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Abstract

Circular ribonucleic acids (circRNAs) are non-coding RNAs of approximately 100 nucleotides in 

length with thousands of members in mammalian cells. The presence of circRNAs is believed to 

be even greater than that of messenger RNAs. Identification of circRNAs occurred approximately 

37 years ago with the subsequent demonstration that covalent bonds are necessary for the unique 

circular structure of these ribonucleic acids. However, present understanding of the complex 

biological role of circRNAs remains limited and requires further elucidation. CircRNAs may 

impact aging, multiple disorders, function as biomarkers, and are able to regulate gene expression 

by acting as effective microRNA (miRNA) sponges. New work suggests that circRNAs are vital 

for the modulation of cellular senescence and programmed cell death pathways such as apoptosis. 

These non-coding RNAs can control cell cycle progression, cellular proliferation, and cellular 

survival impacting disorders linked to aging, cardiovascular disease, and atherosclerosis through 

pathways that involve cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase inhibitor 1 

(p21), and mammalian forkhead transcription factors. In addition, circRNAs can oversee cellular 

metabolism and disorders such as diabetes mellitus through the regulation of insulin signaling as 

well as limit tumor progression through Wnt signaling and β-catenin pathways. Further 

understanding of the biology of circRNAs offers great promise for the targeting of novel strategies 

against a wide spectrum of disease entities.
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Circular RNAs, cellular senescence, and programmed cell death

Circular ribonucleic acids (circRNAs) are non-coding RNAs of approximately 100 

nucleotides in length that were initially identified as being circular in nature [1,2]. 

Subsequently, these non-coding RNAs were later demonstrated to have covalent bonds that 
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maintain the circular structure. In the body, circRNAs have thousands of members present in 

mammalian cells. In eukaryotic cells, circRNAs can be composed of the loop portion of 

intronic lariats, plant viroids, intermediates of transfer RNAs (tRNAs), antisense transcripts, 

circRNAs from noncoding genes, and exonic RNAs [3]. Knowledge in regards to circRNAs 

is rapidly growing. It is now recognized that the isoform of circRNA has a greater 

expression than messenger RNA (mRNA) [4]. In addition, circRNAs have both cis and trans 
regulation. CircRNAs have been shown to regulate gene expression through the sponging of 

microRNAs (miRNAs) [5].

New work has highlighted the role of circRNAs in both cellular senescence and cellular 

survival. It has recently been demonstrated that circRNA generated from the mammalian 

forkhead transcription factor Foxo3 plays a role in cellular senescence and aging. Presently 

in the mammalian forkhead transcription factor family, more than 100 forkhead genes and 

19 human subgroups that range from FOXA to FOXS exist [6–8]. In regards to mammalian 

FOXO proteins, this group is assigned to the O class of the forkhead box class transcription 

factors. The family consists of FOXO1, FOXO3, FOXO4, and FOXO6 [9]. FOXO proteins 

are expressed in all tissues of the body [10]. For FoxO3, this mammalian transcription factor 

may have an important role in erythroid cell growth [11], endothelial vascular cell survival 

[12,13], hippocampal neuronal injury [14,15], neuronal cortical disease [10,16,17], and 

behavior disorders [18]. In the cardiovascular system during aging, circRNA generated from 

Foxo3 (circ-Foxo3) is expressed in aged patients and murine experimental models. Silencing 

circ-Foxo3 blocks senescence in mouse embryonic fibroblasts and over-expression of circ-

Foxo3 results in cell senescence [19]. In relation to the mechanisms that may account for the 

cellular senescence, circ-Foxo3 appears to block cell cycle progression by binding to the cell 

cycle proteins cyclin-dependent kinase 2 (CDK2) and cyclin-dependent kinase inhibitor 1 

(p21) to prevent cellular proliferation [20]. Additional evidence exists for the link between 

circRNAs and the onset of aging processes. For example, with advanced age, increased 

expression of circRNAs has been demonstrated in the skeletal muscles of monkeys [21].

CircRNAs also oversee cellular survival through programmed cell death involving apoptosis 

[22,23]. In vascular smooth muscle cells and macrophages, circular antisense non-coding 

RNA in the INK4 locus (circANRIL) can prevent exonuclease-mediated pre-ribosomal RNA 

processing, ribosome biogenesis, and proliferation of cells that may lead to atherosclerosis 

through the induction of apoptosis [24]. It is conceivable that circANRIL could be protective 

against progressive cardiovascular disease. CircRNA also can function as an endogenous 

miR-223 sponge to inhibit cardiac hypertrophy and heart failure [25]. However, circRNAs 

may not always be protective against apoptotic pathways. During cell models of ischemia-

reperfusion injury, up-regulation of specific circRNAs may foster apoptotic cell injury [26]. 

In experimental models of myocardial infarction, the circRNA Cdr1as could increase cardiac 

infarct size and function as a sponge for miR-7a, a protective agent in this model [27].

Circular RNAs, metabolism, and cellular proliferation

Given the role of circRNAs in senescence, aging, and cell death, it is of interest to learn that 

circRNAs may control these processes through proliferative pathways that involve cellular 

metabolism and Wnt signaling [28]. During cellular metabolism, circRNAs may have a 
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significant role in the development of diabetes mellitus (DM) [29]. DM affects the global 

population and is increasing in incidence throughout the world [30,31]. Approximately 350 

million individuals currently have DM and an additional 8 million individuals are believed to 

be undiagnosed at present [30,32]. CircRNA Cdr1as may regulate insulin secretion through 

miR-7. Cdr1as is a sponge and inhibitor of miR-7. Without modulation of miR-7 expression, 

miR-7 can foster the progression of DM. Cdr1as appears to interact with miR-7, block its 

activity, and increase insulin content and secretion in islet cells [33].

CircRNAs also can control cellular growth through Wnt signaling pathways and function as 

biomarkers for disease progression and treatment Wnt proteins are cysteine-rich 

glycosylated proteins that oversee multiple cellular processes including neuronal 

development [34,35], musculoskeletal development [36,37], vascular growth [38], immunity 

[39], fibrosis [40,41], and stem cell proliferation [30,42,43]. However, Wnt signaling 

pathways also can lead to tumorigenesis since Wnt proteins are proliferative in nature 

[34,44–47]. CircRNAs have been reported to have a protective effect during colorectal 

cancer. cir-ITCH expression was found to be down-regulated in colorectal cancer when 

compared to normal surrounding tissue. Yet, cir-ITCH was found to be able to increase the 

level of ITCH that can inhibit the Wnt/β-catenin pathway and block colorectal tumor 

progression [48]. In regards to biomarker disease assessment, circRNAs may offer the ability 

to track disease progression such as during hepatocellular carcinoma [49]. Yet, oncology is 

not the only discipline that circRNAs may function as relevant biomarkers. For example, in 

patients with psychiatric disease, circRNAs may be both a diagnostic and therapeutic 

biomarker for major depressive disorder [50].

Future considerations

As non-coding RNAs, circRNAs are ubiquitous, have thousands of members, and can 

regulate gene expression by functioning as effective miRNA sponges. Since circRNAs are 

present in exosomes, these non-coding RNAs have the ability to impact multiple cellular 

responses throughout the body. Under several conditions, circRNAs may control disease 

progression and are considered important biomarkers for multiple disorders. CircRNAs 

appear to be critical for the control of cellular senescence and cellular death pathways such 

as apoptosis. CircRNAs interface with multiple pathways that include cyclin-dependent 

kinase 2 (CDK2), cyclin-dependent kinase inhibitor 1 (p21), mammalian forkhead 

transcription factors, insulin signaling, Wnt, and β-catenin pathways. Ultimately, circRNAs 

may have control over aging dependent pathways, cell survival during acute injury, 

metabolic homeostasis, and tumorigenesis. Given that the identity of circRNAs occurred 

approximately 37 years ago [2], we currently have only a small grasp of the role that 

circRNAs play in disease onset and aging. Further efforts are clearly warranted to fully 

elucidate the biology of these unique non-coding RNAs in the body.
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