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Abstract

The genome of the lactic acid bacterium Lactobacillus plantarum WCFS1 reveals the presence of a rich repertoire of
esterases and lipases highlighting their important role in cellular metabolism. Among them is the carboxylesterase LpEst1 a
bacterial enzyme related to the mammalian hormone-sensitive lipase, which is known to play a central role in energy
homeostasis. In this study, the crystal structure of LpEst1 has been determined at 2.05 Å resolution; it exhibits an ab-
hydrolase fold, consisting of a central b-sheet surrounded by a-helices, endowed with novel topological features. The
structure reveals a dimeric assembly not comparable with any other enzyme from the bacterial hormone-sensitive lipase
family, probably echoing the specific structural features of the participating subunits. Biophysical studies including
analytical gel filtration and ultracentrifugation support the dimeric nature of LpEst1. Structural and mutational analyses of
the substrate-binding pocket and active site together with biochemical studies provided insights for understanding the
substrate profile of LpEst1 and suggested for the first time the conserved Asp173, which is adjacent to the nucleophile, as a
key element in the stabilization of the loop where the oxyanion hole resides.
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Introduction

Hydrolases constitute a class of enzymes that catalyse the

hydrolysis of a wide variety of substrates, from peptides, amides or

halides in addition to esters and triglycerides, as well as non-

natural substrates. Although this assortment of substrates has

complicated their classification, de facto they have been typified

according to their known specificity. Esterases (EC 3.1.1), for

instance, were defined as enzymes that hydrolyse ester bonds.

Characteristically, they show specificity for either the alcohol or

the acid moiety of the substrate, but not for both. Carboxyles-

terases (EC 3.1.1.1), in particular, catalyses the hydrolysis of small

carboxylic acid ester-containing molecules at least partially soluble

in water, while lipases (EC 3.1.1.3) display maximal activity

against water-insoluble long-chain triglycerides [1]. Thus, al-

though catalytically similar, lipases and carboxylesterases must

deal with physicochemically distinct environments: whereas lipases

have to be capable of identifying an insoluble or heavily

aggregated substrate, i.e. a water-substrate interface [2,3],

carboxylesterase activity is maximal against monomeric substrates.

Within this latter group of carboxylesterases substrate specificities

vary widely, with some enzymes displaying highly specific activity

towards particular esters such as acetylcholinesterase [4], heroin

esterase [5] or Brefeldin A esterase [6], whereas others have

activity against a broad range of substrates [7]. This group of

enzymes is attractive for industry and in fact many carboxyles-

terases have been utilized in the synthesis of ester compounds in

non-aqueous solvents and also in stereospecific hydrolysis since

they combine a broad specificity range with a high stereoselectivity

[8–10].

The ESTHER database of lipases and esterases classifies these

enzymes into four blocks, C, H, L and X [11] according to their

amino acid sequence. Block H includes the hormone-sensitive

lipase (HSL) family, a group of lipases and carboxylesterases from

diverse biological sources which share sequence similarities with

mammalian HSL [12]. Apart from the characteristic GXSXG

motif around the active site serine, which is also found in serine

proteases [13], they contain a highly conserved sequence of

HGGG upstream the catalytic site.

From a structural viewpoint, the amino acid sequence data on

carboxylesterases indicate that they belong to the abhydrolase

superfamily of enzymes [14–16]. Members of this superfamily
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share a characteristic ab fold, which is based on an eight-stranded

mostly parallel bsheet surrounded on both sides by a-helices. This

structural framework supports a catalytic machinery based on a

catalytic triad made up of a nucleophile, usually serine, an acid

(Asp/Glu) and a histidine. The nucleophile is located within the

above mentioned conserved G-X-S-X-G motif in a sharp turn

between strand b5and helix a3called the nucleophile elbow, where

it can be approached by the substrate and by the hydrolytic water

molecule [16]. The specific structural arrangement of the active

site, particularly the geometry of the nucleophile elbow and the

connecting loop in which the HGGG motif is located, contribute

to the formation of the so-called oxyanion hole, usually formed by

two or three backbone nitrogen atoms, which is needed to stabilize

the negatively charged transition state [17].

Recently, crystal structures of several bacterial HSL enzymes

have been reported, including carboxylesterases PestE and AFEST

from the archaea Pyrobaculum calidifontis [18] and Archaeoglobus

fulgidus [19], respectively, carboxylesterases from environmental

samples EstE7 (PDB entry: 3k6k) EstE5 [20] and Est25 [21],

esterases EstE2 and Sto-Est from Alicyclobacillus acidocaldarius [22]

and Sulfolobus tokodaii [23], heroin esterase from Rhodococcus sp. [5],

Brefeldin A esterase (BFAE) from Bacillus subtilis [6] and

carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1

[24]. A notable source of structural variability of this group of ab
hydrolase enzymes emerges from the diverse quaternary structures

observed: from monomers like EstE5 [20] to octamers identified

within the crystals of AFEST [19]. These findings reveal the

remarkable versatility of the ab hydrolase fold in forming different

assemblies, namely the presence of pleomorphism within this

family of enzymes. An interesting example of this behaviour has

been recently shown for Cest-2923, which may exist as mono-

meric, dimeric and tetrameric species [24]. Although recent

reports have focused on the analysis of quaternary assemblies

within bacterial HSL enzymes [18,24], a systematic classification

remains to be done.

Here, we present the crystal structure of the carboxylesterase

LpEst1 from L. plantarum WCFS1 at 2.05 Å resolution. This

structure revealed that although LpEst1 belongs to the bacterial

HSL family of enzymes, as otherwise expected from its sequence, it

represents a novel topological variant due to the presence of large

and specific structural features that decorate a canonical abhy-

drolase core. Additionally, the esterase forms dimers in the crystal

and in solution through an association mode not observed yet in

any other abhydrolase enzyme. Finally, in silico analyses of putative

complexes revealed insights into the substrate specificity, which

agree with the biochemical characterization of the enzyme.

Results and Discussion

Structure determination of LpEst1
Crystals of recombinant, His-tagged LpEst1 were prepared as

previously described [25]. Analysis of the collected diffraction data

revealed that these crystals were perfectly twinned, belonging to

the tetragonal space group I4, although they exhibited apparent

point group symmetry 422 [25]. Unexpectedly, some of these

crystals, when manipulated, spontaneously broke up into two

parts, usually yielding two equal, untwinned crystals according to

intensity statistics. This phenomenon not only provided a

straightforward explanation for the identified perfect twinning

and the apparent 422 point group symmetry (Figure S1), but also

opened up the possibility to prepare untwinned crystals (or crystals

with a very low twin fraction) suitable for structural studies.

Optimized crystallization conditions found for His-tagged, seleno-

methionine (Se-Met) labelled LpEst1 were 1 M sodium malonate,

0.5% (v/v) Jeffamine ED-2001, 100 mM HEPES, pH 7.0, and

5 mM DTT (2 ml of protein 9 mg ml21 plus 2 ml of reservoir

solution). Despite the fact that both native and Se-Met labelled

protein variants crystallized in different conditions, crystals of Se-

Met LpEst1 were essentially identical to the native ones, which

allowed the collection of high quality, untwinned diffraction data

(Table 1) that has permitted the determination of the structure of

LpEst1 by anomalous diffraction methods. The initial atomic

model determined was then used as a molecular-replacement

search model to obtain phases for a higher resolution data set

(2.05 Å resolution). This high-resolution model contains four

independently refined complete protein molecules (337 amino

acids each) plus residues from the N-terminal TEV recognition

sequence (4 in chains A, B and D, and 2 in chain C). Also, a total

of 2196 water molecules, 2 malonate molecules and 5 glycerol

molecules were modelled. The final refined model has an Rwork of

12.2% and an Rfree of 14.2%. The average B factor of the

structure is 30.3 Å2. The analysis of Ramachandran plot showed

that most of the modelled residues were in preferred and allowed

regions (Table 1).

LpEst1 is a member of the bacterial HSL family
The globular structure of LpEst1 subunits has approximate

dimensions of 45 Å645 Å650 Å, and the overall secondary

structure is a mixture of b-sheets (20%) and a-helices (29%).

The protein belongs to the ab-hydrolase superfamily [14] and is

related to the bacterial hormone-sensitive lipase (HSL) family of

enzymes [12] as concluded from structural similarity searches with

DALI [26]. In this sense, multiple amino acid sequence alignment

with CLUSTALW (Figure 1) reveals the presence in LpEst1 of

the sequence motif HGGG(A) that is known to contribute to the

oxyanion hole [21]. As shown in Figure 1 this motif is localized

within a sequence stretch highly conserved in the bacterial HSL

enzymes, which encompasses part of strand b5 and the connecting

loop between this strand and helix a3. The homologs with the

highest structural similarity (Table 2) are hyperthermophilic

carboxylesterases, namely the carboxylesterases PestE and AFEST

from the archaea Pyrobaculum calidifontis [18] and Archaeoglobus

fulgidus [19], respectively, followed by the mesophilic carboxyles-

terases from environmental samples EstE7 (PDB entry: 3k6k) and

EstE5 [20], and the thermophilic esterases EstE2 and Sto-Est from

Alicyclobacillus acidocaldarius [22] and Sulfolobus tokodaii [23], respec-

tively. Additionally, high structural similarity is also found with

heroin esterase from Rhodococcus sp. [5] and Brefeldin A esterase

(BFAE) from Bacillus subtilis [6]. Despite a low level of average

sequence identity between LpEst1 and its homologs (,24%), the

3D structural similarity within this set of proteins is high (overall

rmsd 2.3 Å for ,280 Ca aligned atoms). This is mainly due to the

presence of a common core b-sheet surrounded by a-helices,

which defines the canonical ab-hydrolase fold, which in turn

typifies esterases with a Ser/Cys-His-Asp/Glu catalytic triad. On

the contrary, high structural variability is observed in the so-called

cap region situated over the active site on the carboxy-edge of the

core b-sheet (see below), specific for the bacterial HSL family of

enzymes.

Overall structure of LpEst1: a new variant of the ab
hydrolase fold

LpEst1 consists of 337 residues with a molecular weight of

,36.7 kDa (UniProtKB/Swiss-Prot code: Q88Y25). As a member

of the ab-hydrolase superfamily, the structure exhibits a three-

layered architecture, namely a central, almost parallel ten-

stranded b-sheet (two extra bstrands than the canonical fold)

surrounded by five helices, two in the concave side of the sheet (a3

Structure and Dimeric Assembly of Esterase LpEst1
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and a8) and three in the convex side (a4, a5 and a7) (Figure 2A).

The strand order for the core b-sheet is b3, b4, b6, b5, b7, b8, b9,

b10, b2 and b1 with b1 and b4 being antiparallel to the others.

The remarkable finding that this arrangement, where two N-

terminal strands associate to the C-terminal, outermost strand of

the core b-sheet, has not been observed yet in any other ab-

hydrolase enzyme confers a novelty to the molecular topology of

the bacterial HSL family (Figure 2B). The overall quality of the

2Fobs - Fcalc electron density map can be seen in Figure 2C.

Together with this b-sheet sandwiched by layers of helices,

members of the bacterial HSL family show an additional, mainly

helical cap domain [6,19,22]. The cap domain of LpEst1 is formed

by two sequence regions (residues 30–70 and 202–273), that group

together around the carboxy-edge of the central b-sheet. Here,

Table 1. Data-collection and refinement statistics.

Native LpEst1 SAD High resolution

PDB code 4c88 4c87 4c89

Beamline ID14-4 (ESRF) ID29 (ESRF) ID14-4 (ESRF)

Crystal parameters

Space group I4 I4 I4

Unit-cell parameters (Å)

a = b 168.34 169.28 168.79

c 184.20 184.75 184.57

Matthews coefficient (Å3 Da21) 4.39 4.44 4.41

Solvent content (%) 72.0 72.3 72.1

Data-collection statistics

Wavelength (Å) 0.94000 0.97915 0.97914

Resolution (Å) 53.68–2.65 47.77–2.65 53.82–2.05

(2.79–2.65)a (2.79–2.65) (2.16–2.05)

Total reflections 615388 1047518 1207617

Unique reflections 74256 (10842) 75273 (10961) 161172 (23522)

Rmerge 0.158 (0.508) 0.111 (0.588) 0.143 (0.702)

Mean I/s 12.1 (4.4) 25.8 (4.9) 10.1 (2.9)

Completeness (%) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)

Anom. completeness (%) - 100.0 (100.0) -

Redundancy 8.3 (8.3) 13.9 (13.1) 7.5 (7.5)

Anom. redundancy (%) - 7.0 (6.6) -

Refinement statistics

Protein molecules per ASU 4 4 4

Residues 1352 1356 1365

Waters 1712 823 2196

Glycerols - 17 5

Malonate - - 2

Total No. of atoms 12192 11502 12839

Rwork/Rfree (%) 13.71/17.49 14.91/18.25 12.2/14.2

Average B factors (Å2)

All atoms 27.5 23.8 30.3

Protein 25.4 22.9 27.0

Waters 40.3 29.7 45.9

Ligands - 66.6 54.1

R.m.s.d. from ideality

Bonds (Å) 0.006 0.007 0.006

Angles (u) 0.960 1.049 1.025

Ramachandran plot statistics

Preferred regions (%) 97.01 97.80 97.52

Allowed regions (%) 1.99 2.12 2.26

Outliers 0.00 0.07 0.22

aValues in parenthesis are for the outermost resolution shell.
doi:10.1371/journal.pone.0092257.t001
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Figure 1. Protein sequence alignment between LpEst1 and homologs from the hormone-sensitive lipase (HSL) family. PestE,
carboxylesterase PestE from Pyrobaculum calidifontis; AFEST, carboxylesterase AFEST from Archaeoglobus fulgidus; Sto-Est, thermophilic esterase Sto-
Est from Sulfolobus tokodaii; EstE7, esterase EstE7 from environmental samples; EstE5, esterase EstE5 from environmental samples; EstE2, thermophilic
esterases EstE2 from Alicyclobacillus acidocaldarius; HEst, heroin esterase from Rhodococcus sp.; BFAE, Brefeldin A esterase from Bacillus subtilis.
Residues from LpEst1 in Residues from LpEst1 in sterase fblue cylinders and orange arrows, respectively. Residues forming the catalytic triad are
marked with an asterisk. Colour code for boxes is as follows: red, conserved residues in all proteins; yellow, highly conserved positions; cyan, residues
that coincide with the expected canonical sequence motif characteristic of enzymes from the HSL family.
doi:10.1371/journal.pone.0092257.g001
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three a-helices (a1, a2, and a7) and irregular loops are identified.

Helix a7, situated between strands b8 and b9, is exceptionally long

when compared to the equivalent ones from the rest of the

bacterial HSL members (see below) and mainly interacts with the

extended a1–a2 connecting loop, which lies almost parallel along

its axis. This helix, together with helices a1 and a2, form the upper

walls of a funnel-like structure, which has the catalytic machinery

at its base, with a surface area of 683 Å2 as determined with the

CASTp server [27]. Conversely, the lower walls of this funnel are

contributed by the loops between strand b5 and helix a3 and

between helix a8 and strand b10. Among the residues facing the

funnel ,70% are hydrophobic, indicating the predominance of

hydrophobic interactions in this environment.

Structural comparisons of the cap regions of LpEst1 and its

bacterial HSL homologs reveal high structural variability

(Figure 3). Nonetheless, despite this variability three distinct

patterns can be easily identified, which are represented by LpEst1

(Figure 3A) BFAE (Figure 3B) and the rest of the HSL enzymes

(Figure 3C), respectively. This latter, predominant pattern reveals

that the main source of structural variability resides in the different

lengths and relative orientations of N-terminal helices (equivalent

to helices a1 and a2 from LpEst1) and the corresponding

connecting loop. In contrast, the C-terminal part of the cap

region of these enzymes (equivalent to residues 200–273 from

LpEst1) remains highly conserved (overall rmsd 1.73 Å), even in

BFAE whose the N-terminal part clearly departures from the

Table 2. Structural homologs of LpEst1 as revealed by DALI.

PDB ID Z score rmsd (Å) Identity (%) NALIa NRESb

PestE 2YH2 36.0 2.1 22 289 308

AFEST 1JJI 34.6 2.5 26 290 311

EstE7 3K6K 34.4 2.4 20 285 297

EstE5 3FAK 33.9 2.5 18 286 297

EstE2 1EVQ 33.3 2.4 25 288 308

Sto-Est 3AIK 32.4 2.2 23 269 283

Heroin esterase 1LZL 32.4 2.4 26 285 317

Brefeldin A esterase 1JKM 32.0 2.4 21 291 361

aNALI: number of aligned residues;
bNRES: total number of residues.
doi:10.1371/journal.pone.0092257.t002

Figure 2. Crystal structure of the LpEst1 subunit. (A) Ribbon representation of the LpEst1 subunit; two different views are depicted. Canonical
b-strands forming the core b-sheet are shown in yellow, whereas the two N-terminal, non-canonical ones are shown in orange. a-Helices are in blue,
except the first two previous to the first b-strand from the core b-sheet (b3), which are shown in green. (B) Topology diagram of the LpEst1 fold.
Colour code for the secondary structure elements are as in (A). The positions of the residues forming the catalytic triad Ser174, Asp283 and His313 are
indicated as S, D and H, respectively, and those forming the oxyanion hole, Gly107 and Ala108, are indicated as GA. (C) Representative 2Fobs – Fcalc

density map contoured at 1s.
doi:10.1371/journal.pone.0092257.g002
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predominant pattern due to the relative displacement of helix a2

and the much longer a1–a2 connecting loop. Conversely, the cap

region of LpEst1 differs from the main pattern both in the N- and

C-terminal parts due to the different relative orientation of helices

a1and a2 and the much longer helix a7 (22 residues versus an

average of 10 residues for the rest of the proteins).

Dimer arrangement
The four independent molecules of the LpEst1 asymmetric unit

are arranged in two identical dimers, consisting of the pairs A–C

and B–D. The independent molecules are almost perfectly

superimposable with an overall rmsd value of 0.42 Å as

determined with PDBeFOLD [28]. According to the analyses

with PISA [29] and PIC [30] servers, the subunits within each

dimer generate an interface area of 1130 Å2 and interact via 19

hydrogen bonds and 24 hydrophobic interactions. The contacting

interface is basically made up of amino acid side chains from the

long connecting loops between helix a6 and strandb9 and between

helix a5 and strandb8, and also from residues contributed by

helices a4and a5 from each subunit (Figure 4A). It is remarkable

that this region of association between LpEst1 subunits, and

therefore its association mode, is different from those observed for

the dimeric assemblies of the members of the HSL family, which

involves the antiparallel association of the C-terminal, outermost

bstrand from the core b-sheet (herein referred as to the canonical

strand b8) (Figures 4B and 4C), as well as interactions between

additional structural elements, as indicated below. Indeed, this is

the case for the LpEst1 homologs, which are all (at least) dimeric

species with the exception of the monomeric carboxylesterases

EstE2 [22] and EstE5 [20]. Dimers adopting the above described

general topological arrangement are herein defined as canonical

ones. A detailed structural analysis of these canonical dimers

reveals an underlying complexity, partially advanced before [18],

that points to the existence of at least two distinct subtypes of

dimers: subtype 1 canonical dimers, formed by PestE, AFEST, Sto-

Est, and Brefeldin A esterase, and subtype 2 canonical dimers,

formed by Est7 and heroin esterase. In subtype 1 dimers, together

with the antiparallel association of the canonical strands b8

(mainly through their C-terminal ends), a large dimerization

interface is made up of amino acid side chains contributed by the

C-terminal a-helix from each subunit. In particular, interactions

are primarily observed between the two participant C-terminal a-

helices (mainly between the central part and C-terminal end of

each helix) and also between the N-terminal end of these same a-

helices and the N-terminal end of the canonical strand b8 from the

other subunit (Figure 4B). Conversely, in subtype 2 canonical

dimers the main dimerization interface is formed by amino acid

side chains from the canonical strands b8 and the immediately

upstream a-helices. In this case, the interactions are mainly

established between equivalent structural elements from each

subunit, that is, between the C-terminal, canonical b-strands

themselves and the participant a-helices (Figure 4C). A

topological corollary that can be inferred from this structural

classification is that each dimer subtype is unambiguously defined

by the side of the subunits (with respect to the plane of the central

b-sheet) that participates in dimer formation together with the

antiparallel association of the strands b8. If these sides were

arbitrarily defined as cis and trans, respectively (being the cis side

the one in which the a-helix after the canonical strand b8 is

located), subtype 1 dimers can be defined as resulting from a cis-cis

subunit association, whereas subtype 2 dimers would result from

trans-trans subunit associations. It is notable that this structural

classification correlates with the fact that proteins belonging to the

subtype 1 of dimers form stable, higher order assemblies within the

crystals, with the dimers as basic building blocks, whereas proteins

from the subtype 2 do not. Thus, tetramers are observed in the

four subtype 1 proteins considered (the biological assembly of

Brefeldin A esterase has been assigned by the authors to be a

tetramer; see PDB entry 1jkm), and even octamers in the case of

AFEST. Structurally, the observed tetramers result from the

association of subunits through their trans sides (Figure S2). This

suggests that both cis and trans sides may be involved in dimer

formation but only trans sides would be involved in tetramer

formation. Of course, this does not necessarily exclude the

possibility of cis-cis tetramers but the current structural information

suggests that, should they exist, they are not abundant or

canonical.

The novelty of the association mode for LpEst1 subunits

observed within the crystal prompted us to characterize the

oligomeric state of LpEst1 in solution. Thus, as a first approach,

we estimated the molecular weight of the enzyme by chromato-

graphic and ultracentrifugation analyses (Figure 5). Results from

analytical gel filtration experiments revealed that LpEst1 behaves

in solution (20 mM Tris, pH 8.0, 0.1 M NaCl and 5 mM DTT) as

a unique species with an apparent molecular weight of 7863 kDa

(n = 3) (Figure 5A), which compares well with the value

theoretically expected for the dimer (77 kDa). Secondly, analytical

ultracentrifugation studies revealed that LpEst1 behaves in

solution as a single, homogeneous species with a sedimentation

coefficient of 4.5 S (sedimentation velocity experiments) whose

behaviour, as derived from sedimentation equilibrium experi-

ments, fitted well to an ideal model of a unique species with a

molecular mass of 77.264.2 kDa (n = 3) (Figure 5B). Therefore,

these studies support the dimeric character of LpEst1 in solution.

In silico and mutational analyses of the dimer interface
Once the dimeric nature of LpEst1 was demonstrated both in

the crystal and in solution, we further analysed the contacting

Figure 3. Three-dimensional comparisons of cap regions from bacterial HSL enzymes. (A) Superposition of the cap regions of LpEst1
(yellow) and PestE from P. calidifontis (green), which has been chosen arbitrarily as a representative model of the predominant pattern (see the text).
(B) Superposition of the cap region from BFAE (dark green) and that from PestE. (C) Superposition of cap regions from PestE (green), AFEST (cyan),
EstE2 (grey), EstE5 (light brown), EstE7 (magenta), heroin esterase (pale green) and Sto-Est from (blue). All structures are represented as ribbon models.
doi:10.1371/journal.pone.0092257.g003

Structure and Dimeric Assembly of Esterase LpEst1

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e92257



regions in terms of interaction energies for dimer formation of

both LpEst1 and, for comparison purposes, also of its canonical

homologs (Figure 6). Some important conclusions can be derived

from this analysis: first, LpEst1 displays a low dimer stabilization

energy relative to the rest of the dimeric proteins with most of this

stabilization originating from apolar contacts, together with some

highly directional hydrogen bonds; second, the carboxylesterases

PestE [18] and AFEST [19] exhibit the highest stabilization, in

agreement with their hyperthermophilic character, with the most

important contributions arising from coulombic interactions and

hydrogen bonds; third, a very high stabilization is observed for

Brefeldin A esterase and heroin esterase, despite their mesophilic

character; fourth, further stabilization is attained upon tetramer

formation of PestE, AFEST and Sto-Est, with the main driving

force for this association being hydrophobic interactions

(Figure 6). The high stabilization for Brefeldin A esterase is

probably explained by the fact that, in addition to the canonical

contacting interfaces of subtype 1 dimers, there are numerous

intersubunit contacts involving the large and protein-specific cap

region. The explanation for the high stability of heroin esterase

remains an open question.

Regarding the contacting region of LpEst1 subunits, energy

decomposition pinpointed six residues whose calculated contribu-

tions are larger than 26 kcal mol21: Leu81, Gln189, Leu190,

Asn253, Phe254 and Leu260. The fact that these residues are

distributed all along the contacting interface (Figure 7) suggests a

homogeneous stabilization in this region. Almost in the geomet-

rical centre of the interface, a bidentate hydrogen bonding

interaction is identified between the side-chain carboxamide

groups of Gln189 from each subunit. Taken these characteristics

into account, we raised the working hypothesis that incorporation

of a charged residue at this position might destabilize this

environment. With this aim, we have produced and purified the

Gln189Glu mutant. We observed that after purification (IMAC on

a His-Trap FF column plus size exclusion chromatography) the

protein resulted metastable in solution since it slowly aggregated if

maintained in 20 mM Tris–HCl, pH 8.0, 0.1 M NaCl, in contrast

to the wild-type protein, which remained stable. However, when

the last chromatographic step is developed under acidic conditions

in McIlvaine buffer pH 5.0 (Na2PO4, citric acid, pH 5.0) no

aggregation was observed for the mutant variant when stored at 4

uC for 2–3 days, which is dimeric as revealed by sedimentation

equilibrium experiments in these acidic conditions (Figure S3).

These results indicate the formation of metastable monomeric

species under neutral conditions, which eventually aggregate upon

the exposure of the hydrophobic interface to the bulk solvent.

However, dimer formation is observed under acidic conditions due

to the protonation of the Glu189 side chain. Moreover, in these

acidic conditions, the Gln189Glu mutant exhibits a hydrolytic

activity against p-nitrophenyl acetate almost equivalent to that of

the wild-type enzyme.

In summary, taken as a whole, these results demonstrate that

LpEst1 is a dimer despite the relative low overall interaction

energies calculated at the interface and further suggest, that the

apolar interactions are the main driving force for dimerization.

Active site and substrate binding pocket
The structural homology found with enzymes from the bacterial

HSL family permitted the straightforward identification of the

catalytic machinery of LpEst1 as a classical catalytic triad with

Ser174 as the nucleophile, His313 as the general base that

deprotonates the serine hydroxyl and Asp283 as the residue that

increases the pKa of the histidine imidazole ring. We validated this

result experimentally since the Ser174Ala, His313Ala and

Asp283Ala mutants displayed no catalytic activity in terms of

hydrolytic activity against p-nitrophenyl acetate. Significant

conformational changes affecting to the global fold of the proteins

Figure 4. Dimeric assembly of LpEst1 and classification of the dimers of the HSL family members. (A) Two orthogonal views of a dimer
of LpEst1. Each subunit is shown as ribbon model with different colour. (B) Subtype 1 of dimers (PDB entry: 3aik), characterized by a cis-cis association
of subunits. Cis is arbitrarily defined as the side of the protein with respect to the plane of the core b-sheet where the a-helix downstream the
canonical strand b8 is situated (see the text for details). (C) Subtype 2 of dimers (PDB entry: 1lzl), characterized by a trans-trans association of subunits.
Trans is arbitrarily defined as the side of the protein with respect to the plane of the core b-sheet where the a-helix upstream the canonical strand b8
is situated. The orientation of is this dimer is as in (B).
doi:10.1371/journal.pone.0092257.g004
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as a result of the included mutations could be discarded by far-UV

CD measurements (not shown).

The three catalytic residues are located at canonical positions

within the ab hydrolase fold [14–16], at the carboxy-edge of the

core b-sheet. The nucleophile Ser174 is found at the apex of the

so-called ‘‘nucleophilic elbow’’ between strand b7 and helix a5,

within the conserved sequence motif GX1SX2G (GDSAG), a

signature of the hydrolase family [14–16]. The constrained

conformation of the nucleophile peptide backbone (Q= 56u and

y= 2128u) facilitates the formation of the ‘‘oxyanion hole’’

responsible for the stabilization of the negatively charged

tetrahedral intermediates of the catalytic reaction [16]. Structural

comparisons with other bacterial HSL homologues suggest that

the oxyanion hole of LpEst1 would be formed by the backbone

nitrogen atoms of Gly107, Ala108 and Ala175 namely it would be

a tridentate structure similarly to those of heroin esterase [5],

esterase EstE1 [31] or carboxylesterase EstE2 from Alicyclobacillus

acidocaldarius [22]. Nonetheless, as will be shown below, the in silico

analysis of this region discarded any role for Ala175 in the

oxyanion hole.

A complex network of hydrogen bonds is identified in the active

site (Figure 8). Thus, the Ocatom of Ser174 establishes a

hydrogen bond (2.8 Å distance) with the Ne2 atom of the

imidazole ring of His313, situated in the 13-residue loop between

strand b10 and helix a9. In turn, the Nd1 atom of this latter

residue is at hydrogen bond distance to Od1 (3.1 Å) and Od2

(2.8 Å) atoms of Asp283, this residue being further stabilized by a

2.6 Å hydrogen bond with a water molecule, prototypical for the

members of the HSL family [12]. This solvent molecule also forms

hydrogen bonds to the carbonyl oxygen of Asn312 (2.8 Å) and the

amide nitrogen of Gly280 (2.7 Å).

The detailed structural characterization of the LpEst1 active site

permitted us to carry out docking experiments with the substrates

phenyl acetate, triacetin and tributyrin (see below Biochemical

characterization) (Figure 9). The best poses obtained from the

automated docking protocol were consistent with the expected

orientation of an ester-containing substrate in an esterase active

site: the carbonyl moiety of the ester group is located near the

catalytic hydroxyl group from Ser174 and is basically stabilized by

two hydrogen bonds from the NH groups of Gly107 and Ala108,

which would then form the oxyanion hole. This result rules out the

backbone nitrogen atom of Ala175 as a participant in the

oxyanion hole, which would thus be bidentate [16]. In addition,

these three enzyme:substrate complexes reveal that the acid

moiety of the substrates is inserted into a small, hydrophobic

subpocket (S1) lined by Met245, Phe285, Leu241 and Val204, and

the alcohol part would lie in a open and large subpocket (S2).

Apparently, this particular architecture of the substrate binding-

pocket in two distinct subpockets points to the hydrolytic activity of

LpEst1 being directed against esters with small acid moieties but

larger alcohol moieties. The analysis of substrate specificity

correlates well with this prediction (see below).

Figure 5. Analysis of the oligomeric state of LpEst1 in solution.
(A) Analytical gel-filtration of LpEst1 on Superdex 200 10/300 GL Tricorn
column. The elution profile of LpEst1 is shown together with the elution
positions for some standard proteins (molecular mass in kDa). Inset,
semilog plot of the molecular mass of all standards used versus their Kav

values (open circles). The closed circle indicates the position of the Kav

value of LpEst1 interpolated in the regression line (solid line) (B)
Analytical ultracentrifugation analysis of LpEst1. Sedimentation equilib-
rium analysis of LpEst1 (10 mM) in Tris buffer (20 mM Tris-HCl, pH 8.0,
and 0.1 M NaCl) at 9,000 rpm (open squares) and 13,000 (open circles).
Absorbance at 280 nm is plotted against the radial position from the
center of the rotor. The fit to the data set (solid line curves) corresponds
to an ideal species with a molecular mass of 77.264.2 kDa (n = 3).
Residuals from this fit are shown in the panel at the bottom.
Calculations were done with the program Heteroanalysis [47]. Inset,
sedimentation coefficient c(s) distributions for LpEst1 (10 mM) in Tris
buffer (20 mM Tris-HCl, pH 8.0 with 0.1 M NaCl). Raw sedimentation
velocity profiles for this analysis were acquired using absorbance at
280 nm, 45,000 rpm, 20 uC, and different times (not shown).
Calculations were done with the program Sedfit [46].
doi:10.1371/journal.pone.0092257.g005

Figure 6. Intersubunit binding energy decomposition for dimer
and tetramer formation. Colour code is as follows: black, electro-
static term; orange, van der Waals term; blue, hydrogen bond term;
yellow, total contribution, including desolvation energies (not shown).
doi:10.1371/journal.pone.0092257.g006
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A notable feature of the surroundings of the nucleophile Ser174

is the presence of the acidic residue Asp173. This is unexpected

considering the hydrophobic character of the side chains that

make up the binding pocket in LpEst1. Remarkably, all its

structural homologs also have an equivalent acidic residue except

for heroin esterase (Figure 1). In LpEst1, Asp173 participates in a

network of polar interactions, some of them mediated by water

molecules, and this makes the carboxylate moiety to be highly

oriented towards the loop making up the oxyanion hole

(Figure 10). Thus, the oxygen atom Od1 is at hydrogen bonding

distance to the amide nitrogen of Gly106 (3.2 Å), the hydroxyl

group of Tyr103 (2.7 Å) and a highly ordered water molecule

(3.0 Å). Interestingly, the interaction between Asp173 and Tyr103

is conserved in all HSL proteins considered herein (with the

exception, again, of heroin esterase). Conversely, the oxygen atom

Od2 is at hydrogen bonding distance from the same amide

nitrogen of Gly106 (3.1 Å) and a solvent water molecule (3.0 Å),

which in turn interacts with the hydroxyl group of Tyr202 (2.7 Å).

The orientation towards the loop making up the oxyanion hole

and the well-ordered character of the Asp173 side chain suggest

that this residue may play an important structural role in LpEst1,

and presumably in this group of enzymes, particularly in the

stabilization of the proper conformation of the oxyanion hole. In

agreement with this hypothesis, the replacement of this residue by

Ala (Asp173Ala) resulted in a folded (Figure S4) but fully inactive

protein variant unable to hydrolyze p-nitrophenyl acetate. It is

obvious that the possibility that Asp173 plays a direct functional

role cannot be discarded since its acidic character should

contribute significantly to the negative electrostatic potential

around the active site, a feature displayed by lipases and esterases

in the pH range associated with their maximum activity [2]. This

aspect is currently under investigation.

Biochemical characterization
We have examined some important enzymatic properties of

LpEst1 (Figure 11). The optimum pH for hydrolytic activity

against p-nitrophenyl acetate is 6.5 (Figure 11A), which is a value

typically observed for esterases, in contrast to the higher pH values

(,8.0) displayed by lipases [2]. Regarding to temperature, the

protein presented highest activity at ,30 uC, although at 37 uC
exhibited a high level of activity (,50%) (Figure 11B). These

values for optimum pH and temperature are commonly found in

other esterases from Lactobacilli [32–34]. On the other hand,

temperature stability measurements show a drastic reduction in

LpEst1 hydrolytic activity upon incubation of the esterase at 37 uC
(Figure 11C).

Figure 7. Distribution of the energetically relevant residues within the LpEst1 contacting interface. These residues are basically
hydrophobic in agreement with the relevance of this type of interactions in the stabilization of the dimer. The bidentate hydrogen bonding
interaction between the side-chain carboxamide groups of Gln189 (close up view) is situated at the core of the interface. The 2Fobs – Fcalc density map
is contoured at 1s.
doi:10.1371/journal.pone.0092257.g007

Figure 8. Stereoview of the network of interactions present around the catalytic triad of LpEst1. Residues forming the catalytic triad
(Ser174, His313 and Asp283) and those coordinating a well-ordered water molecule that is also identified in the HSL family members (blue sphere) are
shown as sticks. The 2Fobs – Fcalc density map is contoured at 1s (green: amino acid side chains; blue: water molecule) Distances are in Å.
doi:10.1371/journal.pone.0092257.g008
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The acyl-length selectivity against p-nitrophenyl ester substrates

follows this order: C2.C4.C8.C12.C14, indicating a prefer-

ence for short acyl-length esters (Figure 11D). The kinetic

parameters for C2 and C4 substrates were determined spectro-

photometrically. In both cases, LpEst1 exhibited a hyperbolic

Michaelis-Menten kinetics (not shown). The kinetic parameters are

shown in Table 3. From the values of these parameters it can be

deduced that the catalytic efficiency (kcat/Km) for pNPA hydrolysis

is around 8-fold the one observed for pNPB hydrolysis.

Conversely, the study of the substrate profile has been qualitatively

analysed with the use of a library of esters as described previously

[35]. This study reveals maximum hydrolysis against phenyl

Figure 9. Stereoviews of three putative LpEst1:substrate complexes resulting from docking studies with CRDOCK. The three
complexes correspond to phenyl acetate (a), triacetin (b) and tributyrin (c). In all cases, interactions are observed between the nucleophile (Ser174)
and also reveal the stabilizing effect of the oxyanion hole formed by the backbone nitrogen atoms of Gly107 and Ala108. Residues are shown as stick
models. Distances are in Å.
doi:10.1371/journal.pone.0092257.g009
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acetate, and significant activity against triacetin, tributyrin and

isopropenyl acetate (Figure S5). Apparently, this activity profile

for LpEst1 basically suggests a preference for a small acid moiety

of the substrate, e.g. acetate or butyrate, in good agreement with

the close configuration of subpocket S1. Conversely, the absence of

hydrolytic activity against other esters such as ethyl acetate, vinyl

acetate and propyl acetate, for instance, clearly indicates an

important influence on hydrolytic activity of the alcohol moiety of

the ester. In this regard, the combination of the relaxed, open

conformation of subpocket S2 with the absence of hydrolytic

activity against esters with small alcohol moieties point to a

threshold in the size (or length) of this part of the substrate that

would be necessary to accomplish for the formation of a

productive enzyme:substrate complex. Hence, as a whole, these

two aspects, namely narrow substrate profile and recognition of

both the acid and alcohol moieties of the substrate, would qualify

Figure 10. Stereoview of the environment around the residue Asp173. The side chain of the Asp173 residue is highly oriented towards the
loop where the oxyanion hole resides probably contributing to its stabilization. The network of hydrogen bonds is shown as dashed lines.
Participating residues are shown as sticks and water molecules as blue spheres. Distances are in Å.
doi:10.1371/journal.pone.0092257.g010

Figure 11. Biochemical characterization of LpEst1. (A) Dependence on pH of hydrolytic activity of LpEst1 against pNPA. (B) Dependence on
temperature of hydrolytic activity of LpEst1 against pNPA. The optimum temperature for esterase activity was ,30 uC. (C) Analysis of the temperature
stability of LpEst1. The enzyme was incubated in 50 mM sodium phosphate buffer pH 7.0 at 22 uC (closed triangles), 30 uC (open triangles), 37 uC
(closed circles), 45 uC (open circles) and 55 uC (closed squares) for 15 min, 30 min, and 1, 2, 4, 6 and 20 h. The values correspond to the mean of three
independent experiments. (D) Dependence of the esterase activity of LpEst1 on the chain length of p-nitrophenyl (p-NP): p-NP acetate (C2), p-NP
butyrate (C4); p-NP caprylate (C8); p-NP laureate (C12); and p-NP myristate (C14).
doi:10.1371/journal.pone.0092257.g011
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LpEst1 as a specific esterase, probably reflecting a distinct

biological role of the enzyme, which in turn can be linked to its

unique structural peculiarities.

Materials and Methods

DNA manipulations
The expression vector pURI3-TEV-LpEst1 coding for the wild-

type esterase LpEst1 from L. plantarum was used as template for the

preparation of single point mutants affecting to the catalytic

residues, Asp173 and Gln189 residues, essentially as previously

described [25,36]: Ser174Ala, Asp283Ala and His313Ala, As-

p173Ala and Gln189Glu. The mutagenic primers used (forward

and reverse, respectively) were: (59-CGTTGCTGGCGATGC-

GGCTGGCGC-39) and (59-GCGCCAGCCGCATCGCCAG-

CAACG-39) for the Ser174Ala mutant, (59-GGCGAGTTTGC-

TCCCTTCCG-39) and (59-CGGAAGGGAGCAAACTCGCC-

39) for the Asp283Ala mutant, (59-GCTTGAACGCCGCTT-

TCGCACC-39) and (59-GGTGCGAAAGCGGCGTTCAAGC-

39) for the His313Ala mutant, (59-GATTACCGTTGCTGGC-

GCTTCGGCTGGCGC-39) and (59-GCGCCAGCCGAAGCG-

CCAGCAACGGTAATC-39) for the Asp173Ala mutant, and (59-

GCAACAAATCTGAATCAAGAACTCGGTAGC-39) and (59-

GCTACCGAGTTCTTGAT TCAGATTTGTTGC-39) for the

Gln189Glu mutant. Production and purification of the proteins

were as previously described [25].

Overexpression and protein production
Expression and purification of Se-Met labelled LpEst1 esterase

was done essentially as described for the native protein [25], using

a minimum medium containing selenomethionine and buffers

supplemented with 5 mM DTT. Final production yield was 6 mg

per litre of culture. Incorporation of Se-Met was checked by mass

spectrometry on a Finnigan LCQ Deca ion trap Mass Spectrom-

eter (Thermo Electron, San José, CA, USA).

Crystallization and data collection
Diffracting, perfectly twinned crystals of native LpEst1 esterase

were prepared as previously described [25]. For data collection,

20% (v/v) glycerol was added to the crystallizing precipitant as a

cryoprotectant and the crystals were flash-cooled in a 100 K

nitrogen gas stream. Unexpectedly, untwinned crystals could be

prepared by mechanically manipulating the first ones (see below

for details). A diffraction data set was collected on ID14-4

beamline at the ESRF (Grenoble, France) using a wavelength of

0.9400 Å. An ADSC Quantum Q315r CCD detector was used

with a crystal-to-detector distance of 304.72 mm, and a total of

200 images were collected with a 1u oscillation angle. The

diffraction data were processed with iMOSFLM [37]. These

untwinned crystals belong to the tetragonal space group I4 and

have unit cell parameters a = b = 168.34 Å, c = 184.20 Å

(Table 1). Conversely, optimized crystals of the Se-Met labelled

esterase were prepared in a condition consisting of 1 M sodium

malonate, 0.5% (v/v) Jeffamine ED-2001, 100 mM HEPES,

pH 7.0, and 5 mM DTT (2 ml of protein 9 mg ml21 plus 1 ml

of reservoir solution). Similarly to the above crystals prepared with

unlabelled protein, these new crystals were perfectly twinned, and

their manipulation also permitted the production of untwinned

crystals (or twinned crystals with a low twin fraction). The SAD

data set was collected on beamline ID29 at the ESRF (Grenoble,

France) using a wavelength of 0.97915 Å. The detector was a

Pilatus 6 M. A total of 3600 images were collected with a 0.1u
oscillation angle and a crystal-to-detector distance of 388.02 mm.

The diffraction data were processed with the XDS [38] program

package. The crystal belonged to the tetragonal space group I4,

with unit cell parameters a = b = 169.28 Å, c = 184.75 Å

(Table 1). Interestingly, these latter crystals on average diffracted

at higher resolution than those prepared with unlabelled protein.

Hence, the high-resolution data set was collected with one of these

crystals. This data set was collected on beamline ID14-4 at the

ESRF using a wavelength of 0.97914 Å and an ADSC Quantum

Q315r CCD detector. The crystal-to-detector distance was

279.47 mm, and a total of 360 images were collected with a

0.5u oscillation angle. The diffraction data set was processed with

iMOSFLM [37]. In all cases, space group examination was done

with POINTLESS [39] and intensity scaling and reduction with

SCALA [39] from the CCP4 suite of programs [40]. Analysis of data

quality and merohedral twinning was done with both TRUNCATE

[41] and phenix.xtriage [42].

SAD phasing and structure solution
The structure of LpEst1 esterase was determined by single-

wavelength anomalous diffraction (SAD) at the optimal peak

wavelength. SAD phasing and model-building was carried out

with AutoSol and AutoBuild from PHENIX [42], respectively. AutoSol

could determine the complete Se substructure and an initial

electron density map could be calculated. The model automati-

cally built was made up of 1337 residues in 7 fragments. The

remaining model was built manually using Coot [43] and the

refinement was performed with phenix.refine [44]. The data-

collection and refinement statistics are summarized in Table 1.

The atomic coordinates and structure factors for LpEst1 have

been deposited in the Protein Data Bank (PDB entry 4c87).

Structure determination and refinement of the high-
resolution data set

Phases for the native and the high-resolution data set were

obtained by molecular replacement using the program Phaser [45].

The atomic coordinates of the SAD structure were used as a

search model. As above, the model was built manually using Coot

[40] and the refinement was performed with phenix.refine [44].

Refinement steps included xyz refinement, TLS, individual atomic

displacement parameters (ADPs), addition of ligands, and auto-

matic addition of water molecules using default parameters. The

complete data-collection and refinement statistics are shown in

Table 1. Since a low fraction of twinning was detected in the high-

Table 3. Kinetic parameters for pNPA and pNPB hydrolysis by LpEst1.

Substrate Vmax (mmol min21 mg21) Km (mM) kcat (s21) kcat/Vmax (s21 mM21)

pNPA 7564 0.3860.05 40.462.0 106612

pNPB 861 0.260.1 4.460.3 14.763.3

Enzyme activities were determined at 30 uC in 50 mM sodium phosphate buffer, pH 7.0. Results are the mean value 6 SD from three independent experiments.
doi:10.1371/journal.pone.0092257.t003
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resolution data set (0.17 Britton analysis or H-test; 0.161

maximum likelihood method), the final refinement was carried

out by applying the suggested twin law (-h, k, -l). Validation of the

model was carried out using MolProbity [46]. The atomic

coordinates and structure factors have been deposited in the

Protein Data Bank (PDB entries 4c88 and 4c89 for native and

high-resolution Se-Met labelled LpEst1, respectively).

Figure preparation
Model representation was done with PyMOL [47].

Analytical chromatography
Analytical size-exclusion chromatography was performed on a

Superdex 200 10/300 GL Tricorn column (GE Healthcare)

equilibrated in 20 mM Tris–HCl, pH 8.0, 0.1 M NaCl, 5 mM

DTT and 0.04% (w/v) sodium azide. The column was calibrated

with apoferritin (443 kDa), b-amylase (200 kDa), alcohol deshy-

drogenase (150 kDa), bovine serum albumin (66 kDa), ovalbumin

(45 kDa), carbonic anhydrase (29 kDa), sperm whale myoglobin

(17 kDa) and vitamin B12 (1.3 kDa) in the same buffer. The size of

LpEst1 was determined from its Kav value (Kav = (Ve2V0)/

(VT2V0); Ve: elution volume; V0: void volume; VT: total volume

of the column) by interpolation in a calibration semilog plot of the

molecular mass of the standard proteins versus their Kav values.

Analytical ultracentrifugation
Equilibrium and velocity ultracentrifugation experiments were

performed using a Beckman XL-A ultracentrifuge with an An-

50Ti rotor and standard double sector centrepiece cells. Solvent

density (1.002 mg ml21) and the partial specific volume of LpEst1

(0.719) were calculated from the buffer composition (100 mM

NaCl and 20 mM Tris) and from the predicted amino acid

composition, respectively, with SEDNTERP [48]. Data from

sedimentation velocity and equilibrium experiments were analysed

with the programs Sedfit [49] and Heteroanalysis [50], respec-

tively.

Circular dichroism spectroscopy
Far-UV circular dichroism (CD) measurements were carried out

on a Jasco J-715 spectropolarimeter equipped with a thermostated

cell holder and a Peltier temperature control accessory. The

instrument was calibrated with (+)-10-camphorsulfonic acid. CD

spectra were recorded in 0.1 cm path length quartz cells cuvettes

from 250 to 200 nm at 25 uC, using a protein concentration of

5.5 mM (1 nm bandwidth, 4 s response, and 20 nm/min scan

speed). Each spectrum herein presented is the average accumu-

lation of four scans. Baseline subtraction was performed in all

cases. Results are expressed as mean residue ellipticity [h]MRW, in

units of degree cm2 dmol21 of amino acid (Mr = 110 for this

protein). Thermal transitions were also analyzed by CD spectros-

copy by monitoring the variation of the ellipticity at 222 nm as the

temperature was increased from 20 to 90 uC at 50 uC/h. The

normalized ellipticity value at each temperature was calculated as

([h]T2[h]25)/([h]902[h]25), where [h]T is the ellipticity value at

temperature T, and [h]25 and [h]90 are the ellipticity values at 25

uC and 90 uC, respectively. Three different samples were analysed,

although the traces shown correspond to individual samples.

Enzyme assays and biochemical characterization of
LpEst1

Esterase activity was examined spectrophotometrically using p-

nitrophenyl acetate as substrate. The rate of hydrolysis of pNP-

acetate for 10 min at 30uC was measured in 50 mM sodium

phosphate buffer pH 7.0 at 348 nm in a spectrophotometer

(UVmini-1240 Shimadzu). The amount of protein used was 10 mg.

The reaction was stopped by chilling on ice. Controls without

enzyme were utilized to account for any spontaneous hydrolysis.

One unit of esterase activity was defined as the amount of enzyme

required to release 1 mmol of p-nitrophenol per minute under the

previously described conditions.

Substrate specificity of LpEst1 was examined using different p-

nitrophenyl (p-NP) esters of various chain lengths (C2, C4, C8,

C12, C14 and C16) and substrate profile was analysed with a

library of esters similar to the one reported previously [35]. The

esters were chosen to identify acyl chain length preferences of

LpEst1 and also its ability to hydrolyse hindered or charged

substrates. Simple alkyl esters as well as activated esters (vinyl and

phenyl esters, esters with electron-withdrawing substituents in the

acyl portion) were included to test whether activated esters would

react faster. The screening was performed in a 96-well plate Flat

Bottom (Sarstedt) with a final reaction volume of 200 ml per well,

each one containing 1 mM substrate in acetonitrile (1% v/v). The

buffer/indicator solution contained 0.44 mM of p-nitrophenol as

pH indicator in 1 mM sodium phosphate buffer pH 7.2. Esterase

(20 ml of a 0.5 mg ml21 solution in 1 mM sodium phosphate

buffer pH 7.2) was added to each well and reactions were followed

by measuring the decrease in absorbance at 410 nm for 2 h at

30uC in a Synergy HT BioTek microplate spectrophotometer.

The incubation time was selected as to maximize the signal-to-

noise ratio of the absorbance readings. Controls without enzyme

carried out for each substrate indicated that compounds were

stable within the time scale of the experiments. Data were

collected in triplicate and the average activities were quantified.

Results are shown as means 6 standard deviations.

In order to investigate temperature effect, reactions were

performed in 50 mM sodium phosphate buffer (pH 7.0) at 4, 20,

30, 37, 40, 45, 55 and 65 uC. Effect of pH was investigated by

assaying esterase activity in a range of pH values from 5.5 to 9.0 at

30 uC. Buffers used were acetic acid-sodium acetate buffer for

pH 5.5, sodium phosphate buffer for pH 6–7, Tris-HCl buffer for

pH 8 and glycine-NaOH buffer for pH 9. A 100 mM concentra-

tion was used in all the buffers.

For temperature stability measurements, the recombinant

esterase was incubated in 50 mM sodium phosphate buffer

pH 7.0 at 20, 30, 37, 45, 55 and 65 uC for 15 min, 30 min, and

1, 2, 3, 4, 6 and 20 h. After incubation, the residual activity was

measured as described above.

Computational methods
The pdb2pqr.py tool [51] was used to estimate the most probable

protonation states of titratable residues in the protein at a pH of

7.0 and to add all the missing hydrogen atoms. Hydrogens

belonging to the catalytic triad (Ser174, His313 and Asp283) were

manually reoriented in accordance with the known catalytic

mechanism of the enzyme.

Affinity potentials [52] within the active site for methyl (sp3 C),

hydroxyl (H-bond acceptor/donor sp3 O), carbonyl oxygen (H-

bond acceptor sp2 O), positively charged amino (H-bond donor

sp3 N) and hydrophobic (sp3 C minus a H-bonding term) probes

were calculated with our in-house program cGRILL using a grid

spacing of 0.5 Å. Substrates phenyl acetate, triacetin and

tributyrin were built and assigned point charges and parameters

from the Merck molecular force field 94 using the openbabel tool.

Energetically favoured binding poses for these substrates within

the active site were found by using our in-house CRDOCK tool

[53]. Briefly, for each substrate a conformational search was

performed and exhaustive sampling was achieved using the
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AMBER force field for intermolecular energy evaluation and the

BFGS algorithm for pose optimization. The final binding modes

selected were awarded the best score according to the CRScore

function.

The nature of the interactions and the residues involved in

dimerization of LpEst1 and its bacterial HSL homologs were

analyzed by means of the MM-ISMSA method [54], which includes

the non-bonding term of the AMBER99sb force field [55] and a

desolvation term as calculated by the Implicit Solvation Method

(ISM) [56]. The per-residue energy decomposition performed by

this tool also allowed us to identify those amino acids that contribute

to the overall stabilization of the dimer. For adaptation to the

AMBER99sb force field, all proteins were first protonated at

pH = 7.0 using PDB2PQR, parameterized and geometry optimized

by following a simple protocol of 500 steps of steepest-descent and

4500 conjugate-gradient energy minimization with SANDER [57].

Supporting Information

Figure S1 Crystals of Se-Met labelled LpEst1. (A)

Crystallization drop containing both spindle-shaped crystals of

Se-Met labelled LpEst1, which corresponded to perfectly twinned

crystals with apparent point group 422 (apparent space group

I422) and ‘‘half’’ crystals resulting from the manipulation of the

latter, which belonged to the tetragonal I4 space group and did not

exhibit merohedral twinning. Bar length corresponds to 0.2 mm.

(B) Diagram explaining the perfect twinning present in the spindle-

shaped crystals of LpEst1 as resulting from the geometrically well

defined combination of two opposed, untwinned crystals.

(TIF)

Figure S2 Tetramers formed by canonical subtype 1
dimers of enzymes from the hormone-sensitive lipases
family. (A) tetramer of the thermophilic esterase St-Est from

Alicyclobacillus acidocaldarius (PDB entry, 3aik). B, tetramer of the

hyperthermophilic carboxylesterase PestE from the archaea

Pyrobaculum calidifontis (PDB entry, 2yh2). The dimers at the

bottom are oriented as in Fig. 3 and are shown as ribbon models,

whereas the upper dimers are shown as surface plus ribbon models.

(TIF)

Figure S3 Analytical ultracentrifugation studies of
LpEst1 Gln189Glu mutant. Sedimentation equilibrium anal-

ysis of LpEst1 (10 mM) in McIlvaine buffer pH 5.0 (Na2PO4, citric

acid, pH 5.0) at 12,000 rpm (open squares) and 18,000 (open circles).

Absorbance at 280 nm is plotted against the radial position from

the center of the rotor. The fit to the data set (solid line curves)

corresponds to an ideal species with a molecular mass of

77.462.2 kDa (n = 3). Residuals from this fit are shown in the

panel at the bottom. Calculations were done with the program

Heteroanalysis [47].

(TIF)

Figure S4 Circular dichroism analysis of wild-type and
LpEst1 Asp173Ala mutant. (A) Far-UV CD spectra of wild-

type LpEst1 (open circles) and Asp173Ala mutant (open triangles).

Spectra were recorded in 20 mM Tris-HCl, pH 8.0, and 0.1 M

NaCl. Protein concentration was 0.2 mg/ml. (B) Heat denatur-

ation curves for LpEst1 in the same experimental conditions as in

(A) (see Materials and Methods for further details).

(TIF)

Figure S5 Analysis of the substrate specificity of
LpEst1. Activity values are normalized to the maximum value,

which is observed for triacetin. Right, list of substrates used in the

ester library.

(TIF)
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Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase

from Lactobacillus plantarum. Acta Crystallog F67: 1436–1439.
26. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic

Acids Res 38: W545–W549.
27. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, et al. (2006) CASTp:

computed atlas of surface topography of proteins with structural and
topographical mapping of functionally residues. Nucleic Acids Res. 34: W116–

W118.

28. Krissinel E, Henrick K (2004) Secondary-structure matching (PDBeFOLD), a
new tool for fast protein structure alignment in three dimensions. Acta Cryst.

D60: 2256–2268.
29. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from

crystalline state. J Mol Biol 372: 774–797.

30. Tina KG, Bhadra R, Srinivasan N (2007) PIC, Protein Interactions Calculator.
Nucleic Acids Res 35: W473–W476.

31. Byun JS, Rhee JK, Kim ND, Yoon JH, Kim DU, et al. (2007) Crystal structure
of hyperthermophilic esterase EstE1 and thermostability properties. BMC Struct

Biol 7: 47–57.
32. Gobbeti M, Fox PF, Smacchi E, Stepaniak L, Damiani P (1996) Purification and

characterization of a lipase from Lactobacillus plantarum 2739. J Food Biochem 20:

227–246.
33. Gobbeti M, Fox PF, Smacchi E, Stepaniak L (1997) Isolation and

characterization of a tributyrin esterase from Lactobacillus plantarum 2739.
J Dairy Sci 80: 3099–3106.

34. Fenster KM, Perkin KL, Steele JL (2003) Intracellular esterase from Lactobacillus

casei LILA: nucleotide sequencing, purification and characterization. J Dairy Sci
86: 1118–1129.

35. Liu AMF, Somers NA, Kazlauskas RJ, Brush TS, Zocher TS, et al. (2001)
Mapping the substrate selectivity of new hydrolases using colorimetric screening:

lipases from Bacillus thermocatenolatus and Ophiostoma piliferum, esterases from
Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron Asym 12:

545–556.

36. De las Rivas B, Curiel JA, Mancheño JM, Muñoz R (2007) Expression vectors
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