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Abstract

The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has
been shown to be important for the parasite’s ability to infect the host’s liver, but its role during parasite growth inside
erythrocytes, the stage responsible for symptomatic malaria, is less clear. The P. falciparum genome encodes two adenylyl
cyclases, the enzymes that synthesize cAMP, PfACa and PfACb. We now show that one of these, PfACb, plays an important
role during the erythrocytic stage of the P. falciparum life cycle. Biochemical characterization of PfACb revealed a marked pH
dependence, and sensitivity to a number of small molecule inhibitors. These inhibitors kill parasites growing inside red
blood cells. One particular inhibitor is selective for PfACb relative to its human ortholog, soluble adenylyl cyclase (sAC); thus,
PfACb represents a potential target for development of safe and effective antimalarial therapeutics.
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Introduction

Malaria remains a major burden in the developing world,

causing approximately 1 million deaths per year. It is a vector-

borne disease caused by protozoan parasites of the genus

Plasmodium, the most lethal of which is Plasmodium falciparum. A

diverse array of protozoal, fungal, and bacterial pathogens,

including Plasmodium spp., depend upon the ubiquitous second

messenger cyclic adenosine monophosphate (cAMP) for survival

and environmental sensing [1]. In fact, two stages of the

Plasmodium life cycle appear to depend upon cAMP: Sporozoites

require cAMP generation for host cell invasion [2], and previous

reports suggest that cAMP effectors play an important role in the

asexual red blood cell stage of the life cycle. Specifically, inhibition

of cAMP-catabolizing phosphodiesterases (PDEs) or addition of

membrane-permeable cAMP analogs increase the percentage of

schizonts in asynchronous, erythrocytic cultures of P. falciparum [3],

and treatment of erythrocytic stage cultures with either pharma-

cological or genetic inhibitors of the main effector of cAMP,

Protein Kinase A (PKA), inhibit growth [4,5]. While these data

reveal that the cAMP pathway is required for progression through

the erythrocytic, asexual stage of the life cycle, the stage of the life

cycle that causes symptomatic malaria, it remains unclear how

cAMP levels are controlled during this period.

cAMP is synthesized by adenylyl cyclases (AC), and the P.

falciparum genome encodes two such enzymes, PfACa and PfACb.

Both enzymes contain class IIIB catalytic domains similar to

mammalian soluble adenylyl cyclase (sAC) [6]. Mammalian sAC is

structurally, molecularly, and biochemically distinct from other

mammalian adenylyl cyclases, which are transmembrane proteins

regulated by heterotrimeric G proteins (tmACs). Unlike tmACs,

mammalian sAC is directly regulated by bicarbonate. In

physiological systems, bicarbonate is in nearly instantaneous

equilibrium with CO2 and intracellular pH (pHi) due to the

action of carbonic anhydrases [7]; thus, mammalian sAC serves as

a physiological CO2/HCO3
2/pHi sensor [8,9], with specific roles

in sperm activation [10,11], ciliary beat frequency in bronchii

[12], pH homeostasis in epididymis [13], kidney [14,15], and

shark gill [16], metabolism [17], and aqueous humor formation in

the eye [18].

PfACa and PfACb differ in their modular architecture. PfACa.
contains six predicted transmembrane domains and a single

carboxy-terminal catalytic domain homologous to sAC-like ACs.

The motifs required for metal cofactor binding, substrate binding,

and catalysis are contained within this single catalytic domain,

suggesting that this enzyme functions as a homodimer [19]. In

contrast, PfACb has no predicted transmembrane regions and

possesses two sAC-like AC catalytic domains. PfACb and ACb
orthologs from other Plasmodium spp. possess all the motifs required

for catalytic activity, but they are spread across the two

presumptive catalytic domains suggesting that catalysis requires

intramolecular heterodimerization, similar to mammalian sAC

[20]. In addition, these ACs possess a threonine residue which is

thought to be predictive for bicarbonate regulation in sAC-like
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Figure 1. Adenylyl cyclase inhibitors decrease parasite viability. (A) KH7 and (B) 2-CE decrease parasite viability in culture. Reactions were
performed in triplicate. Best-fit curves were generated by Prism; error bars represent s.e.m. (C) Luciferase expression in synchronized parasites
maintained under normal culture conditions (&), in the presence of 10 mM KH7 (r), or in the absence of supplemental CO2/HCO3

2 («). Samples were
collected in triplicate. Luciferase activity is elevated between 4–16 hours due to increased promoter activity during primary round of infection. The
peak of luciferase activity seen at ,44 hr under normal culture conditions, but absent in the absence of CO2/HCO3

2 or presence of KH7, reflects
reinvasion into RBCs. The graph was prepared with Prism software; error bars represent s.e.m of triplicate wells in the representative experiment. (D)
Microscopic evaluation of Giemsa-stained parasites at 44 hr reveals parasites (P) maintained in normal culture completed mitosis and newly released
merozoites are poised to reinvade new RBCs. Parasites treated with KH7 (E) or grown in low CO2/HCO3

2 conditions (F) never form schizonts.
doi:10.1371/journal.pone.0039769.g001

Role of P. falciparum PfACb
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ACs [21]. Unlike other adenylyl cyclases including ACb orthologs

from other Plasmodium spp., each catalytic domain of PfACb is

interrupted by blocks of highly charged stretches of amino acids,

which are encoded by low complexity regions of unknown

function prevalent throughout the P. falciparum genome.

PfACa has been studied both in vivo and in vitro. PfACa is a

predicted bifunctional protein comprising both a K+ channel and

an AC that is conserved in alveolata protozoans [22]. PfACa
transcripts are abundant in sexual stage gametocytes [19],

suggesting a possible role during sexual stages. Additionally,

ACa proteins in Plasmodium spp. appear to play a role during the

liver sporozoite stage. Specifically, P. berghei sporozoites deficient in

ACa were shown to have reduced infectivity of cultured

hepatocytes and reduced liver infectivity in a mouse model, but

they were viable and exhibited normal growth during asexual,

erythrocytic growth [2]. In contrast, PfACb has not yet been

heterologously expressed or biochemically characterized, and

attempts to generate PfACb-deficient parasites using protocols

that demand growth of the haploid mutant parasite in erythrocyte

cultures were repeatedly unsuccessful [2]. Interestingly, its mRNA

is highly expressed during the erythrocyte stage; PfACb transcript

levels begin to increase in the trophozoite stage and peak during

schizogeny [23,24].

We took advantage of a number of small molecule inhibitors of

sAC-like adenylyl cyclases to identify the essential source of cAMP

during erythrocytic growth. Three distinct AC inhibitors blocked

growth of P. falciparum inside red blood cells. We established

conditions for in vitro characterization of PfACb. and we tested

sensitivity of these three inhibitors against the in vitro AC activities

of both PfACa and PfACb. Consistent with the differential

expression patterns of the two cyclases, only PfACb proved to be

sensitive to all three, providing strong evidence that it is the source

of cAMP essential during erythrocytic growth. Interestingly, one of

the three inhibitors was also selective for PfACb relative to

mammalian sAC demonstrating that small molecules can distin-

guish between the parasite and host enzymes. These data define

PfACb as a target for development of novel antimalarial

therapeutics.

Results and Discussion

We have identified two, structurally distinct inhibitors of sAC-

like ACs; catechol derivatives of estrogen and KH7 (Figure S1).

Catechol estrogens (CEs), such as 2-hydroxyestradiol (2-CE),

inhibit Class III ACs, including mammalian and bacterial sAC-like

ACs, by chelating the catalytic magnesium ion in the active site

[25]. The second structurally unrelated inhibitor, KH7, was

identified as a potent, specific inhibitor of mammalian sAC

[11,26,27] in a small molecule screen [11] and was subsequently

found to inhibit a number of bicarbonate-sensitive ACs [16,28].

To determine the effect of these compounds on parasite growth

and viability inside red blood cells, we measured the luminescence

of the wild-type NF54 P. falciparum strain transfected with the

pHLIDH plasmid, which constitutively expresses firefly luciferase

[29]. The luminescence of this parasite strain directly corresponds

to the measures of viability determined with the widely-used

tritiated hypoxanthine-uptake assay [30] (Figure S2). Both KH7

and 2-CE killed rapidly (Figure 1A,B) [LD50 = 8.5 mM (95%

C.I. = 7.8–9.2 mM) for KH7 and 60 mM (95% C.I. = 43–90 mM)

for 2CE] with death observed within a single replicative cycle (48

hours) of synchronized parasites (Figure 1C). Giemsa-stained slides

prepared from parasites treated with KH7 revealed condensed,

pyknotic parasites (Figure 1E), confirming that these compounds

lead to rapid parasite death rather than simply inhibiting

proliferation or reporter activity.

As a reference, the terminal phenotype of KH7-killed parasites

was indistinguishable from that of parasites maintained in the

absence of CO2/HCO3
2. Synchronized cultures grown in CO2/

HCO3
2 in the presence of the inhibitor KH7 or grown in the

absence of CO2/HCO3
2 lacked the burst of luciferase due to the

reinvasion observed in normal cultures (Figure 1C,D). Microscopic

evaluation confirmed that the drug-treated parasites (Figure 1E)

resembled dead CO2/HCO3
– depleted parasites (Figure 1F);

neither formed merozoites, indicating they had not completed

schizogeny. In addition, we tested KH7 against a chloroquine-

resistant P. falciparum strain (Dd2), and it was lethal, as determined

microscopically, with similar efficacy as observed against the

chloroquine-sensitive NF54 strain (data not shown).

In order to determine the temporal effect of KH7 on

synchronized parasites, we added KH7 to synchronized cultures

at different time points throughout the cell cycle (Figure 2A).

Addition of KH7 in the first 24 hours of the cell cycle led to

complete cell cycle arrest. However, if KH7 was added to the

culture at a point well into schizogeny (34 hours), parasites were

able to complete the cell cycle and invade new erythrocytes. In a

complementary experiment to determine a ‘‘window of KH7-

sensitivity,’’ synchronized cultures were incubated in the presence

of KH7 for various times, at which point the drug was washed out

and cultures were grown for the remainder of a 48-hour cell cycle.

When KH7 was removed at 24 hours or before, cultures were able

to progress through the cell cycle, reinvade erythrocytes, and enter

G1 (Figure 2B). If KH7 remained on cultures past 24 hours,

parasites appeared unable to recover within the 48-hour culture

period. These data demonstrate that parasites are most sensitive to

KH7 at 24–31 hours post-invasion. This corresponds to the period

in the cell cycle during which PfACb mRNA levels are beginning

to rise dramatically (Figure S3).

We next sought to determine whether the in vitro activities of

PfACa and/or PfACb were sensitive to 2-CE and KH7. PfACa
has been heterologously expressed and characterized previously

[22], but the in vitro activity of PfACb has not yet been

demonstrated. We expressed a synthetic gene encoding the

catalytic domains of PfACb. AA 1–785) with mammalian codon

usage as a fusion protein with a carboxy-terminal glutathione-S-

transferase (GST) using a baculovirus (BV) expression system.

GST-PfACb1-785 was soluble, and we were able to purify it only

under high salt conditions (Figure S4). This high salt

requirement for GST-PfACb1-785 solubility may be due to the

blocks of charged amino acids inserted into its catalytic

domains. Similar to other sAC-like ACs [21,31,32,33,34],

including PfACa [22], which exhibit much greater activity

using Mn2+-ATP as a substrate relative to Mg2+-ATP, purified

GST-PfACb1-785 was active in the presence of Mn2+-ATP

(Figure 3A). We were unable to detect measurable activity in

the presence of Mg2+-ATP (Figure 3B). A similar Mn2+-ATP-

dependency was observed in assays of AC activity in

erythrocytic stage P. falciparum lysates [35].

GST-PfACb1-785 displayed Michaelis-Menten kinetics with a

lack of cooperative binding of substrate at the active site

(Figure 3A). The enzyme has an apparent Michaelis constant

(Km) for substrate ATP of ,0.6 mM using Mn2+ as a cofactor

with a maximum reaction velocity of ,265 nmol cAMP/min/mg.

This Km value is similar to that obtained for human sAC

(0.9 mM) [34]. The optimal ratio of divalent cation (Mn2+) to

substrate (ATP) was 4:1 (Figure 3B), similar to mammalian sAC

[34], and GST-PfACb1-785 displayed minimal ability to produce

cGMP when supplied with GTP as substrate (data not shown).

Role of P. falciparum PfACb
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Mammalian sAC is directly regulated by bicarbonate [34,36] and

calcium [34,37], and the threonine residue thought to be

predictive of bicarbonate stimulation [21] is found in PfACb and

ACb orthologs from other Plasmodium spp. However, because

bicarbonate precipitates in the presence of Mn2+, and because we

found bicarbonate and calcium activation to be unique to Mg2+-

ATP-dependent activity in mammalian sAC, we were unable to

explore bicarbonate- or calcium-responsiveness of BV-expressed

GST-PfACb1-785. Instead, we explored the pH responsiveness of

GST-PfACb1-785.

In contrast to mammalian sAC, GST-PfACb1-785 exhibited a

strong pH dependence (Figure 3B) [36]. Varying the reaction pH

from 7 through 9 revealed a pH optimum of 7.5, and activity

decreased sharply at both higher and lower pH values. Thus,

PfACb activity will be sensitive to changes in pHi, which, in

physiological systems, is dependent upon the carbonic anhydrase-

mediated equilibrium between CO2, bicarbonate, and protons. It

is important to note that the pH dependence observed for

PfACbis strikingly similar to the pH dependence of P. falciparum

in culture. When pH of growth media is maintained between 7.1

and 7.5, parasitemias increase 20–30 fold after three days, with

sharp reductions in yield outside of this pH range [38]. During

the trophozoite stage, when PfACb mRNA is first expressed

[23,24] (Figure S4), the intracellular pH (pHi) of parasites is

approximately 7.3 [39,40,41]. Therefore, we speculate that

PfACb functions as the parasite’s pH sensor during growth

inside red blood cells.

GST-PfACb1-785 activity was inhibited by both KH7 and 2-CE

with affinities that reflect their observed efficacies in culture. KH7

inhibited GST-PfACb1-785 with an IC50 of 5 mM, and 2-CE

showed inhibition with an IC50 of 8 mM (Figure 4A,B). In contrast,

although PfACa adenylyl cyclase activity was inhibited by 2-CE, it

Figure 2. PfAC activity is required in early-mid erythrocytic stages. Separate cultures of 1% parasitemia were split from a single synchronized
culture. (A) 100 mM KH7 was added to individual cultures at the times indicated. Luminescence was read in duplicate samples from each culture taken
after 52 hours; ‘‘relative luminescence’’ reflects luminescence readings relative to luminescence in wildtype C3/NF54 parasites. *, p,0.05 unpaired,
two-tailed t-test. (B) Synchronized parasite cultures were maintained in the presence of 100 mM KH7 (orange square); drug was removed at 0 hrs (red
circle), 8 hrs (yellow square), 16 hrs (green triangle), 24 hrs (blue triangle), 32 hrs (purple diamond); 40 hrs (pink circle) or 48 hrs (orange square).
Luminescence was measured at the times indicated on the x-axis. Graphs were made with Prism software. Error bars represent s.e.m. of duplicate
samples from the representative experiment.
doi:10.1371/journal.pone.0039769.g002

Figure 3. In vitro adenylyl cyclase activity of GST-PfACb1-785. (A) Adenylyl cyclase activity of purified GST-PfACb1-785 was assessed with
increasing concentrations of substrate ATP. Mn2+ was kept constant at 20 mM. The Michaelis constant was determined to be 0.57 mM (95%
CI = 0.36 mM to 0.8 mM). Vmax was 266.7 nmol cAMP/min/mg (95% CI = 241.9 to 291.6). (B) Adenylyl cyclase activity was assessed over a range of
Mn2+ (triangles; dotted line) and Mg2+ (squares; solid line) concentrations from 0.1 mM to 20 mM. ATP concentration was kept constant at 2.5 mM.
Activity was only detectable with Mn2+ as a cofactor, and optimal Mn2+ was 10 mM providing a ratio of Mn2+:ATP = 4:1. (C) pH optimum of GST-
PfACb1-785. Adenylyl cyclase assays were conducted over a pH range from 7 to 9 with 50 mM Tris buffer. A sharp pH optimum is evident at pH = 7.5.
A shift in pH of 0.5 units resulted in a reduction of reaction velocity by ,K.
doi:10.1371/journal.pone.0039769.g003

Role of P. falciparum PfACb
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was largely insensitive to KH7 (Figure 4C). Thus, among adenylyl

cyclases in P. falciparum, only PfACb is inhibited by the two

structurally unrelated inhibitors which kill parasites in erythrocytic

cultures.

While these data suggest PfACbmay be a relevant target for killing

malaria parasites inside red blood cells, both KH7 and 2-CE are also

known to inhibit mammalian sAC, leaving open the possibility that

host red blood cell sAC may be the relevant target of these

compounds. To address this concern, we sought to identify a PfACb
selective inhibitor. During our screen to identify KH7 as a

mammalian sAC inhibitor, we tested numerous KH7-like com-

pounds (Figure S1). Most of the KH7-like compounds were

ineffective against sAC-like cyclases, and these proved to have little

effect on P. falciparum growth (Figure S5). However, one KH7-like

compound, KH7.15, which is inert against mammalian sAC [27],

inhibited GST-PfACbwith an IC50 of 150 mM (Figure 4D). KH7.15

killed parasites (Figure 4E) with a similar efficacy [LD50 = 67 mM

(95% C.I. 58–78 mM)] as it inhibited PfACbactivity in vitro. The fact

that parasites were killed by two structurally unrelated inhibitors (2-

CE and KH7) and by a third inhibitor (KH7.15) selective for PfACb
relative to both PfACa and to the host sAC suggest that PfACb is the

relevant targetof thesecompoundsandisessential forparasitegrowth

inside red blood cells.

Our data include the first characterization of PfACb and suggest

that PfACb is essential for erythrocytic-stage parasite viability. We

have demonstrated PfACb is biochemically distinct from other

Class IIIb adenylyl cyclases and exhibits significant pH-sensitivity.

Additionally, we have shown that small molecule inhibitors can

distinguish PfACb from mammalian sAC. Although the profile of

KH7.15 is not ideal for clinical use, the data presented here

provide proof-of-principle that PfACb can be selectively targeted,

thereby identifying it as a therapeutic target for a new class of anti-

malarial drugs.

Although effective pharmacological therapies for malaria exist,

the widespread and expanding resistance to these drugs demands

new approaches to therapeutic intervention. The spread of multi-

drug resistant strains of P. falciparum threatens to increase the

malaria burden, and novel therapeutics to combat malaria are

desperately needed. This work is an initial step in attempts to

address that need by defining PfACbas a novel, attractive

therapeutic target.

Materials and Methods

Compounds
KH7 and KH7.15 were synthesized by the Milstein Chemical

Core Facility of Weill Medical College of Cornell University, and

other KH7-like compounds were purchased from ChemDiv (San

Diego, CA). The catechol estrogen, 2-hydroxyestradiol (2-CE) was

purchased from Steraloids, Inc. (Rhode Island, USA).

Figure 4. Inhibition of GST-PfACb1-785 by KH7, KH7.15, and 2-CE. PfACb activity was assayed in the presence of increasing concentrations of
(A) KH7, (B) 2-hydroxyestradiol (2-CE), or (D) KH7.15. Vehicle control is indicated as the untreated value. Approximate IC50s for KH7, 2-CE, and KH7.15
were 5 mM, 8 mM, and 150 mM, respectively. The level of untreated activity was lower in methanol (2-CE vehicle)-treated samples. (C) Activity in PfACa-
expressing Hi5 cells was assayed in the presence of 50 mM KH7, 1 mM KH7.15, and 50 mM 2-CE. Also shown is activity in uninfected Hi5 cells. Values
represent averages (with standard deviations indicated) of four independent determinations of cAMP accumulated over 20 minutes. (E) KH7.15
decreases parasite viability in culture (LD50 = 67 mM, 95% C.I. = 58–78 mM).
doi:10.1371/journal.pone.0039769.g004

Role of P. falciparum PfACb
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Parasite Culture and Microscopy
The parasite strains NF54 and NF54 transfected with pHLIDH

were grown in 5% hematocrit in RPMI 1640 (Invitrogen/Life

Technologies) supplemented with 0.5% Albumax II (Invitrogen/

Life Technologies), 0.25% sodium bicarbonate (standard media),

and 0.01 mg/ml gentamycin. Human red blood cells for culture

were obtained from human volunteers, cleared of leukocytes by

passage through a Sepacell R-500 column (Baxter Health Care),

and washed three times in RPMI 1640. Parasites were grown in

sealed culture flasks under an atmosphere of 90% nitrogen, 5%

oxygen, and 5% carbon dioxide. Parasitemias were maintained

between 1 and 10%. Fixed parasites were stained with Giemsa to

allow microscopic analysis of cultures using an Olympus BX40

compound microscope.

P. falciparum ACb Cloning
For cloning of PfACb, we used the Gateway System (Invitro-

gen). A region encoding the N-terminal catalytic domain (AA 1–

785) of gene PF3D7_0802600 (MAL8P1.150) was amplified with

the following primer pair:

P. falciparum ACb: FWD caccATGCTGAAAAA-

TATCTTCTCCGAGTACC REV ttaGCCGATCGGGGAG-

TAAATTTTGATCAG.

A synthetic gene with mammalian codon usage was used as the

template. A 4-nucleotide addition was included in the FWD

primer for directional topoisomerase-based cloning, and a stop

codon was included in the REV primer. Following the PCR

reaction, fragments were resolved on a 1% Agarose gel. Bands

corresponding to the appropriate size were excised and fragments

were gel-purified (Qiagen gel purification kit). After quantification

by gel electrophoresis and comparison to a High Mass Ladder

(Invitrogen), 10 ng of each fragment was used in a 2-hr

topoisomerase-based cloning reaction with pENTR/TEV-D-

TOPO (Invitrogen). Two microliters of the cloning reaction was

transformed into TOP10 E. coli (Invitrogen). Colonies were

screened by restriction digest, and positive clones were sequenced

using M13 forward and M13 reverse primers and multiple gene-

specific primers. Clones found to be correct by sequencing were

subsequently recombined into the ‘‘destination’’ vector pDEST20

(N-terminal GST tag) using a 1-hr LR Clonase II recombination

reaction (Invitrogen).

pDEST20-PfACb plasmid was transformed into DH10Bac E.

coli (Invitrogen). Transformed bacteria were plated onto LB agar

plates containing 50 mg/mL kanamycin (Sigma-Aldrich), 7 mg/

mL gentamicin (Sigma-Aldrich), 10 mg/mL tetracycline (Sigma-

Aldrich), 100 mg/mL Bluo-gal (Invitrogen), and 40 mg/mL

isopropyl-b-D-1-thiogalactopyranoside (Sigma-Aldrich). White

colonies, indicative of successful bacmid recombination, were

picked and streaked on fresh plates to confirm the phenotype. Blue

colonies were streaked on a separate area of the same plate as a

control. Confirmed white colonies were cultured in 500 mL of LB

containing 50 mg/mL kanamycin, 7 mg/mL gentamicin, and

10 mg/mL tetracycline.

Subsequently, bacmid DNA was isolated from the cell pellet

using the NucleoBond Bac 100 DNA isolation kit (Macherey-

Nagel). Isolated bacmid DNA was immediately transfected into Sf9

cells plated at ,80% confluency on a 6-well plate (Becton-

Dickenson) using Cellfectin reagent (Invitrogen). After transfec-

tion, successful recombination of bacmid DNA was confirmed by

PCR analysis using M13 forward (Invitrogen), M13 reverse

(Invitrogen), and the PfACb FWD primer indicated above. Four

days post-transfection, cells showed significant signs of baculovirus

infection. Cell media containing recombinant baculovirus was

harvested and clarified by centrifugation at ,1,0006g. This P1

baculovirus stock was amplified first in a volume of 20 mL (400 mL

P1 baculovirus was added) and subsequently in a volume of

500 mL (10 mL P2 baculovirus was added). For expression

studies, 25 mL P3 baculovirus was added per liter of insect cells

(either Sf9 or Hi-Five).

Heterologous Protein Expression
Insect cells are a proven system for expression and character-

ization of adenylyl cyclases [42]. Hi-Five cells at a density of

16106 cells/mL were infected with GST-PfACb1-785 baculovirus

at a concentration of 25 mL P3 baculovirus/L of culture. Infected

cells were cultured for 40 hrs and harvested by centrifugation at

,10006g. Cells were frozen in liquid nitrogen and stored. Frozen

pellets were resuspended in lysis buffer containing 50 mM Tris

(pH 7.5), 5 mM DTT, 2 M NaCl, 10 mg/mL aprotinin/leupep-

tin, 1 mM PMSF, 1 mM benzamidine, 10 mM b-mercaptoetha-

nol at a ratio of ,10 mL lysis buffer/100 mL of pelleted culture.

This lysate was sonicated 5 times at 10-second intervals at 12 watts

with a Misonix Microson cell disruptor. The sonicated lysate was

clarified by centrifugation at 100,0006g using a Ti-75 rotor

(Beckman). The resulting supernatant was passed over a Superdex

G-25 column with a 5-mL bed volume for further clarification.

The clarified lysate was incubated on ice with minor agitation for

1 hr with 1 mL (packed volume) of glutathione sepharose 4B

(Amersham) per 100 mL of lysate. The lysate was allowed to flow

through, and the resin was washed with 3610 bed volumes of lysis

buffer. Finally, bound protein was eluted with 15 mM reduced

glutathione in lysis buffer in 1 bed volume fractions. PfACb
protein was detected by activity and anti-GST Western blot (data

not shown). PfACa pressed as previously described [22].

Radioactivity-based Two-Column Adenylyl Cyclase Assay
Adenylyl cyclase assays with purified PfACb and PfACa were

performed according to the method of Salomon [43]. Purified

GST-PfACb. 50-500 ng) was incubated in 50 mM Tris, pH 7.5

(unless otherwise indicated), 1 mM DTT, 300 mM NaCl, 10 mM

MnCl2 and 2.5 mM ATP (unless otherwise indicated) with

,1,000,000 cpm [a-32P]ATP (Perkin Elmer) and ,5,000 cpm

[3H]cAMP (Perkin Elmer). (Tris buffers were pH-adjusted at room

temperature for use at 37uC.) Reactions were performed in

100 mL for 20 minutes at 37uC and stopped with 150 mL 1.5%

SDS. Product [32P]cAMP was separated from substrate

[a-32P]ATP by sequential column chromatography over dowex

50WX4-400 resin (Fluka) followed by aluminum oxide resin

(Sigma). Product [32P]cAMP was eluted from dowex, directly onto

the alumina by water, and the cAMP was eluted from alumina by

0.1 M imidazole, pH = 7.3.

Viability Assays
The NF54 strain transfected with pHLIDH expresses the firefly

luciferase gene under the control of the constitutively active Hrp3

promoter [44]. This strain of parasites was created by transfection

and stable integration of the plasmid pHLIDH into the genome of

the NF54 wildtype parasite line. pHLIDH is a derivative of the

pHLH-1 plasmid [44], in which the drug selectable marker hdhfr

was inserted under the control of the PcDT59 promoter [45].

Parasites were plated on day 0 at 1% parasitemia in 96-well plates

in standard media in the presence of the indicated concentrations

of DMSO (vehicle control), KH7, 2-CE, or KH7.15. Media plus

compounds were replenished on day 1. On day 2, red blood cells

were lysed with Bright-Glo Lysis Buffer (Promega), and lumines-

cence was read using a luminometer (Molecular Devices) after

injection with 10 ml Bright-Glo Luciferase Reagent (Promega) for

a 2-sec integration time and a 15-sec read time. Data shown are
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normalized to the luminescence of vehicle-treated control para-

sites.

Parasite Synchronization
NF54 parasites were synchronized as described [46]. Briefly,

parasites in cultured RBCs were centrifuged for 4 min at

4000 rpm. The pellet was layered atop a 40%/70% Percoll-

Sorbitol gradient and centrifuged for 20 min at 10,000 rpm. The

late-stage fraction at the interface of the gradient was collected,

washed in media, and reconstituted with fresh RBCs and media.

Following erythrocyte invasion, the synchronized culture was

expanded into 6 20-mL cultures at 3% parasitemia. At each

indicated time point, one 20-ml culture was centrifuged for 2 min

at 4000 rpm. The pellet was resuspended in 500 ml phosphate-

buffered saline (PBS), and RBCs were lysed with 10 ml 10%

saponin and microcentrifuged for 2 min at 13,000 rpm. The

supernatant was aspirated, and pellets were frozen at 280uC until

all time points were collected.

Protection of Human Subjects
Blood was purchased from the New York City Blood Center or

obtained from healthy human volunteers for use in parasite

culture. A protocol for acquisition and use of human blood has

been approved and is on file with the Internal Review board at

Weill Medical College of Cornell University (Protocol

#0010004662). For blood purchased from the New York City

Blood Center (NYBC), contact of blood donors will not be

attempted and is not necessary for the livelihood of the study.

Informed consent is not required (other than NYBC in-house

protocol). The blood will be used for research purposes only -

solely for in vitro culture of Plasmodium falciparum – and not for

transfusion into humans or animals. NYBC policy states that only

surplus blood will be made available for research purposes, and

thus this study will not compromise blood supplies. Blood will be

used for research purposes only - solely for in vitro culture of

Plasmodium falciparum - not for transfusion into humans or animals.

The blood purchased from NYBC will only be used as a resource

for propagation of malaria parasites and no data will be collected

with regard to the blood itself. Therefore the inclusion of women,

minorities or children is not applicable.

Ethics Statement
Blood used in parasite cultures was obtained under a protocol

approved by and on file with the Internal Review board at Weill

Medical College of Cornell University or at New York Blood

Center. All donors gave prior written consent.

Supporting Information

Figure S1 Structures of compounds used in this study.
2-Catechol Estrogen (A), KH7 (B), KH7.15 (C), KH7.01 (D),

KH7.02 (E), KH7.03 (F), KH7.04 (G), KH7.05 (H), KH7.08 (I),

KH7.09 (J).

(TIF)

Figure S2 Comparison of luciferase-based viability
assay with tritiated hypoxanthine uptake-based assay.

Parasite viability with measured with the luciferase-based (yellow

curves) or tritiated hypoxanthine-based viability assay (red curves)

in the presence of increasing concentrations of chloroquine (A),

quinine (B), mefloquine (C), and artemisinin (D). Best-fit curves are

shown. Y-axis is percentage assay readout; X-axis is log10 drug

concentration. EC50s for each drug are shown below the figure.

Best-fit curves are highly similar for each drug.

(TIFF)

Figure S3 Expression levels of PfACb in the red blood
cell. RT-PCR using PfACb-specific primers confirms publicly

available microarray data [23,24]. Both primer sets 1 (blue bars)

and 2 (red bars) amplify high levels of PfACb mRNA in the late

trophozoite and schizont stages of the parasite. Representative

photos of Giemsa-stained parasites corresponding to the time of

RNA extraction for the RT-PCR analysis are shown below the

graph.

(TIFF)

Figure S4 The solubility of His-tagged PfACb1-785 is
increased by high salt conditions. (Similar results were

obtained with GST-PfACb1-785). Hi-5 insect cells were infected

with His-tagged PfACb1-785 baculovirus and harvested after 42 hrs

(determined to be the optimal time for maximal activity and

expression of intact protein). Cell pellets were resuspended in a

lysis buffer containing 50 mM Tris (pH = 7.5), 10 mg/mL

aprotinin/leupetin, 1 mM PMSF, 1 mM benzamidine, 200 mM

NaCl, and 1 mM DTT at ,10 mL lysis buffer/100 mL of

pelleted culture. This lysate was sonicated five times at 10-second

intervals at 12 watts with a Misonix Microson cell disruptor.

Sonicated lysate was clarified by centrifugation at 100,0006g

using a Ti-75 rotor (Beckman). The pellet fraction was

resuspended in lysis buffer and adenylyl cyclase activity corre-

sponding to PfACb1-785 activity remained in the insoluble pellet

fraction. The various additives indicated above were added to the

resuspended pellet fraction, and the solution was again clarified by

centrifugation. Soluble fractions were assayed for adenylyl cyclase

activity. This was used as a measure of PfACb1-785 amount. Only

2 M NaCl significantly solublized PfACb1-785.

(TIFF)

Figure S5 Effect of KH7-like compounds on parasite
viability. P. falciparum cultures were maintained in a 96-well plate

in the presence of 40 mM of the indicated compound. Lumines-

cence was measured after 48 hrs. Reactions were performed in

duplicate.

(TIF)
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