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Abstract: In this article, we study the optical force exerted on nanorods. In recent years, the capture
of micro-nanoparticles has been a frontier topic in optics. A Photonic Jet (PJ) is an emerging sub-
wavelength beam with excellent application prospects. This paper studies the optical force exerted
by photonic jets generated by a plane wave illuminating a Generalized Luneburg Lens (GLLs) on
nanorods. In the framework of the dipole approximation, the optical force on the nanorods is studied.
The electric field of the photonic jet is calculated by the open-source software package DDSCAT devel-
oped based on the Discrete Dipole Approximation (DDA). In this paper, the effects of the nanorods’
orientation and dielectric constant on the transverse force Fx and longitudinal force Fy are analyzed.
Numerical results show that the maximum value of the positive force and the negative force are
equal and appear alternately at the position of the photonic jet. Therefore, to capture anisotropic
nanoscale-geometries (nanorods), it is necessary to adjust the position of GLLs continuously. It is
worth emphasizing that manipulations with nanorods will make it possible to create new materials
at the nanoscale.

Keywords: optical force; photonic jet; nanorod; dipole approximation; Generalized Luneburg Lens

1. Introduction

Optical capture by manipulating neutral atoms by lasers was first reported by Ashkin
et al. in 1970 [1]. At present, optical manipulation can achieve the capture of living cells
and organelles [2], DNA rotation [3], and chromosome surgery [4] with low damage, which
is very important in modern medicine and biology. Later, optical capture was gradually
applied to the manipulation of various nanomaterials. Nanomaterials and nanotechnology
are already indispensable and important members of modern technology. For example,
quantum dots play an important role in fluorescence detection, bioluminescence detec-
tion and other fields due to their unique photoelectric properties [5]. Semiconductor
nanowires [6] have excellent performance in electronics and photonics due to their tunable
direct bandgap and high carrier mobility. Anisotropic nanoscale-geometries, including
nanorods [7], can be used in molecular imaging and photothermal cancer therapy. The
capture and manipulation of nanomaterials are significant in the optoelectronic industry.
Different arrangements of nanomaterials have different optical and physical properties [8],
and optical force is an important way to realize the complex arrangement structure of
nanomaterials. In 2006, Pelton et al. [9] reported three-dimensional optical capture of
gold nanorods and enhanced optical force by longitudinal surface plasmon resonance.
In 2008, Selhuber-Unkel [10] performed a quantitative analysis of the optical force on gold
nanorods. The results showed that the interaction between an optical trap and a nanorod
is related to the particle’s polarizability. In 2010, Tong et al. [11] used a linearly polarized
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near-infrared laser to arrange and rotate nanostructures, including nanorods, optically.
In 2011, Ruijgrok et al. [12] quantitatively measured the torque exerted on the nanorod.
In 2014, Liaw et al. [13] studied the polarizability of gold nanorods and analyzed the optical
torque under the Maxwell stress tensor. In 2017, Fick et al. [14] captured nanorods using
optical fiber nanotweezers. In 2020, Huang et al. [15] studied the capture of gold nanorods
by a plasmonic tweezer. By adjusting the mode of local surface plasmon resonance, the
force direction can be changed. Capturing nanorods and arranging them according to
different patterns can enable nanoarrays to have new functions. In addition, the dipole
approximation is a common and accurate method to study optical force. In this article, we
use the dipole approximation method to numerically simulate the optical force exerted by
the photonic jet on the nanorods.

When a beam of light illuminates a particle (its size is close to the wavelength), the
backlit side of the particle will generate a strong and narrow beam. Scholars vividly named
it a photonic jet. Photonic jet has been used in many fields. For example, optical data
storage [16], superresolution imaging [17], and Raman signal enhancement [18], etc. At
the same time, a photonic jet, as a highly focused beam, can also be used as a light source
to capture and manipulate particles [19]. Its application in cell surgery [20–22] proves
this point. In this paper, we will generate PJ by illuminating a mesoscale Generalized
Luneburg Lens with a plane wave, which, however, does not reduce the generality of the
problem, and the results can be generalized to other particle-lens combinations. GLLs is
the particle model mentioned in Mao et al.’s [23] paper. The refractive index of this model
is rotationally symmetrical and can generate an ultra-narrow or ultra-long PJ. This PJ is of
great significance in the optical trapping of nanoparticles. We can change PJ significantly by
changing the wavelength, focal length, and radius of GLLs, and then analyze the influence
of PJ on the optical force.

PJ and optical force are studied in the framework of Discrete Dipole Approxima-
tion [24]. The basic idea of DDA comes from DeVoe’s writings. DDA has studied scattering
by first dividing particles of any shape into dipole arrays (polarizable) whose size is negli-
gible compared to the wavelength [25]. Then the interaction between the dipoles and the
incident field is analyzed to solve the whole field after the scattering. Until today, DDA
has been developed into a numerical simulation method of the electromagnetic field with
high precision and fast operation speed. In particular, DDSCAT [26] is an open-source
software package of DDA with simple operation methods and accurate calculation results.
DDSCAT is especially useful for a particle with a special shape. The coordinate system
for the dipole array inside the particle in DDSCAT is straightforward to understand and
modify. When calculating the scattering of a particle with an irregular shape, we only
need to find the surface function and combine it with the dipole coordinate system [27].
Therefore, DDSCAT is software suitable for calculating the scattered field of GLLs. Dipole
approximation [28] is a common method for numerical simulating the optical force exerted
on nanostructures. In this calculation model, the nanostructure is regarded as a dipole (the
size is almost negligible). In the calculation of optical force, the shape of the nanostructure
can be expressed by its polarizability. The polarizability of a nanoparticle with a more
complex shape is often a tensor [29]. The expression of the polarizability of the nanorod in
this article will be shown in the second section.

The rest of this paper is distributed as follows. The second section introduces the
theory of DDA and DDSCAT to calculate the near-field scattering, and then analyzes the
theory of force on nanorod in the dipole approximation framework. In the third section,
the numerical results of transverse and longitudinal forces on nanorods and the effects
of wavelength, focal length, and radius of GLLs on the optical forces are discussed. The
fourth section summarizes the full article.
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2. Materials and Methods
2.1. Discrete Dipole Approximation

In the above, we briefly introduced the method of DDA to calculate near-field scat-
tering. In this section, we will analyze the principle of DDA in detail. The electric dipole
moment of a polarizable (the polarizability is αi) dipole is Pi = αiEi [30]. The total electric
field at ri in the calculation area can be expressed as [31]:

Ei = Einc,i + Esca,i (1)

where Einc,i and Esca,i are the incident electric field and scattered electric field at ri. −AijPj
represents the scattering field generated by the dipole (at rj) at ri. Therefore, Equation (1)
can be expressed as:

Ei = Einc,i −∑
j 6=i

AijPj (2)

where, Aij [32] represents the influence of the dipole at position rj on the dipole at position

ri. Aij =
exp(ikrij)

rij
×
[

k2(r̂ij r̂ij − 13
)
+

ikrij−1
r2

ij

(
3r̂ij r̂ij − 13

)]
, i 6= j, where, k is the wave

vector, rij is the distance between point i and point j, and r̂ij is the unit vector from i to j.
13 is the identity matrix. r̂ij r̂ij and 13 are shown in Equations (3) and (4) [33,34]. rx, ry,
and rz are the coordinate components of r̂ij along the x, y, and z directions, respectively.
∑
j 6=i

AijPj represents the scattered field at that point:

r̂ij r̂ij =

 r2
x rxry rxrz

ryrx r2
y ryrz

rzrx rzry r2
z

 (3)

13 =

 1 0 0
0 1 0
0 0 1

 (4)

Now, we can get the electric dipole moment at any position [35,36]:

Pi = αi(Einc,i −∑
j 6=i

AijPj) (5)

Einc,i = ∑
j 6=i

AijPj + α−1
i Pi (6)

where [37]:
αi ≈ αCM

1+(αCM/d3)
[
(b1+m2b2+m2b3S)(kd)2−(2/3)i(kd)3

] ,

b1 = −1.891531, b2 = 0.1648469,

b3 = −1.7700004, S ≡
3
∑

i=1
(âi êi)

2,

(7)

αCM
i =

3d3

4π

ni − 1
ni + 2

(8)

where, αCM
i is the Clausius-Mossotti polarizabilities (as shown in Equation (8)), m and ni

are the refractive index and the dielectric constant at any position. d is the distance between
dipoles, b1, b2, and b3 are constants, k is the wave vector, â and ê are the unit vectors of the
incident direction and the polarization direction [38].

In this paper, ni = n0

[
1 + f 2

GLLs − (r0/R)2
]1/2

/ fGLLs, where, n0 = 1. fGLLs are the
focal length normalized radii of GLLs. It is unitless. ro is the radial coordinate (o = 1, 2,
3......, 30) and R is the maximum radius of the GLLs. Due to the limitation of memory and
computing speed, we only divide the GLLs into 30 layers, and we will verify the correctness
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of this model in Section 3.1. The design method and correctness verification of GLLs in
DDSCAT have been completed in our previous work [39], and will not be described in this
paper. Defining Ajj ≡ α−1

j , Equation (6) has the following form [40]:

Einc, i = ∑
j∈ target

AijPj (9)

In DDSCAT, the inner (original target sites j) and outer (vacuum sites i) fields of a
particle will be represented separately as [41]:

E = Einc + Escat =

α−1
j Pj original target sites j

Einc,i − ∑
j∈target

AijPj vacuum sites i (10)

Finally, the electric dipole moment outside the particle is 0.

2.2. Optical Force on a Nanorod

In the framework of the dipole approximation, the polarizability of arbitrarily oriented
nanorod is put into the optical force equation as follows [42]:

αz = Vεd
εm − εd

εd
(11)

αt = 2Vεd
εm − εd
εm + εd

(12)

where, V is the volume of nanorods, εm and εd are the dielectric functions of metal and
medium, respectively. The polarizability tensor of the particle is [29]:

α̂ =

∣∣∣∣∣∣
αz 0 0
0 αt 0
0 0 αt

∣∣∣∣∣∣ (13)

The coordinate system inside the particle is (ξ,η,ζ). The schematic diagram of the
polarization distribution and orientation of the nanorods is shown in Figure 1. αz and
αt represent the longitudinal (parallel to the axis) and transverse (parallel to the bottom
surface) polarizability of the nanorod, respectively. Both the ξ and η axes are parallel to the
bottom surface of the nanorod, so the polarizability along these two directions is the same.
The rotation matrix connecting the two systems is [29,43]:

R̂(θ0, ϕ0) =

 cos ϕ0 cos θ0 − sin ϕ0 cos ϕ0 sin θ0
sin ϕ0 cos θ0 cos ϕ0 sin ϕ0 sin θ0
− sin θ0 0 cos θ0

 (14)

The polarizability tensor of the rotated nanorod in the system of coordinates xyz is
then done by the matrix product [44]:

Â = R̂−1
α̂R̂ (15)

and the nanorod dipole moment p excited by the total electric field E at the nanorod position
r = (x, y, z) is:

p = Â(θ0, ϕ0)E(x, y, z) (16)

Finally, the optical force on the nanorods is [45]:

Fξ =
1
2
<
{

p · ∂ξE∗
}

, ξ = x, y, z (17)
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Figure 1. (a,b) respectively show the nanorod’s coordinate system (ξ,η,ζ) and the angle between the
axis (ξ) of the nanorod and the (x,y,z) coordinate system (θ0, ϕ0). θ0 represents the angle between the
axis of the nanorod and the z-axis, and ϕ0 represents the angle between the projection of the axis of
the nanorod on the xoy plane and the x-axis.

By rewriting p as:

p =

 p1
p2
p3

 (18)

Equation (17) can be expanded to:

Fx = 1
2<
{

p1 ·
∂E∗x
∂x + p2 ·

∂E∗y
∂x + p3 ·

∂E∗z
∂x

}
Fy = 1

2<
{

p1 ·
∂E∗x
∂y + p2 ·

∂E∗y
∂y + p3 ·

∂E∗z
∂y

}
Fz =

1
2<
{

p1 ·
∂E∗x
∂z + p2 ·

∂E∗y
∂z + p3 ·

∂E∗z
∂z

} (19)

In this paper, we will analyze the Fx, longitudinal force Fy and Fz exerted by the
photonic jet on a nanorod.

3. Results

This section will analyze the simulation results. We use DDSCAT to generate a GLLs
containing 30 layers with different refractive indices. The internal structure of GLLs is
shown in Figure 2. The thickness of each layer is almost the same, and the refractive index

of each layer can be calculated by ni = n0

[
1 + f 2

GLLs − (r0/R)2
]1/2

/ fGLLs. In all numerical
simulations, the maximum radius R and focal length fGLLs of GLLs are 2 µm and 1.2 a.u.,
and the wavelength will be introduced separately in each section. The center of mass
of GLLs is at (0, 0, 0), and the plane wave always propagates along +x and is polarized
along the y-direction. The reason for choosing these parameters is to ensure correctness
(compared with Mie theoretical calculation results) and a better jet effect. The nanoparticles
are gold nanorods, and their polarizability is given in Equations (11)–(13). As the calculation
framework in this paper is dipole approximation, the volume of nanoparticles must meet
specific requirements, and the effective radius of nanorods must meet certain requirements
2πae f f & 1. In this paper, we only discuss the effect of orientation and dielectric constant
of nanorod on Fx, Fy, and Fz. Both electric field (a.u.) and optical force (in N) are displayed
in the xoy plane and the positions of GLLs are marked with white circles. When the electric
field is shown separately, the value is |E|/|E0|. For convenience, we will use |E| to represent
the value. Because the photonic jet is a superposition of the incident and scattering fields
on the shadow side of the particle, we must know the ratio of the field in the area of the
photonic jet to the incident field. There are two other important parameters for PJ, which are
the focal length f and the full width at half maxima (FWHM) at the focal point. These two
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parameters describe the distance from the focal point of the PJ to the outer surface of the
GLLs and the width where the intensity is half the intensity of the focal point, respectively.
They respectively represent the horizontal and vertical scales of the PJ. When the FWHM is
less than half of the wavelength, the PJ may break the diffraction limit, so these two scales
tend to be measured in wavelength λ.
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Figure 2. Internal structure diagram of GLLs. We have marked 28, 29, and 30 layers of concentric rings
with different refractive indices in the figure. We use r1 . . . r28 to represent concentric rings from 1 to
28 layers, R represents the maximum radius of GLLs, and fGLLs represents the focal length of GLLs.

In the following, we first compare the photonic jet of GLLs under the DDA framework
with that under the Mie theory framework. Here, we will only show the comparison results
of photonic jet with wavelength 0.5 µm and 0.6328 µm. Then we analyzed the influence of
the orientation of the nanorods on the optical force, and finally analyzed the influence of
the wavelength on the optical force.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Numerical Validation

In this section, we calculate the photonic jet generated by a plane wave irradiat-
ing a GLLs respectively through DDA and Mie theory and compare the results. The
schematic diagram of the PJ irradiating nanorod is shown in Figure 3. DDSCAT and Jan
Schäfer [46–50]’s Mie theory software were used, and the two results were normalized
by Inorm = (Ii − Imin)/(Imax − Imin) [51], where, Ii, Imin and Imax are the intensity at any
position, the maximum value, and the minimum value, respectively. The error of all
comparisons is within one-thousandth. As shown in Figure 4, the wavelengths are 0.5
(Figure 4a) and 0.6328 µm (Figure 4b) respectively, the maximum radius of GLLs is 2 µm
(i.e., Mie size parameter q ∼20), and the focal length is 1.2 a.u..
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Figure 3. PJ generated by a plane wave illuminating a GLLs. In the figure, plane waves, GLLs,
photonic jets, and nanorods and some of their parameters (such as the maximum radius R and the
focal length fGLLs of GLLs, the focal point of the photonic jet, the focal length f and FWHM) are
marked respectively. GLLs are composed of 30 layers of concentric rings with different refractive
indexes centered on the center of the sphere.
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Figure 4. Comparison of theoretical calculation results between DDSCAT and Mie. (a,b) describe the
comparison results of the two methods when the wavelength is 0.5 µm and 0.6328 µm, respectively.
The first picture in each row is the intensity distribution along the x-axis through the focal point of
the photonic jet. The second picture is also the intensity distribution but along the y-axis through the
focal point.

3.2. Orientation of Nanorods

In this section, we will analyze the influence of nanorod’s orientation on the optical
force. As mentioned earlier, the focal length fGLLs and the maximum radius of GLLs are
1.2 and 2 µm. The incident wavelength is 0.6328 µm, the dielectric constant of the gold
nanorod is −11.740 + 1.2611i, and the volume is 4.2 × 10−3 µm3. We will first show the
electric field of the photonic jet under this set of parameters, as shown in Figure 5. The
intensity of the focal point of the photonic jet is 51.7 a.u., the focal length f is 0.62 λ, and
the FWHM is 0.5 λ. Next, we will use two subsections to discuss the influence of the
orientation ϕ0 and θ0 of the nanorods on the optical force.
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The optical force in this paper has several discrete regions. For convenience, we define
the independent region of optical force as discrete optical force, as shown in Figure 6.
Figure 6a,b show two kinds of discrete optical forces, respectively.

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

  
(a) The first kind of discrete optical force (b) The second kind of discrete optical force 

Figure 6. (a,b) The different kinds of discrete optical forces. 

3.2.1. 0ϕ  Orientation of Nanorods 

In this section, we will study the influence of the change of 0ϕ  on the optical force (

0 90θ = ° ). We respectively show xF  and yF  when 0 0 ,  90 ,  99 ,  and 105ϕ = ° ° ° ° . The 
reason why we choose these angles is because of the unique properties of the discrete 
optical force at these angles. There are significant differences in the size and shape of these 
discrete optical forces. Of course, we have calculated the optical forces at all angles. 
However, the distribution patterns of these optical forces at these four angles is the most 
representative. We will explain their unique properties one by one. When 0ϕ  is one of 
these four cases, the optical force (especially yF ) has a unique and typical distribution 
pattern of positive and negative forces. When 0 0ϕ = ° , yF  is almost perfectly symmetric 
with respect to y=0, including the magnitude and scope of positive and negative forces. 
When 0 90ϕ = ° , the yF  in the 0y >  area is significantly smaller than the yF  in the 

0y <  area (reversed when 0 105ϕ = ° ). When 0 99ϕ = ° , the scope of positive force 
increases significantly, and the negative force converges on the particle surface. Still, the 
maximum value of the negative force is higher than that of the positive force. Because of 
the uniqueness of the optical forces in these four angles, we decided to show them, as 
shown in Figure 7a–d. When 0ϕ  is equal to other values, the distribution pattern of 
positive and negative forces is always similar to the above four cases, so it will not be 
shown. In increasing 0ϕ  from 0 to 180 degrees, the change of xF  is mainly reflected in 
the intensity of the force. At the position of the PJ, the optical force is symmetrical about 
y = 0, and the positive force and the negative force alternately appear. The maximum value 
of the positive force and the negative force are almost equal, and both have a clear action 
area. Therefore, when capturing nanorods with different orientations in the light 
propagation direction ( x ), the negative force can always be exerted on the nanorods by 
accurately moving the GLLs to achieve the purpose of capture. Fy has different directions 
of action on both sides of y=0, and the positive and negative forces also appear alternately 
along x+ . Therefore, the nanorods oscillate repeatedly on both sides of y = 0. However, 
when 0 45ϕ ≥ ° , the positive and negative forces on both sides of y = 0 appear asymmetry. 
The force on one side is more potent than the other side. Such particles may always move 
to one side in the y-direction. At this time, we can also move GLLs along the x-direction 
so that the nanorods always receive the same magnitude and opposite optical forces on 
both sides of y. This allows the nanorods to be in a state of dynamic equilibrium and to be 
stably captured in the y-direction. Figure 8 shows the variation of the maximum and 
minimum values of xF , yF , and zF  with 0ϕ . As shown in Figure 8a,b we calculate the 
change rules of the maximum and minimum values of xF , yF , and zF  in the process of 

0ϕ  increasing from 0°  to 180° . Since the light propagates in the x direction and 0 90θ = °

Figure 6. (a,b) The different kinds of discrete optical forces.

3.2.1. ϕ0 Orientation of Nanorods

In this section, we will study the influence of the change of ϕ0 on the optical force
(θ0 = 90◦). We respectively show Fx and Fy when ϕ0 = 0◦, 90◦, 99◦, and 105◦. The reason
why we choose these angles is because of the unique properties of the discrete optical force
at these angles. There are significant differences in the size and shape of these discrete
optical forces. Of course, we have calculated the optical forces at all angles. However, the
distribution patterns of these optical forces at these four angles is the most representative.
We will explain their unique properties one by one. When ϕ0 is one of these four cases,
the optical force (especially Fy) has a unique and typical distribution pattern of positive
and negative forces. When ϕ0 = 0◦, Fy is almost perfectly symmetric with respect to y = 0,
including the magnitude and scope of positive and negative forces. When ϕ0 = 90◦, the
Fy in the y > 0 area is significantly smaller than the Fy in the y < 0 area (reversed when
ϕ0 = 105◦). When ϕ0 = 99◦, the scope of positive force increases significantly, and the
negative force converges on the particle surface. Still, the maximum value of the negative
force is higher than that of the positive force. Because of the uniqueness of the optical forces
in these four angles, we decided to show them, as shown in Figure 7a–d. When ϕ0 is equal
to other values, the distribution pattern of positive and negative forces is always similar
to the above four cases, so it will not be shown. In increasing ϕ0 from 0 to 180 degrees,
the change of Fx is mainly reflected in the intensity of the force. At the position of the
PJ, the optical force is symmetrical about y = 0, and the positive force and the negative
force alternately appear. The maximum value of the positive force and the negative force
are almost equal, and both have a clear action area. Therefore, when capturing nanorods
with different orientations in the light propagation direction (x), the negative force can
always be exerted on the nanorods by accurately moving the GLLs to achieve the purpose
of capture. Fy has different directions of action on both sides of y = 0, and the positive
and negative forces also appear alternately along +x. Therefore, the nanorods oscillate
repeatedly on both sides of y = 0. However, when ϕ0 ≥ 45◦, the positive and negative
forces on both sides of y = 0 appear asymmetry. The force on one side is more potent than
the other side. Such particles may always move to one side in the y-direction. At this time,
we can also move GLLs along the x-direction so that the nanorods always receive the same
magnitude and opposite optical forces on both sides of y. This allows the nanorods to be
in a state of dynamic equilibrium and to be stably captured in the y-direction. Figure 8
shows the variation of the maximum and minimum values of Fx, Fy, and Fz with ϕ0. As
shown in Figure 8a,b we calculate the change rules of the maximum and minimum values
of Fx, Fy, and Fz in the process of ϕ0 increasing from 0◦ to 180◦. Since the light propagates
in the x direction and θ0 = 90◦, the radius of the bottom surface of the nanorod is small,
so the intensity of Fz is relatively tiny compared to Fx and Fy. Through research, it can be
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found that the maximum and minimum values of Fx and Fy have precisely the same trend
with the increase of ϕ0. The optical force decreases first, reaching a minimum at 39◦. Then
increase, get a local maximum at 69◦, and drop immediately. When ϕ0 = 99◦, it comes
the local minimum value and increases. Reach the maximum value when ϕ0 = 159◦. In
summary, different ϕ0 will cause the force on nanorods to be very different, so we can
propose targeted solutions for particles with different ϕ0 to achieve stable capture.
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Figure 7. Optical force exerted on a nanorod with different ϕ0. Panels (a–d) show the optical forces
Fx and Fy when ϕ0 = 0◦, 90◦, 99◦, and 105◦, respectively.
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Figure 8. The maximum and minimum values of optical force varies with ϕ0. (a,b) show the change
rules of the maximum and minimum values of Fx, Fy, and Fz in the process of ϕ0 increasing from 0◦

to 180◦.

3.2.2. θ0 Orientation of Nanorods

In this section, we will discuss the influence of θ0 on optical forces (ϕ0 = 45◦). As
shown in Figure 9a–d, we offer Fx and Fy at θ0 = 0◦, 30◦, 60◦, and 180◦, respectively.
Similarly, these angles were chosen to demonstrate the unique properties of discrete optical
forces and the distribution patterns of positive and negative forces. The distribution pattern
of positive and negative forces determines the direction of force and the way to capture
the particles. When θ0 = 0◦, the discrete optical force of Fy is almost perfectly symmetric
with respect to y = 0. When θ0 = 30◦, the discrete optical force of Fy in the y < 0 area is
smaller than the Fy in the y > 0 area. When θ0 = 60◦, the scope of negative force increases
significantly, and the positive force converges on the particle surface. Still, the maximum
value of the positive force is higher than that of the negative force. When θ0 = 180◦, the
range of negative force is greater than that of positive force, but the maximum value of
negative force is smaller. Because of the uniqueness of the optical forces in these four
angles, we decided to show them, as shown in Figure 9a–d. When θ0 is other values, the
distribution pattern of optical force is similar to the above four situations, and the repeated
content will not be shown in this article. θ0 in 0◦ − 42◦, Fx and Fy are almost all symmetric
with respect to y = 0, with only variations in the intensity of the force. Still, the range
of Fy changes significantly around 30◦, 60◦ and 180◦, as shown in Figure 9b–d. Fx is not
symmetric about y = 0. The range of the Fx’s negative force is significantly increased. The
wide distribution of negative forces allows particles to be captured more easily. Figure 10
shows the variation of the maximum and minimum values of Fx, Fy, and Fz with θ0. As
shown in Figure 10a,b, we studied the maximum values of the positive and negative forces
of Fx, Fy, and Fz in the range of 0◦ ≤ θ0 ≤ 180◦. The numerical results show that the
maximum values of Fx and Fy decrease first, then increase and finally decrease again with
the increase of θ0. When θ0 = 120◦, Fz is a local minimum value. Otherwise, the trend of
Fz increasing with θ0 is basically the same as that of Fx. The maximum value of positive
force and negative force are almost equal. Under the same parameters, the area where the
maximum positive force and the negative force are located in the photon ejection is fixed.
By moving the GLLs, the nanorods can be accurately captured.
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Figure 9. Optical force exerted on a nanorod with different θ0. Panels (a–d) show the optical forces
Fx and Fy when θ0 = 0◦, 30◦, 60◦, and 180◦, respectively.
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Figure 10. The maximum and minimum values of optical force varies with θ0. (a,b) show the change
rules of the maximum and minimum values of Fx, Fy, and Fz in the process of θ0 increasing from
0◦ to 180◦.

3.3. Dielectric Constant

In this section, we discuss the effects of the real (ε1) and imaginary (ε2) parts of the
nanorod’s dielectric constant on the optical force, as shown in Figure 11. The fGLLs and R
of GLLs are 1.2 and 2 µm. The wavelength is 0.6328 µm, and the volume of the nanorod is
4.2× 10−3 µm3. In Figure 11a,b we show the maximum and minimum optical force changes
with the real part (ε1) of the dielectric constant when the imaginary part ε2 of the nanorod’s
dielectric constant is 1, respectively. From the figures, we can find that the optical force first
increases and then decreases with the increase of ε1. When ε1 = −2, the optical force has
the local maximum value. From Figure 11c,d, we can find that as ε2 increases, the optical
force gradually increases.
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Figure 11. The maximum and minimum values of optical force varies with εm. Panels (a–d) describe
the effects of the real and imaginary parts of the nanorod’s dielectric constant on the maximum and
minimum values of optical force, respectively.
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4. Conclusions

In this paper, we studied the optical forces Fx and Fy exerted by a photonic jet on
nanorods under the framework of the dipole approximation. The PJ is generated by a plane
wave irradiating a GLLs, and the numerical result is calculated by DDSCAT. We divided
GLLs into 30 layers of concentric rings with different refractive indices. We compare the
calculation results of DDSCAT with the results of the Mie theory to validate the PJ’s electric
field. Then we use the PJ to illuminate the nanorods and study the optical forces Fx and Fy
on the nanorods. Of course, the size of nanorods must satisfy the Rayleigh approximation.
The effects of the orientation and dielectric constant of nanorods on the optical force are
investigated. The angle between the axis of the nanorod and the z-axis is represented by θ0,
and the angle between the projection of the axis on the xoy plane and the x-axis is defined
by ϕ0. We first discuss ϕ0’s effect on Fx and Fy by making θ0 = 90◦ (the axis of the nanorods
is in the xoy plane). We find that Fx is always symmetric about the y-axis, and Fy is not
symmetric about the y-axis, only around ϕ0 = 90◦ and ϕ0 = 105◦. In contrast, the intensity
of Fz can be ignored since the maximum value of the positive and negative optical forces are
almost equal. It is necessary to constantly adjust the position of the GLLs when capturing
these oriented nanorods so that the nanorods are always in the area of negative or positive
forces. Then we investigate the effect of θ0 on optical force when ϕ0 = 45◦. The numerical
results show that Fx is asymmetric about the y-axis near θ0 = 45◦ and 60◦, and the area
of the negative force of Fy increases significantly (including θ0 = 180◦), and the positive
force converges on the surface of GLLs. Similarly, the maximum values of the positive and
negative optical forces are equal. Due to the wider distribution of negative forces at certain
angles, it is easier to adjust GLLs to capture nanorods. Finally, we discussed the effect of the
dielectric constant of the nanorods on the optical force. Under the same conditions, a larger
dielectric constant generally leads to a powerful optical force. In this paper, the optical
force exerted by the photonic jet on elongated particles in the form of nanorods instead
of spherical nanoparticles with different orientations and materials (dielectric constant) is
studied. The numerical results describe the direction and magnitude of the optical force,
which makes it possible to directionally manipulate the nanorods. Note that the presented
results will be valid not only for GLLs, but also for other particles [52] that form a photonic
jet with similar characteristics. These results are expected to provide theoretically support
for the manipulation of nanorods and the arrangement of nanoarrays.
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