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The COUGHVID crowdsourcing 
dataset, a corpus for the study 
of large-scale cough analysis 
algorithms
Lara Orlandic   1,2 ✉, Tomas Teijeiro   1,2 & David Atienza   1

Cough audio signal classification has been successfully used to diagnose a variety of respiratory 
conditions, and there has been significant interest in leveraging Machine Learning (ML) to provide 
widespread COVID-19 screening. The COUGHVID dataset provides over 25,000 crowdsourced cough 
recordings representing a wide range of participant ages, genders, geographic locations, and COVID-19 
statuses. First, we contribute our open-sourced cough detection algorithm to the research community 
to assist in data robustness assessment. Second, four experienced physicians labeled more than 2,800 
recordings to diagnose medical abnormalities present in the coughs, thereby contributing one of the 
largest expert-labeled cough datasets in existence that can be used for a plethora of cough audio 
classification tasks. Finally, we ensured that coughs labeled as symptomatic and COVID-19 originate 
from countries with high infection rates. As a result, the COUGHVID dataset contributes a wealth of 
cough recordings for training ML models to address the world’s most urgent health crises.

Background & Summary
The novel coronavirus disease (COVID-19), declared a pandemic by the World Health Organization on March 
11, 2020, has claimed over 2.5 million lives worldwide as of March 20211. Epidemiology experts concur that mass 
testing is essential for isolating infected individuals, contact tracing, and slowing the progression of the virus2,3. 
While advances in testing have made these tools more widespread in recent months, there remains a need for 
inexpensive, rapid, and scalable COVID-19 screening technology4.

One of the most common symptoms of COVID-19 is a dry cough, which is present in approximately 67.7% 
of cases5. Cough sound classification is an emerging field of research that has successfully leveraged signal pro-
cessing and artificial intelligence (AI) tools to rapidly and unobtrusively diagnose respiratory conditions like 
pertussis6, pneumonia and asthma7 using nothing more than a smartphone and its built-in microphone. Several 
research groups have begun developing algorithms for diagnosing COVID-19 from cough sounds8,9. One such 
initiative, AI4COVID8, provides a proof-of-concept algorithm but laments the lack of an extensive, labeled data-
set that is needed to effectively train AI algorithms.

There are several existing COVID-19 cough sound datasets used to train Machine Learning (ML) models. 
Brown et al.9 have amassed a crowdsourced database of more than 10,000 cough samples from 7,000 unique users, 
235 of which claim to have been diagnosed with COVID-19. However, the authors have not automated the data 
filtering procedure and consequently needed to endure the time-consuming process of manually verifying each 
recording. Furthermore, this dataset is not yet publicly available and therefore cannot be used by other teams 
wishing to train their ML models. The Coswara project10, on the other hand, has publicly provided manual anno-
tations of the crowdsourced COVID-19 coughs they have received, but as of March 2021, their dataset contains 
only 1,500 samples. An alternative approach to crowdsourcing is the NoCoCoDa11, a database of cough sounds 
selected from media interviews of COVID-19 patients. However, this database only includes coughs from 10 
unique subjects, which is not enough for AI algorithms to successfully generalize to the global population.

In this work, we present the COUGHVID crowdsourcing dataset, which is an extensive, publicly-available 
dataset of cough recordings. With more than 25,000 recordings – 1,155 claiming to have COVID-19 – originating 
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from around the world, it is the largest known public COVID-19-related cough sound dataset in existence. In 
addition to publicly providing most of our cough corpus, we have trained and open-sourced a cough detec-
tion ML model to filter non-cough recordings from the database. This automated cough detection tool assists 
developers in creating robust applications that automatically remove non-cough sounds from their databases. 
Furthermore, our open-sourced cough detection model, preprocessing methods, cough segmentation algo-
rithm, and SNR estimation code enable the research community to seamlessly integrate their own datasets with 
COUGHVID while keeping the data processing pipeline consistent.

We have undergone an additional layer of validation whereby four expert physicians annotated a fraction of 
the dataset to determine which crowdsourced samples realistically originate from COVID-19 patients. In addi-
tion to COVID-19 diagnoses, our expert labels and metadata provide a wealth of insights beyond those of exist-
ing public cough datasets. These datasets either do not provide labels or contain a small number of samples. For 
example, the Google Audio Set12 contains 871 cough sounds, but it does not specify the diagnoses or pathologies 
of the coughs. Conversely, the IIIT-CSSD13 labels coughs as wet vs dry and short-term vs long-term ailments, 
but it only includes 30 unique subjects. The COUGHVID dataset publicly contributes over 2,800 expert-labeled 
coughs, all of which provide a diagnosis, severity level, and whether or not audible health anomalies are present, 
such as dyspnea, wheezing, and nasal congestion. Using these expert labels along with participant metadata, 
our dataset can be used to train models that detect a variety of participants’ information based on their cough 
sounds. Overall, our dataset contains samples from a wide array of participant ages, genders, COVID-19 statuses, 
pre-existing respiratory conditions, and geographic locations, which potentially enable ML models to successfully 
perform generalization.

Finally, we ensure that samples labeled as COVID-19 originate from countries where the virus was prevalent 
at the time of recording, and we perform an evaluation of the quality of the recordings containing cough sounds. 
The first step to building robust AI algorithms for the detection of COVID-19 from cough sounds is having an 
extensive dataset, and the COUGHVID dataset effectively meets this pressing global need.

Methods
Data collection.  All of the recordings were collected between April 1st, 2020 and December 1st, 2020 
through a Web application deployed on a private server located at the facilities of the École Polytechnique 
Fédérale de Lausanne (EPFL), Switzerland. The application was designed with a simple workflow and following 
the principle “one recording, one click”, according to which if someone simply wants to send a cough recording, 
they should have to click on no more than one item.

The main Web interface has just one “Record” button that starts recording audio from the microphone for up 
to 10 seconds. Once the audio recording is completed, a small questionnaire is shown to get some metadata about 
the age, gender, and current condition of the user, but even if the questionnaire is not filled, the audio is sent to 
the server. The variables captured in the questionnaire are described in Table 1. Also, the user is asked for per-
mission to provide their geolocation information, which is not mandatory. Finally, since coughing is a potentially 
dangerous activity in the scope of a global pandemic, we provide easy-to-follow safe coughing instructions, such 
as coughing into the elbow and holding the phone at arm’s length, that can be accessed from the main screen.

Database cleaning.  A common pitfall of crowdsourced data is that it frequently contains samples unrelated 
to the desired content of the database. In order to allow users of the COUGHVID dataset to quickly exclude 
non-cough sounds from their analyses, we developed a classifier to determine the degree of certainty to which a 

Name Mandatory Range of possible values Description

datetime Yes UTC date and time in ISO 8601 format Timestamp of the received recording.

cough_detected Yes Floating point in the interval [0, 1]
Probability that the recording contains cough 
sounds, according to the automatic detection 
algorithm described in the Methods section.

SNR Yes Floating point in the interval [0, ∞) An estimation of the signal-to-noise ratio of the 
cough recording.

latitude No Floating point value Self-reported latitude geolocation coordinate with 
reduced precision.

longitude No Floating point value Self-reported longitude geolocation coordinate 
with reduced precision.

age No Integer value Self-reported age value.

gender No {female, male, other} Self-reported gender.

respiratory_condition No {True, False} The patient has other respiratory conditions (self-
reported).

fever_muscle_pain No {True, False} The patient has fever or muscle pain (self-reported).

status No {COVID, symptomatic, 
healthy}

The patient self-reports that has been diagnosed 
with COVID-19 (COVID), that has symptoms but 
no diagnosis (symptomatic), or that is healthy 
(healthy).

expert_labels_{1,2,3} No JSON dictionary with the manual 
labels from expert 1, 2 or 3

The expert annotation variables are described in 
Table 4.

Table 1.  Metadata variables, as they appear in the JSON files.
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given recording contains a cough sound. These output probabilities of the classifier were subsequently included in 
the metadata of each record under the cough_detected entry. The recordings determined by the ML model 
to be non-cough sounds are included in the database and can be utilized by developers to enhance the robustness 
of their applications, such as alerting users when they do not upload a valid cough sound. Developers may use 
these samples to train their own classifiers to detect specific sounds, such as breathing or wheezing, and create 
many other possible applications.

To train the classifier, we employed similar procedures to those of state-of-the-art cough classification models14.  
We first randomly selected a set of 215 recordings from our database. Then, we manually classified each record-
ing as a cough sound if at least one cough was present, otherwise listing it as a non-cough sound. In the case 
that a recording contained both cough and non-cough audio events, the recording was discarded and a new 
one was randomly selected from the database. This process resulted in a nearly balanced sample of 121 cough 
sounds and 94 non-cough sounds including speaking, laughing, silence, and miscellaneous background noises. 
These recordings were preprocessed by lowpass filtering (fcutoff = 6 kHz) and downsampling to 12 kHz. Next, 68 
audio features commonly used for cough classification were extracted from each recording. The details of these 
state-of-the-art features are listed in Table 2. The power spectral density (PSD) feature was computed using 8 
hand-selected frequency bands similar to those selected by Alvarez et al.14. These bands were chosen by analyzing 
the PSDs of cough vs non-cough signals and selecting the frequency ranges with the highest variation between 
the two classes.

We developed an eXtreme Gradient Boosting (XGB)15 classifier to perform the cough classification based on 
audio features. In order to assess the performance of the model across various sets of testing and training partic-
ipants, we employed a nested k-fold cross-validation (CV) procedure16. First, the dataset was partitioned into 10 
segments, each with an equal number of recordings, hereinafter known as the “outer CV folds”. In each outer fold, 
one segment was used for testing and the rest were used for training. Then, within each outer CV fold, the XGB 
hyperparameters were tuned using Tree-structured Parzen Estimators (TPE)17. TPE works by further partitioning 
the training data into 10 segments, known as the “inner CV folds”, and then determining which set of hyperpa-
rameters exhibits the highest mean precision across the 10 folds. Following each TPE procedure, we tested the 
tuned XGB model using the testing data of its respective outer CV fold and computed several accuracy metrics. 
We then averaged each accuracy metric across the 10 outer CV folds and recorded its mean and standard devia-
tion, as displayed in Table 3. We can see that this cough classifier exhibits a mean AUC of 96.4% and a standard 
deviation of only 3.3%, indicating that the model performs well and shows little variance among different testing 
groups. To develop a final, usable model to share with the research community, we reassembled the entire dataset 
and randomly selected 22% of the recordings for assessing the generalization capabilities of our model to unseen 
test participants. The remainig 78% of the data was used to train the final XGB classifier and determine one final 
set of hyperparameters using the aforementioned TPE cross-validation procedure, this time using a 5-fold ran-
dom permutation-based ShuffleSplit CV18.

The ROC curve of the cough classifier, which shows the mean true positive rate versus the mean false positive 
rate of the testing results across the 10 outer CV folds, is displayed in Fig. 1. Users of the COUGHVID database 
can consult this figure to set a cough detection threshold that suits their specifications. We recommend using a 
cough_detected value of 0.8 because, as shown in Fig. 1 and in Table 3, this threshold exhibits an average 
precision of 95.4%. Therefore, only 4.6% of recordings with a cough_detected probability greater than 0.8 

Feature Class Domain Count Computation Parameters

MFCC6 Mel Frequency 26 Mean and St. Dev of 13 MFCCs over time

EEPD32 Time 19 BPF intervals in 50-1000 Hz; See Chatrazzin et al.32 for details

Power Spectral 
Density14 Frequency 8 Frequency bands (Hz): 0-200, 300-425, 500-650, 950-1150, 

1400-1800, 2300–2400, 2850–2950, 3800–3900

RMS Power6 Time 1 None

Zero Crossing Rate6 Time 1 None

Crest Factor6 Time 1 None

Recording Length Time 1 None

Dominant Frequency6 Frequency 1 None

Spectral Centroid6,33 Frequency 1 None

Spectral Rolloff 6,33 Frequency 1 None

Spectral Spread6,33 Frequency 1 None

Spectral Skewness6,33 Frequency 1 None

Spectral Kurtosis6,33 Frequency 1 None

Spectral Bandwidth33 Frequency 1 None

Spectral Flatness6,33 Frequency 1 None

Spectral St. Dev6,33 Frequency 1 None

Spectral Slope6,33 Frequency 1 None

Spectral Decrease6,33 Frequency 1 None

Table 2.  Cough Classifier Features.
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can be expected to contain non-cough events, which is not a large enough portion of the dataset to significantly 
bias cough classification algorithms. Similarly, the final model exhibits a precision of 95.5% and sensitivity of 
80.8%, indicating that the model successfully removes most non-cough recordings while maintaining over 80% of 
recordings that truly contain coughs. Finally, the samples confirmed by experts to contain coughs have a cough_
detected value of 1.0, whereas those that experts noted did not contain coughs (less than 3% of the annotated 
data) have a cough_detected value of 0.

Expert annotation.  To enhance the quality of the dataset with clinically validated information, we were 
assisted by four expert physicians. Each of them revised 1000 recordings, selecting one of the predefined options 
to each of the following 10 items:

	 1.	 Quality: Good; Ok; Poor; No cough present.
	 2.	 Type of cough: Wet (productive); Dry; Can’t tell.
	 3.	 Audible dyspnea: Checkbox.
	 4.	 Audible wheezing: Checkbox.
	 5.	 Audible stridor: Checkbox.
	 6.	 Audible choking: Checkbox.
	 7.	 Audible nasal congestion: Checkbox.
	 8.	 Nothing specific: Checkbox.
	 9.	 Impression: I think this patient has…: An upper respiratory tract infection; A lower respiratory tract 

infection; Obstructive lung disease (Asthma, COPD, …); COVID-19; Nothing (healthy cough).
	10.	 Impression: the cough is probably…: Pseudocough/Healthy cough (from a healthy person); Mild (from a 

sick person); Severe (from a sick person); Can’t tell.

As a labeling support tool, we used an online spreadsheet using Google Sheets©. Thus, the experts could play 
the recordings directly inside the browser and select their answers in a convenient way. Once a recording had 
been labeled, the background color of the full row turned to green for easier navigation. The time required for 
each expert for labeling the 1000 recordings was around 10 hours, without significant differences among the four 
experts.

In addition to the personal spreadsheets, the experts were provided with the following general instructions:

•	 For binary variables (Columns E-J) the box should be ticked for any reasonable suspicion of the sounds being 
heard.

•	 In Column K (“Impression: I think this patient has…”), you should check what you consider the most likely diag-
nosis, knowing that the records were collected between 01/04/2020 and 01/12/2020.

•	 Each row is automatically marked as “completed” after providing an answer to column K (question number 9). 
However, please try to give an answer to every column.

Metric CV Mean ± St. Dev Final Model

Precision 95.4 ± 7.1 95.5

Sensitivity 78.2 ± 10 80.8

Specificity 95.3 ± 8.4 95.5

Balanced Accuracy 86.7 ± 3.9 88.1

AUC 96.4 ± 3.3 96.5

Table 3.  Cough Classifier Performance (cough_detected threshold = 0.8).

Fig. 1  Averaged receiver operating characteristic curve across the 10 cross-validation folds of the cough classifier.
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Also, the following criteria for assessing quality was indicated to the experts:

•	 Good: Cough present with minimal background noise.
•	 Ok: Cough present with background noise.
•	 Poor: Cough present with significant background noise.

The selection of the recordings to be labeled was done through stratified random sampling and after pre-filtering 
using the automatic cough classifier described above, requiring a minimum probability of 0.8 of containing cough 
sounds. The distribution of recordings labeled by each expert was based on the self-reported status variable, 
as follows:

•	 25% of the recordings with COVID value.
•	 35% of the recordings with symptomatic value.
•	 25% of the recordings with healthy value.
•	 15% of the recordings with no reported status.

This stratification ensured that between the four experts, 100% of the recordings labeled as COVID-19 by 
users that have a cough_detected value above 0.8 were labeled by at least one expert. Finally, we ensured that 
15% of the recordings were labeled by all three reviewers, so that we could assess the level of agreement among 
them.

Ethical compliance.  All of the data collection and annotation was done in compliance with relevant ethical 
regulations. Informed consent was obtained by all participants who uploaded their cough sounds and metadata 
to our servers.

Data Records
All of the publicly-available data records are stored on a Zenodo repository19. Considering the recordings with a 
cough_detected value greater than 0.8, as explained in the Database Cleaning section, the database consists 
of nearly 35 hours of audio samples. This corresponds to approximately 37,000 segmented coughs, as determined 
using the segmentation procedure described in the Recording Quality Estimation subsection. Each cough record-
ing consists of two files with the same name but different extensions. One of the files contains the audio data, as 
it was directly received at the COUGHVID servers, and it can be in the WEBM20 or OGG21 formats, respectively 
with the .webm and .ogg extensions. In all cases, the audio codec is Opus22, with a sampling frequency of 48 kHz 
and operating in variable bitrate (VBR) mode. For more than 40% of the recordings, the effective bitrate is 48 
kbit/s, which is in the highest bandwidth range for mono recordings22. For the rest of the recordings, the reason 
for having a lower effective bitrate is the presence of long periods of silence, which is in fact desirable given the 
application. The second file contains the metadata encoded as plain text in the JSON format23, and has the .json 
extension. The file name is a random string generated according to the UUID V4 protocol24.

In the metadata we may distinguish three types of variables, related to: (1) context information (timestamp 
and the probability that the recording actually contains cough sounds), (2) self-reported information provided 
by the user, and (3) the labels provided by expert medical annotators about the clinical assessment of the cough 
recording. The only processing performed on the metadata was the reduction in the precision of the geolocation 
coordinates to just one decimal digit to ensure privacy protection. A full description of all the metadata variables 
is provided in Tables 1 and 4.

As an illustrative example, let us consider the recording with UUID 4e47612c-6c09-4580-a9b6-
2eb6bf2ab40c depicted in Box 1. We can see the audio properties using a tool such as ffprobe (included in 
the ffmpeg software package25), while the metadata can be directly displayed as a text file.

Name Range of possible values Description

quality {good, ok, poor, no_cough} Quality of the recorded cough sound.

cough_type {wet, dry, unknown} Type of cough.

dyspnea {True, False} Audible dyspnea.

wheezing {True, False} Audible wheezing.

stridor {True, False} Audible stridor.

choking {True, False} Audible choking.

congestion {True, False} Audible nasal congestion.

nothing {True, False} Nothing specific is audible.

diagnosis
{upper_infection, lower_
infection, obstructive_disease, 
COVID-19, healthy_cough}

Impression of the expert about the condition of the patient. 
It can be an upper or lower respiratory tract infection, an 
obstructive disease (Asthma, COPD, etc), COVID-19, or a 
healthy cough.

severity {pseudocough, mild, severe, 
unknown}

Impression of the expert about the severity of the cough. It 
can be a pseudocough from a healthy patient, a mild or severe 
cough from a sick patient, or unknown if the expert can’t tell.

Table 4.  Variables provided by the expert annotators.
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For convenience, a file compiling all of the available metadata is also provided. This file is named metadata_
compiled.csv, and is a CSV file with 51 columns and one row per record. The first column corresponds to the 
UUID of each recording, and may be used as an index, while the rest of the columns correspond to the variables 
described in Tables 1 and 4, plus the SNR column described below in the “Recording Quality Estimation” section. 
The expert annotation variables have been expanded, and are named quality_1, cough_type_1 … diag-
nosis_4, severity_4.

Technical Validation
Demographic representativeness.  An important requirement for large datasets is that they must repre-
sent a wide range of participant demographics. Demographic statistics were collected across all recordings in our 
public dataset that provided metadata and that were classified as coughs with a probability above 0.8 by the XGB 
cough detection model. There were slightly more male participants than female (66.0% and 33.5%, respectively), 
and the majority of participants did not have pre-existing respiratory conditions (83.6%). The percentages of 
healthy, COVID-19 symptomatic, and COVID-19 positive participants were 78%, 16.1%, and 5.8%, respectively. 
The average age of the recordings was 36.5 years with a standard deviation of 13.9 years. This shows that a wide 
variety of ages, genders, and health statuses are captured within our dataset.

Geographic representativeness.  In order to assess the plausibility that samples labeled as COVID-19 
truly originated from people who tested positive for the disease, we analyzed the geographic locations of the sam-
ples in our public dataset for which this information was provided. We then evaluated the COVID-19 statistics 
of the countries at the time each recording was sent to determine if these countries had high infection rates at the 
time of recording. Of the 14,787 samples that the XGB model classified as cough sounds, 8887 of them provided 
GPS information, 1014 of which reported COVID-19 symptoms and 410 claim to have been diagnosed with 
COVID-19. An analysis of this geodata revealed that our dataset contains recordings originating from 125 unique 
countries, reflecting the diversity of the dataset.

Studies have shown that coughing persists in a significant proportion of COVID-19 cases 14-21 days after 
receiving a positive PCR test26. Therefore, we combined the World Health Organization’s statistics on daily new 
COVID-19 cases1 with the United Nations 2019 population database27 to determine the rate of new infections 
in the country from which each recording originated in the 14 days prior to it being uploaded to our web server. 
This analysis revealed that 94.9% of our recordings labeled as COVID-19 came from countries with more than 20 
newly-confirmed COVID-19 cases per 1 million people. Similarly, 93.1% of recordings labeled as symptomatic 
originated from these countries.

Box 1

4e47612c-6c09-4580-a9b6-2eb6bf2ab40c.webm
Input #0, matroska,webm, from ‘4e47612c-6c09-4580-a9b6-2eb6bf2ab40c.
webm’:
      Metadata:
            encoder:                              Chrome
      Duration: N/A, start: 0.000000, bitrate: N/A
            Stream #0:0(eng): Audio: opus, 48000 Hz, mono, fltp (default)

4e47612c-6c09-4580-a9b6-2eb6bf2ab40c.json
{
            “datetime”: “2020-04-10T10:30:31.576207 + 00:00”,
            “cough_detected”: “0.9466”,
            “age”: “50”,
            “gender”: “male”,
            “respiratory_condition”: “True”,
            “fever_muscle_pain”: “False”,
            “status”: “COVID-19”,
            “expert_labels_1”: {
                        “quality”: “ok”,
                        “cough_type”: “dry”,
                        “dyspnea”: “False”,
                        “wheezing”: “False”,
                        “stridor”: “False”,
                        “choking”: “False”,
                        “congestion”: “False”,
                        “nothing”: “True”,
                        “diagnosis”: “COVID-19”,
                        “severity”: “mild”
            }
{
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Figure 2 shows a map of the world with countries color coded according to the cumulative COVID-19 positive 
tests in April and May 2020 per 1 million population. We also show the COVID-19 and symptomatic recordings 
in our public corpus providing GPS information that were collected within this time period. This figure shows 
that most recordings were sent from countries with moderate-to-high COVID-19 infection rates at the time.

Inter-rater reliability.  In order to determine the extent to which the four expert physicians agreed on their 
cough sound labeling, Fleiss’ Kappa scores28, KFleiss, were computed for each question among the 130 common 
recordings in the public dataset. KFleiss is a standard method for gauging the consistency of categorical labels across 
multiple reviewers. This measure ranges from −1 – indicating no agreement among any reviewers – to 1, corre-
sponding to perfect agreement among all reviewers. The results are displayed in Table 5, which depicts the KFleiss 
measures along with the strength of agreement according to the benchmark scale proposed by Landis and Koch29. 
This analysis revealed moderate agreement on audible nasal congestion, fair agreement on the type of cough, as 
well as slight agreement on the cough severity, nothing specific, audible wheezing, and diagnosis.

There was a slight agreement among experts on the cough diagnosis (KFleiss = 0.07), which is reflective of the 
fact that COVID-19 symptomology includes symptoms of both upper respiratory tract infections (e.g., rhinor-
rhea, sore throat, etc.) and lower respiratory tract infections (e.g., pneumonia, ground-glass opacities, etc.)30. 
When the expert labels that are not “COVID-19” or “healthy cough” are changed to “other”, the agreement slightly 
increases (KFleiss = 0.08). To determine the commonalities in labels between individual experts, we computed KFleiss 
on the cough diagnoses of pairs of experts. There was a fair agreement between Experts 3 and 4 (KFleiss = 0.22), 
a slight agreement between Experts 1 and 4 (KFleiss = 0.04), and a slight agreement between Experts 1 and 2 
(KFleiss = 0.07). Other pairs of experts exhibited poor agreement. While a lack of a clear diagnostic consensus 
between all experts is to be expected for a novel pathology, it is advisable that users take this into consideration 
when using the experts’ labels as ground-truth.

Trends in expert COVID-19 cough labeling.  All of the coughs in the public database that were labeled as 
COVID-19 among the four experts were subsequently pooled together and analyzed for trends in the attributes of 
the cough recordings. The vast majority of coughs do not exhibit audible dyspnea (93.72%), wheezing (92.43%), 
stridor (98.71%), choking (99.20%), or nasal congestion (99.03%). Additionally, 86.96% of COVID-19-labeled 

Fig. 2  Cumulative COVID-19 cases in April and May 2020 per 1 million population, along with the GPS 
coordinates of the received recordings.

Item KFleiss Agreement29

quality −0.06 Poor

cough_type 0.26 Fair

dyspnea −0.02 Poor

wheezing 0.06 Slight

stridor −0.01 Poor

choking −0.01 Poor

congestion 0.41 Moderate

nothing 0.13 Slight

diagnosis 0.07 Slight

severity 0.15 Slight

Table 5.  Inter-Expert Label Consistency.
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coughs are annotated as dry, which is consistent with literature stating that a dry cough is a common COVID-19 
symptom5,30. Finally, 83.58% of these coughs are labeled as mild. These commonalities among COVID-19 labeled 
coughs reflect the consistency of the database.

Recording quality estimation.  Every user who uploaded their cough sound to the COUGHVID dataset 
presumably used a different device, potentially introducing a variation in recording quality due to the different 
recording hardware and software of each device. Furthermore, the recordings were captured at various locations 
around the world with non-constant degrees of background noise. In order to assist users of the COUGHVID 
dataset in estimating the quality of each signal, we provide open-sourced code to estimate the Signal-to-Noise 
Ratio (SNR) of each cough recording.

The SNR estimation method begins with a simple cough segmentation algorithm based on a digital hysteresis 
comparator on the signal power. The signal is first normalized to the [−1, 1] range, lowpass filtered (fcutoff = 6 kHz), 
and downsampled to 12 kHz. Then, the hysteresis comparator identifies regions of the signal with rapid spikes 
in power, which is customary for cough sounds. Since the expiratory phase of the cough lasts 230-550 ms31, we 
discard any cough sounds lasting less than 200 ms. Furthermore, we consider the 200 ms before and after a cough 
sound as part of the cough, as this period may comprise the low-amplitude compressive and expiratory phases of 
the cough sound31. Following the cough segmentation, the SNR is computed as following Eq. 1,
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where xcough are the signal samples determined through segmentation to be part of a cough, and xnoise are all other 
signal samples, presumed to be background noise. Intuitively, this formula compares the signal power of the cough 
portion of the signal to that of the background noise. This SNR information is included under the SNR column of the 
recording metadata CSV file. A histogram of all SNR values for recordings with a cough_detected probability 
greater than 0.8 is shown in Fig. 3, showing a wider variety of signal qualities present in the dataset. Users of the data-
base may employ these computed SNR values to filter the dataset by maintaining only recordings of a desired quality.

Private Set and Testing Protocol
In order to ensure the reproducibility of the experimental results that use the COUGHVID crowdsourcing data-
set, a private test set of 625 cough recordings has been kept out from publishing. Recordings in this private set 
have been randomly selected from those having at least labels from one expert. Tens of non-cough samples have 
been included in the test set (labeled with a cough_detected probability of 0) to assist developers in assessing 
the robustness of their models.

The evaluation of models on the private test set will be open to the entire scientific community, but to ensure 
a fair use, the performance measurements will be obtained by an independent evaluator. Any researcher that 
demonstrates promising results on the public dataset using cross-validation may apply for an independent eval-
uation on the private test set according to the protocol described in the data repository19. This protocol shall be 
regularly updated in line with the available technology to ensure that it is as convenient as possible for all parties.

Since one of the aims of this project is to go beyond the study of COVID-19, every variable except datetime 
and cough_detected may be considered the target of a prediction model. This opens the possibility to study 
several different problems within the same dataset, from just cough identification and sound quality assessment 
to the detection of different conditions, or even the estimation of age or gender. Conversely, a prediction model 
may require as input not just the sound recording, but also other metadata variables to provide the necessary 
context, such as the age or gender of the participant. The restrictions on the sets of variables that can be used as 
input or as a result of the algorithms will be kept to a minimum.

Fig. 3  Histogram of estimated SNRs of every recording in the database with a cough_detected value greater 
than 0.8.
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Code availability
The aforementioned XGB classifier used to remove non-cough recordings, feature extraction source code, cough 
preprocessing methods, cough segmentation function, and SNR estimation algorithm are available on our public 
repository.
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