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Abstract: The negative impact that oxidative stress has on health is currently known. The complex
mechanism of free radicals initiates a series of chain reactions that contribute to the evolution or
development of different degenerative disorders. Likewise, these disorders are usually accompanied
by inflammatory processes and, therefore, pain. In this sense, reactive oxygen species (ROS) have
been shown to promote the nociceptive process, but effective treatment of pain and inflammation still
represents a challenge. Over time, it has been learned that there is no single way to relieve pain, and as
long as there are no other alternatives, the trend will continue to apply multidisciplinary management,
such as promote the traditional use of the Erythrina genus to manage pain and inflammation. In this
sense, the Erythrina genus produces a wide range of secondary metabolites, including flavanones,
isoflavones, isoflavones, and pterocarpans; these compounds are characterized by their antioxidant
activity. Phenolic compounds have demonstrated their ability to suppress pro-oxidants and inhibit
inflammatory signaling pathways such as MAPK, AP1, and NFκB. Although there is preclinical
evidence supporting its use, the pharmacological effect mechanisms are not entirely clear. Nowadays,
there is a fast advancement in knowledge of the disciplines related to drug discovery, but most of
nature’s medicinal potential has not yet been harnessed. This review analyzes the decisive role that
the Erythrina genus could play in managing inflammatory pain mediated by its compounds and its
uses as an antioxidant.

Keywords: Erythrina; antioxidant; inflammatory pain; prenylated flavonoids

1. Molecular Origin of Inflammatory Pain

Pain is traditionally defined as a complex sensory and emotional experience associated
with actual or potential tissue damage or described in terms of such damage (International
Association for the Study of Pain) [1–3]. It is a complex process that involves neuronal
signaling pathways between the peripheral nervous system (PNS) and the central nervous
system (CNS) [1,3]. The transduction of noxious stimuli (those that actually or potentially
damage tissues) is carried out by a nociceptor, creating an electrophysiological neuronal
signal encoded in the form of an action potential that is transmitted to the CNS. The acute
injury is associated with a first, well-localized pain sensation transduced and transmitted by
nociceptors. Although pain is one of the body’s most important adaptation and protection
mechanisms, the degree of tissue damage leads to the release of inflammatory mediators
that bind to its receptors, triggering an enzymatic cascade [1]. Thus, inflammatory pain is
generated by an increase in sensitivity due to the cellular response associated with tissue
damage, promoting the influx of activated cells such as macrophages, lymphocytes, and
mast cells that release inflammatory mediators such as bradykinin, Hþ ions, ATP, purines,
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prostaglandin E2, leukotrienes, cytokines, nerve growth factor (NGF), sympathetic amines,
and oxidative stress products present in the membrane of nociceptors [4] (Figure 1). NGF
released by activated macrophages acts directly on peptidergic C fibers that express the
TrkA receptor, a key component of peripheral sensitization. Macrophages release cytokines
such as interleukin-6 (IL-6), IL-1b, tumor necrosis factor α (TNFα) which in turn contribute
to peripheral sensitization through increased local production of proalgesic agents such as
bradykinin, prostaglandins and increased release of NGF [1]. Prostaglandins are synthe-
sized by consecutive reactions initiated by the phospholipase A2 enzyme that causes the
release of arachidonic acid (AA) from cell membranes. Cyclooxygenase-2 (COX2) metabo-
lizes arachidonic acid to prostaglandin G2 (PGG2) and prostaglandin H2 (PGH2) which is
ultimately converted to PGE2 by prostaglandin E synthase (PTGES) [5]. PGE2 acts on all
four E-prostanoid (EP) receptor subtypes (EP1-4). In peripheral tissue, PGE2 modulates
pain sensitivity by sensitizing primary afferents. Sensitizes ion channels involved in pain,
namely transient receptor potential vanilloid 1 channel, tetrodotoxin-sensitive Na+ chan-
nels, and purinergic P2X3 channels, also enhances the release of neurotransmitters. So, it is
a crucial lipid mediator of inflammatory responses that causes pain hypersensitivity [6].
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Figure 1. Diagram of the process of pain and peripheral sensitization leading to inflammatory pain.

The pathological effects of ROS, IL-1β, TNFα, and IL-6 are due to the activation of
various pro-inflammatory signaling pathways including the three (ERK, JNK, and p38)
mitogen-activated protein kinases (MAPK), NFκB, AP1, and JAK/STAT [7]. There is evi-
dence that mitochondrial dysfunction induced by oxidative and nitrosative stress leads to
peripheral and central sensitization. Mammalian nerves are especially susceptible to free
radicals, both oxygen (ROS) and nitrogen (RNS), due to the high content of phospholipids
and axonal mitochondria; in addition to having a weak antioxidant system and other
hand, some studies on antioxidant supplementation in animal models show that hydroxyl
radicals (OH), superoxide (O2

−), and nitric oxide (ON) may have a role in peripheral sensi-
tization due to a deleterious effect on lipids and nucleic acids, protein carbonylation, and
therefore the involvement of organelles and antioxidant enzymes [8]. Furthermore, ROS
have also been shown to act as signaling molecules in a wide variety of cellular processes,
including proliferation and survival (MAP kinases and PI3 kinase) and the regulation
of antioxidant genes (Ref-1 and Nrf-2) [7]. PI3K catalyzes the synthesis of the second
messenger phosphatidylinositol 3,4,5-triphosphate (PIP3) from phosphatidylinositol 4,5-
bisphosphate (PIP2), wherein the membrane-bound PIP3 serves as a signaling molecule
to recruit proteins containing the pleckstrin homology (PH) domain. These PH domain



Int. J. Mol. Sci. 2021, 22, 248 3 of 19

proteins, such as the phosphoinositide-dependent protein kinase (PDK) and protein kinase
B (AKT) serine/threonine kinases are thus activated and mediate further downstream
signaling events. Both PI3K and MAPK are similarly regulated by ROS at the oxidative
interface, where protein phosphatases are directly oxidized by ROS, resulting in sustained
activation of signaling pathways [7]. According to the International Association for the
Study of Pain (IASP), although comprehensive epidemiological data are not worldwide
available, almost 50% of adults suffer from more than one type of pain [9]. Pain is asso-
ciated with most of the diseases, however, particularly the skin, joints, and intestines are
susceptible to the development of inflammatory pain, and its prevalence is increased [10].
Therefore, the effective management of pain and inflammation represents a challenge in
clinical research, as the scientific discipline of pain management is a relatively new field of
research [4].

Nowadays, the general population suffers different types of collateral damage, which
leads to the need to find more effective drugs, with fewer side effects and greater accessibil-
ity, to eliminate the inflammatory process and the associated pain. Furthermore, nociceptive
stimuli do not always respond to common analgesics or NSAIDs, so other therapies or
therapeutic options [11] as natural products, are used. They represent a desirable approach
for developing new drugs, particularly useful in patients with inflammatory pain [12] the
antioxidant activity of natural products assumes a decisive role in the management of
inflammation and accompanying pain [13]. Antioxidants already known, such as vitamin
E, resveratrol, or quercetin have shown tables analgesic and anti-inflammatory properties
due to the properties that their chemical structure confers on them [14,15]. Although today
there is rapid growth and advancement in knowledge of the disciplines related to drug
discovery, the medicinal potential of most of nature has not yet been harnessed [12].

The species of genus Erythrina, have a great variety of medicinal properties. It has
been widely used in folk therapies due to their curare and hypnotic functions and their
associated pharmacological effects, including sedatives, hypotensives, neuromuscular
blockers, and central nervous system (CNS) depressants [16,17]. Besides, they have been
also used to treat microbial infections [18], inflammation [19], amenorrhea, headache, eye
problems, female sterility, liver disorders, asthma, and malaria diseases [20–22].

2. Ethnomedicinal Use of the Genus Erythrina

This genus is a member of the legume family (Fabaceae), subfamily Papilionoideae. It
comprises at least 120 species most of which are trees and some perennials with large
woody roots [23]. These species are collectively called “coral trees”, alluding to the flowers,
characteristics of the genus, which are commonly bright red [24]. The place of origin of
the genus Erythrina is not exactly known, but it is suggested that it was probably in South
America, since most of the supposed “primitive” groups within the genus are found there.
70 species are recognized in the Neotropics, 38 in Africa and Madagascar, and 12 in Asia
and Australia [23].

Although there is local ethnobotanical data on the use of the genus Erythrina to relieve
pain and inflammation, few preclinical studies to evaluate the effect have been published.
An even smaller amount describes the biological activity and therapeutic potential of the
genus for this purpose. Furthermore, the relationship between antioxidant properties and
anti-inflammatory effect has not been analyzed. Therefore, this review will focus on the
ethnopharmacological analysis of the genus Erythrina and the decisive role that it could
play in the management of inflammatory pain.

There are some papers that documented the ethnomedicinal use of different species
from Erythrina genus in the treatment of pain and/or inflammation, such as: E. abyssinica,
E. caffra [25–30] and E. arborences [31,32] are the most used species in traditional medicine.
Table 1 shows a summary of the species studied the part of the tree used, the method of
preparation and their ethnomedicinal use. The bark and leaves are the common part of the
plant used for medicinal purposes. The decoction is the habitual form of preparation, the
liquid obtained is ingested or applied externally on the affected area.
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Table 1. Species of the genus Erythrina used in traditional medicine for the relief of pain or inflammation.

Species Part Used Folk Use Administration Reference

E. abyssinica Bark Inflammation, backache,
pain and cramps lower belly

Decoction, external use, extract
drunk and boiled in milk. [25,27,33]

E. arborences Branch, seed and leaves Bone fracture and back pain Paste/fomentation, decoction
oral, juice of leaves [31,32]

E. caffra Bark, leaves and roots Sprains, aches Decoction oral, eardrops and
plaster [26,28,29]

E. caffra
E. lysistemon Stem bark and leaves Toothache and earache Oral infusion [30]

E. edulis Bark Headache Aqueous infusion drink [34]

E. humeana Bark Spraians Decoction, external use [26]

E. senegalensis Bark Inflammation and Backache Decoction, external use,
massage with ointment [22]

E. variegata Leaves and bark Fever, body ache, chronic
bronchitis and otalgia Decoction, oral [35]

3. Preclinical Studies of Pain and Inflammation from the Genus Erythrina

Table 2 shows preclinical studies on the analgesic and anti-inflammatory effect of
species of the genus Erythrina genus. E. variegate was the most studied species, both
for its analgesic and anti-inflammatory effect [36–40], followed by E. velutina and E. mu-
lungu [41–43]. Mostly, high polarity solvents (ethanol, water, and methanol) were used to
obtain the extracts. This suggests that the biological activity demonstrated, in the various
studies, was largely due to polar compounds. Mostly, high polarity solvents (ethanol,
water, and methanol) were used to obtain the extracts. This suggests that the biological
activity demonstrated in the various studies was largely due to polar compounds. Two
flavanones (Sigmoidin A and B), a prenylated flavonoid (abyssinone V-4′-methyl ether), a
prenylisoflavone (warangalone), and a pterocarpane (Erycristagallin) (Figure 2), demon-
strated anti-inflammatory properties at doses of 300–600 mg/kg [44–46], all compounds
demonstrated marked anti-inflammatory efficacy. The anti-inflammatory suggested mech-
anisms include the inhibition of prostaglandins and cyclooxygenases. The most widely
used reference drugs in pain models were morphine and diclofenac. While for the inflam-
mation models it was Indomethacin, diclofenac, and dexamethasone. Although in some
cases, acetylsalicylic acid and Pentazocin were used. In general, all preclinical studies
agree that each species studied is shown to have an analgesic and/or anti-inflammatory
effect [36,40,41,46]. Antagonistic effects with histamine and/or serotonin were also men-
tioned [40,46]. Although their causes are not clarified, blocking of HRs and 5-HT receptors
are related [47]. Likewise, the participation of antioxidant activity in the regulation of
anti-inflammatory and analgesic processes through the inhibition of nitric oxide (NO) is
highlighted [45,48,49]. According to the authors, the compounds involved in these mech-
anisms are mainly flavonoids. However, it is also mentioned that alkaloids erysotrine,
erysotrine hypophorine, reduced the number of inflammatory cells in lung tissue, mainly
eosinophils and lymphocytes. Possibly due to the decrease of IL-4 and IL-5, which stim-
ulate the maturation of eosinophils in the bone marrow and recruit these cells to the
tissues. In turn, this can impact the modulation of the synthesis and release of inflamma-
tory mediators, such as prostaglandins, nitric oxide, and cytokines such as IL-1 and TNF
α [19]. Docking studies shows that phaseollin of Erythrina variegata has the best fitness
score against the COX-1 which is 56.64 and 59.63 for COX-2 enzyme [50–57]. However, is
required to delve into the possible mechanisms of action, as well as the phytoconstituents
and their relationship with the biological activity [58].
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Table 2. Preclinical studies on the analgesic and anti-inflammatory effect of species of the genus Erythrina.

Species Extract Part Model Reference

E. addisoniae EtOAc and
MeOH Stem bark

Inhibition of leukotriene B4 production from rat
polymorphonuclear leukocytes. Cyclooxygenase-1

(COX-1) activity from human platelets.
PLA2 induced paw oedema in mouse.

TPA-induced mouse ear oedema.

[46]

E. lysistemon
E. latissima
E. humeana
E. zeyheri

Ethanol and
ethyl acetate Leaves and bark Cyclooxygenase-1 inhibition [48]

E. indica MeOH Leaves Carrageenan-induced hind paw edema [59]

E. droogmansina Ethyl acetate
and MeOH Root bark

Carrageenan-induced hind paw edema
Ear edema induced by xylene

Cotton pellet-induced granuloma
[45]

E. crista-galli
EtOH (70%)

Dichlorometane
MeOH

Aerial parts Writhing test, Formalin test, Hot-plate [60]

E. mildbraedii Ethyl acetate Root bark
Carrageenan-induced hind paw edema
PLA2 induced paw oedema in mouse

TPA-induced mouse ear oedema
[57]

E. mulungu EtOH and
EtOH 30%

Flowers and
stem bark

Ovalbumin (OVA)-induced asthma in mice
Dextran induced paw edema

[19,41,
61]

E. senegalensis Aqueous and
EtOH (70%) Bark and roots

Writhing test
Egg albumin induced paw edema in rats.

Hot-plate
[62,63]

E. sigmoidea Chloroform Bark

Inhibition of leukotriene B4 production from rat
polymorphonuclear leukocytes.

Cyclooxygenase-1 (COX-1) activity from human platelets.
PLA2 induced paw oedema in mouse.

TPA-induced mouse ear oedema.

[49]

E. variegata
MeOH, EtOH
(95%), EtOH

and Aqueous.
Leaves and bark

Writhing test, Tail-flik
Carrageenan-induced hind paw edema

Cotton pellet induced granuloma
Hot plate

HRBC membrane stabilization

[36,39,
40]

E. velutina EtOH (30%) and
Aqueous

Stem bark and
leaves

Writhing test, Formalin test, Hot-plate
Carrageenan-induced hind paw edema [41,62]
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4. Radical Scavenging Activity in the Model In Vitro Systems

Various methods are used to investigate the antioxidant property of different samples.
Can be classified so in vitro and in vivo antioxidant models [64]. The antioxidant activity
of the extracts and/or compounds of E. abyssinica, E. livingstoniana and E. mildbraedii it
proved in different studies [51,55,56,65,66]. In vitro radical scavenging assay (DPPH) was
the most widely used in vivo test to determine the capacity of free radical scavenging
(Table 3). In most studies, a similar and even higher activity was obtained than the positive
controls (Trolox, BHA, ascorbic acid and quercetin) [58,65–68]. Reduction of Fe ions was
also evaluated, an assay often used as an indicator of electron donation activity (FRAP).
Additionally, the in vivo antioxidant activities of the enzymes SOD, CAT, and GSH were
measured to evaluate the hepatoprotective potential of Erythrina indica, senegalensis, and
× neillii, in rats. Where the activities of antioxidant enzymes were restored (p < 0.05) [69].
Inhibition of lipoxygenase and xanthine oxidase, enzymes that participate in the production
of reactive oxygen species and pro-inflammatory agents were other tests used [55,56,70].
Likewise, the decrease in lipid peroxidation (TBARS) and the inhibition of NO were used
to evaluate the antioxidant properties [52,53,71,72]. Among the compounds responsible
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for these activities, Eryvarin H, Abyssinone V, mildbone, mildbenone, 7,3′-dihydroxy-4′-
methoxy-5′-(3 methylbut-2-enyl)flavanone, erylivingstone H, 7,3′,4′-trihydroxyflavanone,
trans-3,4,2′,4′-tetrahydroxychalcone, Eryvarin J and erycrisagallin [46,55,65,68,73–75]. Flex-
ible molecular docking on heme oxygenase, an important stress protein that is involved in
cellular protection, antioxidant and anti-inflammatory activities, showed with 2”-O-galloyl
orientin forming four binding interactions with residues, Arg 136 (two interactions), Met34
and Gly139 [39]. On the other hand, it has been reported that the compound abyssinone
V increases oxidative stress and reduces stress resistance in the Caenorhabditis elegans
model [76]. However, many antioxidant compounds are also evaluated for their cytotoxic
activity that promotes apoptosis favoring a pro-oxidant environment. This is highly depen-
dent on the used concentrations of the compound. However, studies are required to help
clarify this activity.

Table 3. Antioxidant activity of species from genus Erythrina.

Species Part Identified Extract or Compounds Model Reference

E. abyssinica Stem bark and
root

Erycristagallin (4),
3-hydroxy-9-methoxy-10-(3,3-dimethylallyl)

pterocarpene and
7,3′,4′-trihydroxy-5′-prenylflavanone

(Abyssinone VII)

DPPH [50,51]

E. burttii Root bark Burttinol-A and burttinol-C, and the
2-arylbenzofuran derivative burttinol-D DPPH [77]

E. crista-galli Bark Alkaloids, erythraline, erythrinine and
hypaphorine

Inhibitory activity on
LPS-induced nitric

oxide (NO)
[72]

E. droogmansiana Root bark

Genistein, 3-(3′,4′-methelenedioxyphenyl)-2,3-
epoxypropanol, asperphenamate,

Erydroogmansin B, vogelin C, Isolupalbigenin
and erypostyrene

DPPH and FRAP [78,79]

E. edulis Seeds Protein concentrate from the seed flour ABTS, DPPH and
ORAC [80]

E. indica Leaves and
stem bark Methanol extract DPPH) and Nitric

oxide scavenging assay [52,53]

E. livingstoniana Stem bark and
twing

7,3′-dihydroxy-4′-methoxy-5′-(3-methylbut-2-
enyl) flavanone, 7, 3′,4′-trihydroxyflavanone

and trans-3,4,2′,4′-tetrahydroxychalcone
DPPH [65,81]

E. variegata Leaves and bark Methanolic extract and crude polysaccharides DPPH, FRAP and
TEAC [67,82]

E. mildbraedi Roots and bark Flavanone (mildbone), chalcone (mildbenone)
and Pterocarpene (Erycristagallin) DPPH [55,56,83]

E. senegalensis Stem bark and
leaves

Hydroalcoholic extract fraction 3 (polyphenols
and flavonoids) and Methanol extract

DPPH, ABTS and
FRAP [84,85]

E. sigmoidea Stem bark Methanol extract; Flavanones, Sigmoidin A and
Sigmoidin B DPPH [49,67]

E. stricta Leaves Hydromethanolic extract was
In vitro xanthine

oxidase inhibitory
activity All

[70]

E. suberosa Flowers Methanol extract DPPH and Nitric oxide
scavenging assay [69]

E. vogelii Leaves Ethanol extract DPPH [67]

E. neillii Leaves Methanol total extract and its fractions ORAC [58]
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As mentioned earlier an increase in free radicals exacerbates the inflammatory re-
sponse. Likewise, it has been observed that supplementation with antioxidants in animal
models can decrease peripheral sensitization caused by ROS. For which it is suggested that
compounds with antioxidant activity of the genus Erythrina may play an important role in
the modulation of inflammatory pain.

Although medicinal plants often have many different uses within and between cul-
tures, much remains to be investigated about the species of this genus in terms of their
potential in treating pain and inflammation.

5. Molecular Mechanisms of Anti-Inflammatory Activity of the Genus Erythrina

Medicinal plants and their secondary metabolites, such as polyphenols and alkaloids,
have long been considered valuable sources of natural remedies for the treatment of human
diseases [86]. At least 25% of modern medicines come directly or indirectly from plant
origin [12,87]. However, even today with the rapid growth and advance in the knowledge
of disciplines related to drug discovery, it may be that most of nature’s medicinal potential
has yet to be tapped [12].

Such is the case of the genus Erythrina, which is made up of a great variety of species
and characterized by producing a wide range of secondary metabolites. At least 370
flavonoid compounds have been isolated, including flavones, flavonols, flavanones, chal-
cones, isoflavans, isoflav-3-enos, neoflav-3-ene, isoflavanones, isoflavones, pterocarpans,
coumestanes, arylcoumarins, coumaryl benin chromones that include flavoflavones,
isoflavones, isoflavanones, pterocarpanes and pre-C-erythrine alkaloids and approximately
143 alkaloids distributed mainly in seeds, stem, bark, leaves and flowers [37,88].

Pain is always associated with the region where the inflammation is located and
can become chronic if the inflammation is not relieved quickly [1]. Several mediators are
involved in the inflammatory pathway, prostaglandins, leukotrienes, cytokines, platelet-
activating factor, and chemokines [89]. Likewise, during the inflammatory process reactive
oxygen and nitrogen species are also produced along with different proteases that can
cause tissue damage, fibrosis, and cell proliferation, which can contribute to the chronic-
ity of inflammation [90]. Behind these processes, there is a complex signaling network
between the immune system and injured tissue [91]. The deepening of the knowledge of
inflammatory pain will allow to optimize and accelerate the development of innovative
therapeutic targets of natural origin [92]

The Erythrina alkaloids have been of interest for their structural characteristics and
their variety of biological activities [93,94]. The dihydro-β-erythroidine alkaloid was used
to characterize the nicotinic acetylcholine receptors (nAChRs) [94], a preferential antagonist
of the α4β2 nicotinic receptor subunit that acts as a competitive inhibitor like erisothrin,
erisopine, erisodine [59]. nAChRs are involved in several central nervous system (CNS)
disease states, including depression, schizophrenia, attention deficit hyperactivity dis-
order, Alzheimer’s and Parkinson’s diseases, substance abuse, and pain [95,96]. On the
other hand, it has been suggested that nAChRs may represent viable targets for new
analgesics [96,97]. These receptors are widely distributed throughout the CNS, express-
ing themselves in neurons and non-neuronal cells [98]. In recent years, α7 nAChRs in
macrophages has been shown to regulate inflammation, activating the “cholinergic anti-
inflammatory pathway” [98–100]. There is accumulating evidence suggesting that α7
nAChR agonists and modulators are promising targets for the treatment of chronic inflam-
matory pain [101] The treatment with E. mulungu extract significantly reduced the levels of
pro-inflammatory cytokines, as well as the infiltration of inflammatory cells in lung tissue.
The main compounds identified in the extract were erisothrin, erisothrin-N-oxide and hypa-
phorine (Figure 1). The cholinergic anti-inflammatory pathway allows the suppression of
inflammation, it was characterized by its effects on the release of cytokines by macrophages.
This pathway allows the suppression of inflammation by vagal efferents depending on
α7 nAChRs [99]. Hypaphorine, an anti-inflammatory compound [102] has been isolated
from many Erythrina species and other plant species [98,102–104]. A study carried out
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by Aswad 2017 determined that hypaphorine is one of the molecules that is considered
as a potential candidate for an anti-inflammatory drug. Hypophorine present in Vaccaria
segetalis demonstrated downregulation of cyclooxygenase-2 (COX-2) and inducible nitric
oxide synthase (iNOS). Furthermore, it delayed LPS-induced phosphorylation of ERK,
and immunofluorescence staining revealed that Vaccaria hypophorine eliminated nuclear
translocation of NFκB in LPS-treated RAW 264.7 cells [102]. During inflammation, the
action of α7 nAChR is associated with the entry of calcium and the interruption of the stim-
ulation of nuclear factor κB (NF κB) [105]. It is possible that Eryhrina hypaphorine regulates
the inflammatory process through α7 nAChRs, activating a cholinergic anti-inflammatory
pathway.

Several studies have shown that the anti-inflammatory activity of some polyphenols
depends on their ability to suppress pro-inflammatory signaling pathways such as MAPK,
AP1, and NFκB, and in turn, this ability is associated with the ability to restore a suitable
redox environment [106,107]. Among the members of the MAPK cascades, apoptosis
signal-regulated kinase 1 (ASK1) is an upstream MAPKKK that regulates the JNK and p38
MAPK pathways. ASK1 is activated under various stress conditions including oxidative
stress. ASK1-deficient mouse embryonic fibroblasts were decreased JNK and p38 MAPK
activation. ROS-activated ASK1 mediates p38 signaling pathway leading to nonapoptotic
outcomes that probably favor the increase of pro-inflammatory cells [7]. Flavonoids are
molecules of interest due to their biological effects observed in vitro. Their potential utility
as antibiotic agents have been validated [18] anti-allergy [108] anti-diarrhea [109] antiul-
cer [110] anti-inflammatory [49,90] and analgesics [60]. At first, it was considered that
the main mechanism of action of antioxidant compounds lays in their ability to scavenge
radicals directly. Although the mechanisms that participate in these processes have not
been studied in depth. The possible mechanisms may be related to effects on intracellu-
lar and intercellular signaling pathways, regulation of nuclear transcription factors, fat
metabolism, and modulation in the synthesis of inflammatory [111]. Since the inhibition of
pro-inflammatory enzymes, such as cyclooxygenase-2 (COX-2), lipoxygenase (LOX) and in-
ducible nitric oxide synthase (iNOS) has been demonstrated. Pretreatment of primary chon-
drocytes and cartilage explants with Imperatorin, a plant secondary metabolite belonging
to the family of furanocoumarins, suppressed the production of iNOS and NO, blocking IL-
1β-induced phosphorylation of the ERK-MAPK/AP1 signaling pathway [106]. Inhibition
of protein kinases such as phosphoinositol kinase, protein kinase C, phosphatidylinositol
kinase has been documented, tyrosine kinase, or cyclin-dependent kinase-4. As well as
the activation of phase II detoxifying pathways through the activation of factor 2 related
to erythroid nuclear factor 2 (Nrf2). Additionally. Additionally, several flavonoids can
decrease the expression of different pro-inflammatory cytokines/chemokines, including
TNFα, IL-1β, IL-6, IL-8, and the monocyte chemoattractant protein-1 (MCP-1), in different
types of cells, such as RAW macrophages, Jurkat T cells, and peripheral blood mononuclear
cells [90,112]. Phenolic compounds isolated and characterized from E. neillii exhibited the
highest antioxidant activity, principally 2”-O-galloyl orientin, followed by 2”-O-galloyl
vitexin. Additionally. Additionally, flexible molecular docking on heme oxygenase (HO-1),
an important stress protein that is involved in cellular protection, antioxidant and anti-
inflammatory activities, justified the antioxidant activity of the isolated compounds [58].
One of the pathways implicated in the control of inflammation Nrf2 that controls the ex-
pression of antioxidant response element-regulated antioxidant and cyto-protective genes,
such as NAD(P)H: quinone oxidoreductase 1 (NQO1), γ-glutamyl cysteine synthetase
catalytic subunit (GCLC), and heme oxygenase (HO)-1 [113]. From what can be suggested,
2”-O-galloyl orientin, maybe a potential activator of Nrf2 and therefore play a fundamental
role in the treatment of inflammatory pain.

The hydroalcoholic extracts of E. indica and E. suberosa, have shown percentages of
inhibition of nitric oxide 21.5% to 89%. Given the polarity of the solvent used for the
extraction, the participation of phenolic compounds in the reduction of nitric oxide was
suggested [54,69]. The production of NO and prostaglandins is regulated by iNOS and
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COX-2. iNOS is distinguished by generating more NO than the constituent members, it is
involved in the development and maintenance of central and peripheral sensitization in
inflammatory and neuropathic pain. NO can act as a neurotransmitter that affects spinal
nociceptive processing in various pain models. COX-2 in macrophages increases in an
oxidizing environment and, in turn, increases inflammatory responses [114]. So too, the
ethanol and ethyl acetate bark extracts of E. caffra, E. latissima, and E. lysistemon exhibited
an important cyclooxygenase inhibiting activity. E. caffra and E. lysistemon displayed
inhibition of more than 90% for both the 50 and 500 mg/mL doses, this suggested the
presence of potent compounds in the bark, as flavonoids. E. caffra is one of Erythrina
species most frequently used by traditional healers to relieve inflammation [48]. On
the other hand, the administration of ethanolic extract of leaves from E. neillii at 100,
250, and 500 mg/kg in the methotrexate-intoxicated rats significantly mitigated lipid
peroxidation activity, with a significant decrease of malondialdehyde (MDA) in the hepatic
tissue, and a significant increase of GSH and SOD activity, in a dose-dependent manner.
Additionally. Additionally, a significant decrease in the hepatic tissue content of TNF-α
was demonstrated [71]. Likewise, the GSH, SOD, and CAT content significantly increased
(p < 0.05 to p < 0.001) in the groups treated with the methanol extract of E. indica leaves [52].
All this compared with silymarin a potent antioxidant. It was suggested that flavones
such Liquiritin, derived from plant licorice, increased SOD, CAT, GSH-PX enzymatic
activity through activating the Nrf2/keap1 pathway and attenuation the ERK1/2/NF-
κB pathway [115]. Although it has been documented that the pathological effects of
ROS on inflammation are due to the activation of several pro-inflammatory signaling
pathways such as mitogen-activated protein kinases (MAPK) [105], recently shown that
some prenylated flavonoids induce the expression of HO-1 activating Nrf2 through the
p38 MAPK pathway [113,116,117].

NF-κB is a transcription factor that plays an important role in the transcription of genes,
which are involved in immune and inflammatory responses. It was recently observed that
Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory
neurons and subsequently induced the release of inflammatory mediators in immune
cells [118]. NF-κB is released from a complex with I-κB and migrates to the nucleus where
it binds to the κB enhancer element and induces transcription of its target genes, such
as COX-2, iNOS, TNF-α, IL-1β, and IL -6, chemokines and adhesion molecules [27,114].
Treatment with an E. speciosa methanol extract (ESLE) induced a significant reduction in
the immunoexpression of NF-κB, COX-2, iNOS, and the pro-inflammatory marker, TNF-α
in doses of 50–100 mg/kg. Additionally. Additionally, it increased the levels of GSH and
catalase. This study concludes that ESLE exerted a gastroprotective effect through the
synergistic anti-inflammatory and antioxidant activity of its various compounds, such as
flavonoids (orientin, isoorientin, vitexin, isovitexin, and luteolin), alkaloids (hypaphorine),
and saponins [88]. It has been seen that an oxidative environment produces a positive
regulation of cytokines and macrophages, increasing the inflammatory response mediated
by COX-2. The cytokines released can act directly on the primary afferent sensory neurons
increasing the permeability of sodium (Na+) sensitizing the capsaicin receptors (TRPV1).
These effects facilitate peripheral sensitization. Likewise, the oxidative environment can
activate brain regions that transmit pain signals from other brain regions, which are re-
sponsible for nociceptive processing, such as the rostral ventrolateral medulla (RMV) [119].
The methanolic extract from the leaves of E. senegalensis has recently been seen, it showed a
protective effect against oxidative stress in SC-1 fibroblasts and THP-1 macrophages. Ob-
serving the highest antioxidant activity against free radicals (IC50 = 44.86 µg/mL [ABTS];
291.1 µg/mL [DPPH]) and intracellular ROS induced by 2,2′-Azobis (2-amidinopropane)
dihydrochloride (AAPH) in macrophages. This effect was comparable to that of the positive
control, Trolox [70]. The presence of compounds such as kaempferol, rutin, and rotenone is
suggested as possible, responsible for the effect, however, confirmation of the finding is
required [85]. However, neobavaisoflavone (Figure 1), an isoflavone previously isolated
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from the root of E. senegalensis and E. excelsa [120] and found in Psoralea corylifolia L., has
been shown to have significant anti-inflammatory and antioxidant activity [121,122].

The sources that precede the generation of reactive oxygen species (ROS) can be both
endogenous and exogenous. B (XO) located on the outer surface of the plasma membrane
and in the cytoplasm. It catalyzes the oxidation of hypoxanthine to xanthine and then
to uric acid. The production of xanthine and XO is greatly increased during ischemia,
accompanied by the loss of antioxidant enzymes. O2

− is an electron acceptor and XO
cofactor, thus generating O2

− and H2O2, one of the main ROS in ischemia, causing damage
to ischemic cells and different tissues [123]. Gout, a common and complex form of arthritis
that can affect anyone, is characterized by sudden and intense attacks of pain, swelling,
redness, and tenderness in the joints. Its treatment consists of increasing uric acid excretion
or reducing uric acid production [21]. Xanthine oxidase inhibitors (XOI) are particularly
useful, as they have minor side effects compared to uricosuric and anti-inflammatory
agents (NSAIDs and corticosteroids). However, allopurinol, the only clinically used XOI,
also causes side effects such as rash, low blood cells, and hypersensitivity syndrome. In
this context, it has been shown that the chloroform fraction of E. stricta leaves inhibits
xanthine oxidase in a concentration-dependent manner. Although in vitro inhibition was
moderate compared to allopurinol, at higher doses (21.2 y 100 µg/mL) XO was significantly
inhibited. It was suggested that the presence of phenolic and flavonoid content in the extract
contributed to the inhibition of XO [70]. For their part, [53], concluded that the methanolic
extract of the stem bark of E. indica has a strong activity in the inhibition of XO. Additionally,
it has been shown that the methanol extract of the root has an important antioxidant activity
and a strong inhibition of NO [54]. Some of the compounds isolated in this species include
isoflavones such as genistein, wighteone, alpinumisoflavone, dimethylalpinumisoflavone,
8-prenilerithrinin C, and erisenegalensein E, from stem bark [55], compounds that may be
responsible for the effect.

Mildbone and mildbenone, flavanone and chalcone from E. mildbraedii exhibited
significant antioxidant and moderate LOX inhibition activities [55,56] participates in the
eicosanoid cascade during the inflammatory response, using arachidonic acid as a substrate,
for the synthesis of leukotrienes (LT) and other oxidized lipids intermediates [124]. So,
these compounds acted as an anti-inflammatory. At least three inhibitory mechanisms of
LOX have been recognized, among these, some compounds act on an essential iron atom at
the site, affecting its oxidation state (redox inhibitors) and binding directly to the iron atom
(chelators), affecting the cycle catalytic. This non-selective antioxidant mechanism [124]
may be associated with the antioxidant capacity of E. mildbraedii compounds and be
responsible for the observed effect. The authors suggest that the high antioxidant activity
of mildbone is mainly related to the second bond dissociation enthalpy (BDE) of a second
hydrogen atom transfer from i-OH phenoxyl radical to the free radical [55]. The BDEs of
the respective phenol bonds correlate with the antioxidant effect of these compounds. It
was found that phenols with low BDE values lead to clearly higher stabilizations [125].
Mildbone with lower IC50 and BDE had greater antioxidant effects than mildbenone [55].
These values are generated by group Electrondonators (EDG). Hydroxy groups (–OH)
represent EDG and therefore lead to lower BDE values. This makes it clear that high
antioxidant activity is mainly related to the number and positions of OH groups located in
ring B [125,126]

Prenylated flavonoids are a subclass of flavonoids, combining a flavonoid skeleton
with a lipophilic prenyl side chain. They are compounds of low abundance in nature.
Prenylation provides these compounds with improved biological activity. Increases the
lipophilicity of flavonoids, providing a greater affinity for biological membranes and a
better interaction with target proteins [127,128]. It was found that pterocarpan erycrista-
gallin decreased the edema induced by phospholipase A2 by 51% in the first 30 min,
however, the effect disappeared 60 min after application. This suggests that the effect may
be an indirect inhibition of the enzyme. In rat peritoneal leukocytes, the application of
erycristagallin inhibited the production of leukotriene B4 (metabolite 5-lipoxygenase). This



Int. J. Mol. Sci. 2021, 22, 248 12 of 19

compound showed purifying properties, inhibiting the stable free radical DPPH by 96%
at a concentration of 50 AM, while the reference drug quercetin produced inhibition of
92% at the same dose. Previous studies have suggested that different antioxidant agents
and free radical scavengers can reduce 5-lipoxygenase activity through a mechanism that
interferes with divalent ions involved in catabolism of arachidonic acid [129,130]. Be-
sides, some prenylated flavonoids have been shown to have the ability to inhibit COX
or LOX activity, depending on substitution patterns. Sigmoidins A and B, prenylated
flavanones from E. sigmoidea, contain a catechol group in ring B and a 2′5-diphenyl group
(Sigmoidin A) or a 2′-prenyl group (sigmoidin B). At a concentration of 100 nm, sigmoidin
A clearly inhibited leukotriene B4 production in rat polymorphonuclear leukocytes by
100%, while the same dose of sigmoidin B only reduced production by 44%. In PLA2-
induced paw edema, sigmoidin B showed a clear inhibitory effect against the induction of
edema (59% at 60 min) while sigmoidin A had only a mild effect at 30 min. Since sigmoidin
B did not affect arachidonate metabolism, it was suggested that it affected histamine re-
lease [49]. Another prenylated flavonoid, the prenylisoflavone warangalone isolated from
the bark of E. addisoniae, is a potent inhibitor of protein kinase A and showed marked
anti-inflammatory efficacy on phospholipase A2-induced paw edema and 12-induced ear
edema. O-tetradecanoylphorbol 13-acetate in mice [46]. Prenylated flavonoids have been
reported to act as anti-inflammatory, through five mechanisms that include antioxidant and
radical scavenging activities; regulation of the activities of cells related to inflammation;
modulation of the activities of the enzymes of arachidonic acid metabolism (phospho-
lipase A2, cyclooxygenase, lipoxygenase) and nitric oxide synthase; modulation of the
production of other pro-inflammatory molecules and the modulation of the expression of
pro-inflammatory genes [128,131].

At least 370 flavonoid compounds have been identified, in the genus Erythrina. Among
them, several prenylated flavonoids [114,132–137] that due to their characteristic structures,
have a better interaction with the target molecules. However, the role of these compounds
in inflammatory pain has not been explored. Prenylated flavonoids have a very restricted
application due to their lower abundance in the environment. However, the lack of
preclinical studies on these compounds present in the species of the genus Erythrina
indicates that most of the medicinal potential of this genus has not yet been exploited.

6. Methods
6.1. Search Strategy

An organized search for the ethnomedicinal use of the genus Erythrina in the treatment
of pain and inflammation was conducted, as well as the preclinical studies performed.

The search was carried out systematically using MeSH (Medical Subject Headings)
terms and “keywords”. First, we define the related MeSH terms: “Anti-inflammatory
agents”, “analgesics/therapeutic use” “analgesics [Pharmacological action]”, “pain man-
agement”, “ethnobotany” “medicinal plant”, “ethnopharmacology” “antioxidant activity”
and “flavonoids”, then each term was combined with Erythrina. Subsequently, keywords
such as: “pain relief” “antinociceptive effect” “anti-inflammatory effect”, “ethnopharmaco-
logical studies” and “antioxidants” were combined with “Erythrina”.

6.2. Inclusion Criteria

All articles published from 2000 to May 2020, found in the scientific information
sources ScienceDirect, Medline (Pubmed) and Springer link, were considered.

A selection of titles was made, from which the abstracts were read and those that met
the necessary characteristics were retrieved. The following criteria were included for the
selection of documents.

In the case of the ethnomedicinal reports, the documents that expose the use of the different
parts of species of the genus Erythrina in the relief of pain and/or inflammation were selected.

In preclinical studies, studies that describe species of the genus Eythrina and models to
evaluate analgesic and/or anti-inflammatory activity (in vivo and in vitro), including dose,
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reference drug, possible mechanisms of action, as well as the main metabolites. associated
with the effect were selected.

Regarding antioxidant activity, articles were selected that mentioned the type of test
used, the species studied and the type of extract and/or compounds evaluated.

Items that did not meet the requirements were discarded.

7. Conclusions

Inflammatory pain, as a pathological phenomenon, has been established throughout
history as a public health problem. There are several pro-inflammatory mediators involved
in the complex web of the process. However, the data presented here show that the
phytoconstituents of the genus Erythrina have the potential capacity to modulate different
therapeutic targets and those effects could be associated with their antioxidant properties.
Several compounds with antioxidant, analgesic, and anti-inflammatory effects have been
identified. Among them, several prenylated flavonoids that, due to their characteristic
structures, have a better interaction with the target molecules. However, the lack of
preclinical studies on these compounds and the species of the genus Erythrina indicates
that most of the medicinal potential of this genus has not yet been explored. Likewise, it is
necessary to delve into the molecular mechanisms involved in both effects.
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Abbreviations
ROS Reactive oxygen species
MAPK Mitogen-Activated Protein Kinase
AP1 Activator protein 1
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
ERK Extracellular signal-regulated kinases
JNK Jun N-Terminal Kinase
JAK Janus kinases
STAT Signal Transducer and Activator of Transcription
IASP International Association for the Study of pain
NSAIDs Nonsteroidal anti-inflammatory drugs
CNS Central Nervous System
NO Nitric Oxide
DPPH 2,2-diphenyl-1-picrylhydrazyl
BHA Butylated hydroxyanisole
NAChRs Nicotinic Acetylcholine Receptors
COX-2 Cyclooxygenase 2
iNOs Nitric oxide synthase, inducible
LOX Lipoxygenases
Nrf2 Nuclear factor erythroid 2-related factor 2
TNFα Tumor Necrosis Factor alpha
IL-1β Interleukin-1-beta
IL-6 Interleukin-6
IL-8 Interleukin-8
HO-1 Heme Oxygenase-1
GCLC γ-glutamyl cysteine synthetase catalytic subunit
NAD(P)H Nicotinamide adenine dinucleotide phosphate
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GSH Glutathione
SOD Superoxide dismutase
CAT Catalase
ELSE E. speciosa methanol extract
TRPV1 Transient receptor potential cation channel subfamily V member 1
RMV Rostral ventrolateral medulla
XO Xanthine oxidase
XOI Xanthine oxidase inhibitor
BDE Second bond dissociation enthalpy
EDG Group Electrondonators
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