesicular morphologies via the formation of a hydrophobic domain,
while PEG blocks served as the corona and interior layer of the vesicular morphologies.
The reactive maleimide groups on the vesicle periphery could conjugate with FA thiol,
yielding an active targeted DDS, which presented distinctly high cellular uptake and de-
sired cytotoxicity toward HeLa cells. Targeting agents enable the targeted CDDP delivery
to tumor sites, yet the dedicated and complicated modification procedures also increase
the potential system toxicity.

3.3. PGA-Based Nanomaterials as CPT Delivery Systems

As a topoisomerase I inhibitor, CPT which is derived from the Chinese tree Camp-
totheca acuminata, can induce a variety of tumor cell apoptosis [122–125]. Unfortunately,
the relatively low aqueous solubility and pH-dependent lactone ring stability of CPT
severely constrain its clinical application [126]. Towards this end, both Singer and Klein’s
groups demonstrated that the water solubility and lactone ring stability could greatly
be enhanced by the conjugation of CPT to the residing carboxylic acid of PGA [127,128].
Researchers have also combined CPT with other chemotherapeutic drugs for synergistic
cancer treatment [77,129]. Xiao et al. developed a redox responsive nanoformulation via the
self-assembly of poly(L-glutamic acid)-g-poly(ethylene oxide) (PGA-g-mPEG) based CPT
conjugate and simultaneous entrapment of DOX by hydrophobic interaction (Figure 4) [77].
CPT was linked to PGA-g-mPEG via a disulfide bridge which was readily detachable in a
glutathione (GSH) environment. It was observed that the intracellular GSH concentration
plays a decisive role in the release of DOX and CPT from nanoformulation. As proved
by the flow cytometry and the cellular uptake tests, the acidic endo-lysosomal microenvi-
ronment induced the release of DOX, GSH in the cytoplasm, and cleaved the disulfides,
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releasing CPT from the resultant nanoformulation. The low combination index value
(approximately ~0.3) substantiated the valid cancer cell apoptosis based on the nanoformu-
lation co-loaded with CPT and DOX. A semisynthetic analog of CPT, 7-Ethyl-10-hydroxy
camptothecin (SN38), has been approved by FDA for colorectal carcinoma therapy [130].
Recently, Tamaddon et al. prepared a double hydrophilic poly(2-ethyl 2-oxazoline) block
poly (L-glutamic acid) (PEtOx-b-PGA) prodrug by coupling SN38 to the pendent carboxyl
group of PGA [78]. Compared to free drugs, cell culture assays displayed a higher intracel-
lular accumulation and at least four times more specific cytotoxicity than the coupled SN38
in the CT26 cell line. Moreover, the as-prepared SN38 conjugate exhibited outstanding
anti-tumor activity and was significantly superior to commercial irinotecan, especially on
advanced tumors with a reduced mortality rate of 2.5 times. All these studies suggest that
CPT-derived topoisomerase I inhibitors can exert their tumor cell apoptosis effect in tumor
therapy. Further efforts are needed to investigate the more detailed action mechanism of
these nanoformulations.

3.4. PGA-Based Nanomaterials as VDA Delivery Systems

VDA can selectively modulate tumor vasculature and rapidly induce the shutdown
of tumor blood vessels, leading to widespread tumor cell ischemic necrosis [131,132].
Combretastatin A4 (CA4) is a crucial agent for clinical cancer therapy. As a kind of
microtubule depolymerizing agent, CA4 can attach to the colchicine adhering site of
β-tubulin, resulting in cytoskeletal destabilization and morphological variation of the
endothelial cell [133–135]. The poor aqueous solubility of CA4 is the greatest hindrance for
the extensively clinical application. Tong et al. designed a polymeric CA4 conjugate via
coordination of CA4 to poly(L-glutamic acid)-CA4 (PGA-CA4) (Figure 5A) [79]. Intra-tumor
distribution experiments indicated that PGA-CA4 nanoconjugates were predominantly
localized around tumor blood vessels due to the active targeting property of CA4. This
enabled the long-term release of CA4 inside solid tumor cells. The gradually increased
CA4 concentration around tumor blood vessels caused the steady tumor blood deprivation
and effective tumor regression (Figure 5B). Owing to the vascular-dependent distribution
character, the obtained PGA-CA4 exhibited a long retention time in plasma and the murine
colon C26 tumor cell compared to commercial combretastatin-A4 phosphate (CA4P). After
a single administration, PGA-CA4 induced enduring angiorrhexis and tumor destruction
in 72 h, leading to a tumor suppression rate of 74%.

However, several side effects, such as polarization induced by PGA-CA4, signifi-
cantly restricted the antitumor activity. To this end, the same group also combined this
nanomedicine with other antineoplastic agents for enhanced cancer therapy [136,137]. For
instance, they utilized the phosphoinositide 3-kinase gamma isoform (PI3Kγ) selective in-
hibitors synergizing with PGA-CA4 to reduce the immunosuppressive effects (Figure 6) [80].
The number of M2-like tumor-related macrophage obviously decreased while the cytotoxic
T lymphocytes markedly improved due to PI3Kγinhibitor. Remarkably, the combination of
PI3Kγ inhibitor and PGA-CA4 prevented the tumor growth and extended the mean sur-
vival time, significantly enhancing the tumor therapeutic efficacy (Figure 6). Even though
CA4-conjugated nanocarriers effectively inhibited tumor growth and tumor proliferation,
CA4 could not be tested by multispectral optoacoustic tomography and immunofluores-
cence assay, hindering the observation of the intra-tumor distribution of CA4.



Biomolecules 2022, 12, 636 11 of 26Biomolecules 2022, 12, x FOR PEER REVIEW 10 of 26 
 

 
Figure 3. Pt drugs were encapsulated in PGA-based nanomaterials for the treatment of cancer. (A) 
Schematic illustration of PGA-Pt nanocarriers with cleavable PEG response to tumor microenviron-
ments. Reprinted with permission from Ref. [74]. Copyright 2021, Elsevier. (B) DTX/CDDP co-en-
capsulated nanocarriers decorated with the targeting of c(RGDfK) enter tumor tissues by receptor-
mediated cellular uptake. Reprinted with permission from Ref. [75]. Copyright 2013, Elsevier. 

3.3. PGA-Based Nanomaterials as CPT Delivery Systems 
As a topoisomerase I inhibitor, CPT which is derived from the Chinese tree Camp-

totheca acuminata, can induce a variety of tumor cell apoptosis [122–125]. Unfortunately, 
the relatively low aqueous solubility and pH-dependent lactone ring stability of CPT se-
verely constrain its clinical application [126]. Towards this end, both Singer and Klein’s 
groups demonstrated that the water solubility and lactone ring stability could greatly be 

Figure 3. Pt drugs were encapsulated in PGA-based nanomaterials for the treatment of cancer.
(A) Schematic illustration of PGA-Pt nanocarriers with cleavable PEG response to tumor microen-
vironments. Reprinted with permission from Ref. [74]. Copyright 2021, Elsevier. (B) DTX/CDDP
co-encapsulated nanocarriers decorated with the targeting of c(RGDfK) enter tumor tissues by receptor-
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3.5. PGA-Based Nanomaterials as Gas Molecule Delivery Systems

Mammalian tissues generate many kinds of gas molecules, such as nitric oxide (NO),
carbon monoxide (CO), and sulfur dioxide (SO2), which play a transmitter role in a se-
ries of biological activities and regulate the biochemical or physiological processes in the
human body [138]. Recently, gas therapy has become an emerging tumor therapeutic
technique because there is no drug resistance, it has minimal side effects and there is no
byproduct [139]. Numerous gas nanogenerators are designed to delivery and produce safe
gas molecules for the treatment of tumors [140,141]. NO, is an endogenously generated
radical gas molecule, involved in various physiological functions, such as cardiovascular
homeostasis, neurotransmission, and immune response to infection and angiogenesis [142].
NO can modulate P-glycoprotein expression without multi-drug resistance at low dosages,
while high concentrations of NO can damage DNA and mitochondria in solid tumors,
leading to cell mortality [143]. Hong et al. fabricated (poly-L-lysine/poly-L-glutamic acid)n
(PLL/PGA)n multilayer films with different thicknesses for controlled NO releasing [81].
By applying the layer-by-layer self-assembly approach, PLL and PGA were employed
to construct the multilayer films via electrostatic interaction, where PLL served as the
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positively charged blocks and PGA acted as the negatively charged blocks. A proton-
responsive NO donor, N-diazeniumdiolate, was loaded into (PLL/PGA)n multilayer films
via a high pressure reaction under NO atmosphere. The as-obtained (PLL/PGA)n mul-
tilayer films displayed a continued NO releasing behavior, suggesting the controllable
NO delivery for tumor treatment. SO2 has been recognized as a promising gasotrans-
mitter for regulation of the cardiovascular system. Xiao et al. developed a polymeric
GSH-responsive nanomedicine of SO2 to combat MCF-7 ADR human breast cancer cells in
synergy with DOX [82,144]. N-(3-azidopropyl)-2,4-dinitrobenzenesulfonamide (AP-DNs),
a small molecular generator of SO2, was coupled onto the pendent groups of methoxy
poly(ethylene glycol)-block-poly (g-propargyl-L-glutamate) (mPEG-b-PPLG) copolymer via
“click chemistry”, yielding the polymeric nanomedicine of SO2, mPEG-b-PLG (DNs). DOX
was finally encapsulated into mPEG-b-PLG (DNs) nanomedicine via self-assembly. Upon
GSH triggering, the obtained mPEG-b-PLG (DNs) nanomedicine simultaneously released
SO2 and DOX, causing an enhancement of reactive oxygen species (ROS) in tumor tissue
and synergistic anti-proliferation effects against MCF-7/ADR cells.

3.6. PGA-Based Nanomaterials as Co-Delivery Systems

Co-delivery of dual antineoplastic agents in a polymeric nanocarrier has attracted
enormous interest due to the synergistic therapeutic effect [145–149]. Tremendous efforts
have been devoted to exploring the combined treatment based on chemotherapy, pho-
totherapy, biological therapy, and radiation therapy. Photodynamic therapy (PDT) is a
kind of phototherapy involving light irradiation and photosensitizer. Upon being activated
by specific light irradiation, photosensitizer can produce ROS to induce the tumor cell
apoptosis [150]. Yu et al. designed CA4 and porphyrin (5, 10, 15, 20-tetraphenylporphyrin,
TPP)-conjugated nanomedicines, CA4-conjugated poly(L-glutamic acid)-graft-methoxy
poly(ethylene glycol) (PGA-g-mPEG-CA4), and TPP-conjugated PGA-g-mPEG (PGA-g-
mPEG-TPP), for combined vascular disrupting photodynamic therapy [83,151]. Upon laser
irradiation, the PGA-g-mPEG-CA4 nanomedicines exhibited superior antitumor ability
and PGA-g-mPEG-TPP nanomedicines generated dioxygen to kill cancer cells. However,
the combination of PGA-g-mPEG-CA4 and PGA-g-mPEG-TPP nanomedicines connected
the effect of vascular blockage and photodynamic cell apoptosis, attaining the efficacy of
interior and exterior tumor cell killing.

Photothermal therapy (PTT), another type of phototherapy, can result in apoptosis or
necrocytosis of the tumor issues and inhibit tumor proliferation by inducing the partial
hyperthermia effect of photothermal agents [152]. Li et al. constructed gold nanorods
(GNRs) with CDDP-methoxy poly(ethylene glycol)-graft-poly(L-glutamic acid) (CDDP-
mPEG-g-PGA) wrapping and FA decoration (FA-GNR@Pt) for the targeting of chemo-
photothermal therapy of breast cancer (Figure 7A) [84]. The chemical conjugation of
GNRs to mPEG-g-PGA copolymers with thiol groups could efficiently remove the cetyl
trimethylammonium bromide moieties and minimize the toxicity of GNRs. To avoid
protein absorption and prolong blood circulation, CDDP was complexed into the inner
PGA core and FA were linked to the outer PEG corona. The as-prepared FA-GNR@Pt
prodrug significantly suppress the growth and lung metastasis of the 4T1 breast tumor
due to FA- mediated tumor targeting effects, and CDDP caused cellular apoptosis in
synergy with near infrared laser illumination-induced cellular necrosis and ablation of the
peripheral blood vessels.
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with permission from Ref. [84]. Copyright 2015, The Royal Society of Chemistry. (B) Asymmetrical
polymeric vesicles with multi functions for ultrasensitive MRI and targeted tumor therapy. (C,D) The
T1 relaxivity of Gd(III) –chelated asymmetrical vesicles and traditional DTPA–Gd. Reproduced with
permission. Reprinted with permission from Ref. [85]. Copyright 2015, American Chemical Society.

Owing to easy operation and deep penetration into soft tissues, magnetic resonance
imaging (MRI)-based techniques have been extensively applied in clinic treatment. Con-
ventional T1-type contrast agents are usually restricted because of the risk of accumulated
toxicity because of poor sensitivity. Du et al. proposed a noncytotoxic targeting poly-
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mer vesicle based on FA or diethylenetriaminepentacetatic acid (DTPA) poly(L-glutamic
acid)-b-poly(ε-caprolactone) (FA/DTPA-PGA-b-PCL) (Figure 7B) [85]. The DOX and Gd(III)
co-encapsulated asymmetrical polymer vesicles were obtained via the self-assembly of
FA-PGA-b-PCL copolymers, where the hydrophobic PCL blocks act as the vesicular mem-
branes and the hydrophilic PGA blocks serve as the vesicular coronas. Among which, the
longer PGA blocks linked with FA contributed as the external coronas, whereas the shorter
PGA blocks attached with DTPA acted as the internal coronas. Compared to traditional
DTPA-Gd, such asymmetrical vesicles presented a high T1 relaxivity of 42.93 mM−1·s−1

and drug loading efficiency of 52.6% for DOX·HCl (Figure 7C,D). Moreover, in vivo MR
imaging assays suggested an evident enhancement of the signal intensity around the tar-
geted tumor sites. Compared to chemotherapeutics-based monotherapy, these dual therapy
systems significantly improved the therapeutic effect in a synergistic way. New approaches
with more simple, efficient, and economical properties are desired to fabricate the dual
therapeutic nanoplatforms.

3.7. PGA-Based Nanomaterials as Protein Delivery Systems

Since the approval of the first protein drug Humulin® in 1982, hundreds of therapeutic
protein drugs have been approved [153,154]. Peptide-based therapeutics have gained
great momentum, owing to their high specificity and efficiency, fewer side effects, and
that they are tolerated well by the human body [155,156]. Unfortunately, the peculiar
hierarchical architectures of peptide drugs also endow them with inherent pharmaceutical
defects, including poor stability, immunogenicity, and shorter retention time [157,158].
To overcome these obstacles, therapeutic regimens are challenged to modify the molec-
ular structure and formulation, such as the covalent incorporation of PEG and glycolic
acid, or the construction of polymeric nanocomposites [159,160]. Kataoka et al. designed
a (1,2-diaminocyclohexane)platinum(II) (DACHPt)-conjugating poly(ethylene glycol)-b-
poly-(L-glutamic acid) (PEG-b-PGA) polymeric micelle with cyclic Arg-Gly-Asp (cRGD)
ligand molecules for the targeted delivery of platinum therapeutic prodrugs to glioblas-
tomas [86]. Compared to the polymeric micelle bearing nontargeted ligand (cyclic-Arg-Ala-
Asp), cRGD-conjugated nanocarriers (cRGD/m) accumulated, accelerated, and possessed
superior permeability from vessels into the tumor parenchyma (Figure 8A). The rapid
accumulation of cRGD/m into tumor cells through an active internalization route should
be responsible for the significantly improved tumor therapeutic effect in the treatment of
U87MG glioblastoma.

Recently, Tang et al. reported a self-amplifying, therapeutic tumor-homing nanoplat-
form (A15-PGA-CA4) that works via a chain reaction mechanism [87]. The blood coagulation-
targeting peptide (GNQEQVSPLTLLKXC, termed A15) was conjugated to poly(L-glutamic
acid)-graft-maleimide poly(ethylene glycol)/combretastatin A4 (PGA-g-PEG-Mal/CA4) by
thiol–maleimide “click chemistry” (Figure 8B). After intravenous injection, A15-PGA-CA4
released CA4 and initiated the chain reaction cycles: (1) intratumoral hemorrhage: CA4
selectively disrupted the established tumor blood vessels, leading to hemorrhage within
treated tumor cells; (2) target blood coagulation factor XIIIa (FXIIIa) amplification: the hem-
orrhage triggered an intratumoral coagulation cascade effect, in which FXIII was activated
into FXIIIa, causing targeted amplification; (3) blood clot binding: FXIIIa guided A15-PGA-
CA4 in the blood stream to tumor tissues via binding to blood clot; (4) CA4 release in
tumor sites: A15-PGA-CA4 continuously released CA4 in cancer cells and the next cycle
started subsequently. A15- PGA-CA4 enhanced the content of the targeted FXIIIa via chain
reaction. Owing to the superb targeting potency of A15- PGA-CA4, the tumor therapeutic
effect against large C26 tumors was significantly improved. These impressive examples
reaffirm the high specificity and efficacy of protein drugs which can be well exerted in the
preparation of tumor-targeting biomaterials. Moreover, the exact chain reaction mechanism
of A15- PGA-CA4 guided the combined cancer therapy based on co-delivery of chemical
drugs and proteins.
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3.8. Other PGA-Based Hybrids as Drug Delivery Nanovehicles

Owing to their intrinsic biodegradable and biocompatible characteristics, PGA has also
been designed as a diverse kind of nanocomposite for biomedical applications [161–165].
For instance, Cheng et al. developed a tumor-targeting siRNA delivery nanoplatform based
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on a α-helical cell-penetrating polypeptide (PVBLG-8) and a random-coiled PGA [166].
The cationic and rigid PVBLG-8 exhibited weak siRNA condensation ability, whereas the
anionic and flexible PGA acted as a stabilizer to entrap the siRNA within the molecular en-
tanglement between PVBLG-8 and PGA. During circulation, the as-obtained nanonetwork
displayed an anticipated serum stability and significantly increased tumor accumulation
via the EPR effect. Vicent et al. designed a pH-responsive biodegradable polypeptide-
corticosteroid conjugate (PGA-FLUO@HA-CP) for the topical treatment of psoriasis [167].
The PGA conjugation of fluocinolone acetonide (FLUO) contributed to penetration and
drug exposure, thus improving targeting to the viable epidermis. Remarkably, the encapsu-
lation of PGA-FLUO within the hyaluronic acid-poly(L-glutamate) cross polymer (HA-CP)
vehicle further enhanced this targeting effect by boosting skin permeation. PGA-FLUO in
synergy with HA-CP precisely delivered FLUO to the inflammatory skin layers, avoiding
the potential side effects. Recently, Du et al. successfully prepared the bone-targeting
polymeric vesicles for the effective treatment of postmenopausal osteoporosis [168]. These
polymeric vesicles were self-assembled from poly(ε-caprolactone)28-block-poly[(L-glutamic
acid)7-stat-(L-glutamic acid-alendronic acid)4] (PCL28-b-P[Glu7-stat-(Glu-ADA)4]) copoly-
mers. The hydrophilic P[Glu7-stat-(Glu-ADA)4] chains acted as the coronas while the
hydrophobic PCL chains served as the membranes which could encapsulate β-estradiol
(E2) inside the vesicles. The conjugated ADA on the coronas enabled the vesicles with
superior bone affinity and acted synergistically with E2 to increase bone mass and thus
reached an enhanced osteoporosis treatment effect.

4. Conclusions and Perspectives

In this work, we have summarized recent vital advances of PGA-based nanomaterials
in drug delivery. The inherent biodegradable, biocompatible, and ionic charging properties
make PGA an attractive candidate for the construction of biomedical polymeric materials.
The pensile carboxyl side groups of PGA provide abundant attachment sites for therapeutic
drugs such as DOX, CPT, and Pt drugs, through either chemical incorporation or physical
entrapment. PGA-based conjugates with defined structures and specific functions also
have been prepared to deliver gas molecules or protein drugs. Owing to the synergistic
therapeutic effects, diverse therapeutic techniques combined with chemotherapy have
been widely reported by researchers. Moreover, the ionic-charged PGA have also been
utilized in a variety of biomedical applications, such as antimicrobial complexes, vaccine
adjuvants, tissue regeneration, and medical devices [169–172]. For example, clinical com-
plications induced by tissue adhesion during surgery usually increase the degree of pain
for patients [173,174]. Recently, Ko et al. designed a PGA-based anti-adhesion membrane
conjugated with the anti-inflammatory drug ibuprofen for preventing tissue adhesion [175].
Owing to the proper hydrophilicity of PGA, this membrane exhibited superior wound
coverage without the contraction. This study will certainly guide the future design and
clinical applications of PGA-based nanomaterials.

Great efforts are required to achieve the translation of PGA-based nanomaterials
from laboratory to clinic. PGA-based nanomaterials are confronted with two consistent
challenges—enhanced therapeutic efficacy and scalable synthesized protocol. In addi-
tion to high stability during the systemic circulation, PGA-based nanomaterials should
release the payload in the tumor sites. In consideration of the pendent carboxyl groups
which endow PGA with pH-responsive property, various mono- or multi-stimuli respon-
sive PGA-based nanomaterials have been proposed. For example, acid-labile hydrazone
bonds and reduction-sensitive 2-azidoethyl disulfide linkage were utilized to construct
dual-stimuli PGA-based prodrug with intracellular pH and redox responsiveness [91].
Furthermore, photo- and enzyme-responsive PGA conjugates also have been extensively
reported, whereas further efforts are pressingly required to understand the mechanism
of intratumor/intracellular release of payload [148,176]. High drug loading capacity and
on-demand drug releasing ability at anticipated sites also play a crucial role in enhanc-
ing therapeutic efficiency. With the thrilling advances in NCA polymerization, synthetic
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polypeptides with well-defined structures and functionalities afford the novel building
blocks for polymeric biomaterials. However, the property and function of these synthetic
polypeptides are still far from matching the natural proteins. Therefore, it is a good oppor-
tunity to synthesize more functionalized polypeptides with predictable molecular weights,
tunable monomer sequences, and controllable termini. On the other hand, the ingenious
design of PGA-based nanomaterials usually involves multiple syntheses and purifica-
tion procedures, which represent a formidable challenge for scalable and reproducible
preparation of materials.
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