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Abstract: Medical devices with antimicrobial properties are a potential long-term solution to the
high rate of multi-drug-resistant healthcare-associated infections. Silver nanoparticles (AgNPs) are
an established agent for effectively eliminating a wide range of microbial strains. AgNPs have
been commonly incorporated into traditional plastic materials; however, recently, there has been
increased interest in using AgNPs combined with 3D-printing technology for medical devices due
to the accessibility and customizability of 3D-printed products. This study reports a novel method
of utilizing acetone to partially dissolve 3D-printed polymer acrylonitrile butadiene styrene (ABS)
plastic to attach a layer of AgNPs. The antimicrobial properties of this AgNP-coated surface were
tested against several microbial strains prevalent in healthcare-associated infections. AgNP-coated
ABS (AgNP-ABS) plastic demonstrated significant elimination of viable bacteria within 4 h for all
tested bacterial species (Acinetobacter baumannii, non-pathogenic and pathogenic Escherichia coli,
Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus) and within 19 h for the tested
fungus Candida albicans. The longevity of adhesion of AgNPs to the ABS plastic was assessed by
checking antibacterial activity against A. baumannii after repeat use cycles. AgNP-ABS plastic showed
decreased antibacterial efficacy with repeated use but maintained the ability to eliminate microbes
within 3 h for up to eight use cycles. The AgNP-coated ABS plastic showed efficacy as an antimicrobial
surface, and future studies will consider its applicability in the production of medical devices.

Keywords: 3D printing; antibacterial; antifungal; multi-drug resistant; silver nanoparticles; acryloni-
trile butadiene styrene

1. Introduction

Silver nanoparticles (AgNPs) have been reported to have antimicrobial effects against
various strains of bacteria, fungi, and viruses [1–4]. These antimicrobial effects are thought
to result from the steady release of Ag+ from AgNPs into the environment. Ag+ is sub-
sequently free to adhere to the cell membranes of microbes and contributes to cell death
through unbalancing cell membrane structure. In addition, Ag+ might generate reactive
oxygen species (ROS), protein inactivation, and lipid peroxidation [1,5]. Furthermore, Ag+
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interactions result in structural condensation of DNA, preventing DNA replication and cell
reproduction [6].

In the last eight decades, an increasing number of pathogenic bacteria have devel-
oped resistance to commonly used antibiotics [7–9]. The emergence of multi-drug resistant
pathogens has contributed to a growing interest in using AgNPs as an alternative antimicro-
bial agent. AgNPs have demonstrated antimicrobial efficacy against many microorganisms,
including multi-drug resistant pathogens [10–13]. The appeal of using AgNPs can also
be attributed to their ability to eliminate microorganisms at low concentrations that are
non-cytotoxic to mammalian cells [14,15]. For these reasons, the antimicrobial properties
of AgNPs have been exploited for use in a wide variety of applications such as water pu-
rification systems, commercial food containers, and medical devices [16–19]. AgNPs have
also commonly been incorporated into traditional plastic materials like polyethylene (PE),
polyvinyl chloride (PVC), and polyurethane for commercial usage [19–21].

The most commonly used 3D-printing process is fused deposition modeling, which
involves the deposition of thermoplastic material filaments to create 3D objects. The nozzle
of the 3D printer melts plastic filaments and moves in two dimensions to extrude the
material strand by strand in the X-Y plane, then moves vertically to deposit another layer.
Because of the directional way 3D printers deposit plastic, 3D-printed parts have structural
properties unique from traditional plastic manufacturing parts. For example, channels of
air pockets are created between the strands of extruded plastic, and the porous structure of
3D prints could potentially contribute to the accumulation of microbes [22,23].

The advent of 3D-printed plastic materials has increased interest in applying AgNPs
in combination with 3D-printed plastics. However, the evidence is absent in the literature
for the applicability of AgNPs with 3D-printed plastics. In addition, 3D-printed plastics do
not have the same properties as traditionally manufactured plastics, and thus they should
be evaluated independently for efficacy as an antimicrobial surface.

Acrylonitrile butadiene styrene (ABS) is a typical thermoplastic copolymer used in 3D
printing as it produces durable, rigid, and chemically resistant plastic at a low cost [24].
However, ABS plastics can be dissolved at room temperature (25 ◦C) by acetone, and
acetone vapour smoothing is a commonly used post-extrusion technique to finish the ABS
surface prints with minimal alteration of the print design [25,26]. Notably, soaking ABS
prints in acetone solution has also been established as a technique to decrease the porosity
of the plastic structure as the dissolved ABS tends to redeposit into the air gaps [27].

Recent studies investigated methods to incorporate nanoparticles into 3D-printing ma-
terials focused on mixing AgNPs with polymers before filament extrusion of objects [28,29].
While these approaches have proven successful in combining antimicrobial properties to
3D prints, this paper presents an alternative methodology that entails coating finished 3D-
printed ABS objects with an antimicrobial AgNP layer. This technique has comparatively
more streamlined steps and utilizes inexpensive and accessible materials.

The present study introduces a novel method of coating ABS plastics with AgNPs to
create an antibacterial surface coating. We utilized partial dissolution of ABS by acetone
to deposit AgNPs onto the surface of ABS plastics. Rather than incorporating NPs in a
plastic-polymer suspension before extrusion and hardening, we opted for the dispersal of
NPs only on the outer surface of ABS plastics as a more cost-effective approach. Thus, only
the contact layer of the material would have antimicrobial activity as a potential release of
Ag+ to the environment, contributing to bactericidal and fungicidal activity, leading to a
reduction of the overall amount of AgNPs required to achieve antimicrobial effects.

To evaluate our novel method for AgNP deposition to create an antimicrobial surface
coating, we exposed AgNP-coated ABS plastics (AgNP-ABS) to a suite of bacteria and fungi
commonly associated with healthcare infections compared to uncoated, acetone-smoothed
ABS plastics (control-ABS). We further assessed the longevity of adhesion of AgNPs to ABS
plastics with usage over time.
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2. Materials and Methods
2.1. Preparation of AgNPs

AgNPs were prepared by mixing 100 mL of an AgNO3 solution (0.01 m) with 10 mL
of a 0.01 g/mL tannic acid solution at room temperature and under magnetic stirring.
After the mixing was completed (about 20 s), the pH was raised to 10.0 using NaOH
(3.0 m). The reaction was transferred to a plastic container after stirring for another
20 min. The VIS-NIR absorption spectrum was obtained using a CHEMUSB4-VIS-NIR
spectrophotometer (Ocean Optics, Orlando, FL, USA). Transmission electron microscope
(TEM) images were obtained with a JEOL JEM-1230 microscope (JEOL, Tokyo, Japan)
operated at an acceleration voltage of 100 kV. Hydrodynamic diameter and zeta potential
were measured using dynamic light scattering (DLS) with a Zetasizer Nano ZS (Malvern
Instruments, Malvern, United Kingdom) operating with a He-Ne laser at a wavelength of
633 nm and a detection angle of 90 ◦C at 25 ◦C.

2.2. Disk Production

The production of the disks was performed with yellow ABS plastics (Spool 3D,
Ontario, ON, Canada). The tolerance was +/− 0.04 mm with an optimum extrusion
temperature of 220–260 ◦C. Quantitative tests of the 3D printer showed the optimum
temperature for the desired printing speeds was 240 ◦C, which was used for producing
these disks. The filament had a maximum melt flow rate of 24 g/10 min. The tensile
strength of the disks was 40 MPa, and the elongation at break was 12%. The flexural
strength was 64 MPa, and the flexural modulus was 2200 MPa. The Notched Izod impact
strength was 210 J/m. The heat distortion temperature was slightly lower than the average
blend of ABS, at 85 ◦C.

2.3. Printer Attributes

The 3D printer was equipped with a 0.4 mm diameter copper nozzle. Copper was
chosen over brass for this application due to its better heat conductivity, which allowed
printing the disks at a lower temperature while maintaining adequate flow and low ex-
trusion path resistance. This, in turn, allowed us to use less fan speed, resulting in more
substantial pieces. Furthermore, the copper nozzle enables higher flow rates, allowing for
faster printing and lower lead times.

The hot end used on this device was the Dragon HF (Triangle Labs, Carson City,
NV, USA). The HF variant has ultra-thin walls for the heat-break, preventing heat-creep
defects. It also has a higher melting rate than the standard variant, allowing for high-speed
3D printing. The extruder is a direct drive and based on hardened steel BMG parts with
a small Bowden guide tube within the extruder allowing for printing flexible filaments
without tangling.

The printer has a chassis made of aluminum extrusions, with two rails holding up a
350 mm × 350 mm × 400 mm build area. The printer is fully enclosed, and the chamber
reached 50 ◦C, allowing for dimensionally accurate ABS/ASA printing.

2.4. Plastic Disc Coating

ABS plastic discs were 3D printed with uneven rectilinear surfaces. These discs were
smoothed by submerging the discs into 100% acetone for 30 s and pressing the surface onto
a clean glass surface. The discs were allowed to reharden overnight, and a mixture of 10 µL
(0.1 µg) of AgNPs and 80 µL 100% acetone was applied to the ABS plastic discs’ surface.
A sterile plastic inoculation loop was used to distribute the NP-acetone mixture evenly
on the surface for 30 s until the surface absorbed the majority of the liquid suspension.
After drying for 3 h, the same NP application procedure was repeated on the opposite side
of the ABS plastic discs. The surface of each coated ABS plastic disc used for testing had an
estimated AgNP concentration of 19.72 ng/cm2. A scheme showing the different steps in
the process is detailed in Figure 1.
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Figure 1. Process of embedding AgNPs on 3D-printed ABS disks.

2.5. SEM Analysis of the Disks

Electron microscopy was performed in the Centre for High-Throughput Phenogenomics
(University of British Columbia, Vancouver, BC, Canada). Samples were affixed to alu-
minum SEM stubs with adhesive carbon tape for imaging. The samples were made
conductive utilizing a 7 nm thick sputtered iridium coating. Sputtering was performed
using a Leica EM MED020 coater (Leica Microsystems, Wetzlar, Germany). The sput-
tered film thickness was monitored during deposition using a quartz crystal microbalance.
All imaging was acquired with an FEI Helios Nanolab 650 FIB-SEM (Hillsboro, OR, USA).
For imaging with the backscattered electron detector, a second sample with a carbon coat-
ing was prepared; 15 nm of carbon were evaporated onto the sample surface using a Leica
EM MED020 coater.

2.6. Evaluation of Antimicrobial Activity

Antimicrobial activity of AgNP-ABS discs was assessed against a non-pathogenic
bacterial strain of Escherichia coli (DH5α), the fungal pathogen Candida albicans (provided
by Vancouver General Hospital, Vancouver, BC, Canada), and four different multidrug-
resistant strains of the following pathogenic bacteria Acinetobacter baumannii, pathogenic
E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The characterization of these
strains was described previously [30]. A bacterial suspension (200 µL) ranging from
4 × 104–4 × 105 CFU/mL was distributed onto the surface of AgNP-ABS and control-
ABS discs. The exact concentration of viable cells for each strain post-application was
determined using serial plating. The applied microorganisms were allowed to interact with
the discs at room temperature. A recovery test was performed on untreated discs to confirm
an equal number of microorganisms were recovered from the discs. Samples were collected
at the time points: 0.5, 1, 2, and 3 h for A. baumannii, non-pathogenic and pathogenic E. coli,
and P. aeruginosa; 1, 2, 3, and 4 h for S. aureus, and 1, 2, 3, 4, 19, and 24 h for C. albicans.
After experimental time points were reached, the microorganisms were released from the
plastic discs by shaking with 1 mL of sterile PBS at room temperature at 150 rpm for 30 min.
Samples were taken from the supernatant and then serially diluted for inoculation on
Mueller-Hinton agar plates (B & D, Franklin Lakes, NJ, USA). The number of viable cells
was counted after 18 h overnight incubation at 37 ◦C. C. albicans samples were inoculated
on Sabouraud-Dextrose agar plates (B & D, Franklin Lakes, NJ, USA) and incubated at
30 ◦C for 24 h.

2.7. Longevity of Adhesion of AgNP Coatings

AgNP coating adhesion longevity was evaluated by exposing NP-free ABS (control-
ABS) and AgNP-ABS discs to the strain A. baumannii used as a model and conducting a
series of use cycles. AgNPs were only applied before the first use cycle. Each use cycle
consisted of exposure of A. baumannii to AgNP-ABS discs followed by an incubation of 0.5,
1, 2, or 3 h, followed by a wash of 1 mL of sterile PBS for 30 min at 150 rpm, measurement of
bacterial growth, and then a second wash in fresh sterile PBS for 20 min. Discs were allowed
to dry before the next use cycle. Each disc was treated for 10 use cycles to determine the
longevity of antimicrobial activity of AgNP-ABS discs.



Materials 2021, 14, 7681 5 of 13

3. Results
3.1. Characterization of AgNPs

The prepared AgNPs were obtained as a stable dispersion. The AgNPs showed a
spherical morphology (Figure 2A) with a surface plasmon resonance at 415 nm (Figure 2B).
The zeta potential value for these NPs was −37.1 mV (Figure 2C), whereas the hydrody-
namic diameter was found to be 21.7 ± 2.1 nm (Figure 2D).

3.2. SEM Analysis of the ABS before and after AgNP Coating

SEM analysis showed that the AgNPs were embedded on the ABS disks, as shown in
Figure 3. Images showed that AgNPs were embedded into the disks (Figure 3A) but not in
the untreated control (Figure 3B).

3.3. AgNP-Coated 3D-Printed ABS Demonstrated Antimicrobial Activity

To assess the antimicrobial properties of AgNP-coated ABS plastic, we examined
changes in viability of a suite of microorganisms commonly associated with healthcare
infections as a function of contact time. AgNP-ABS discs display a remarkable efficacy in
killing microorganisms compared to control-ABS discs, demonstrating significant bacterici-
dal activity against all tested bacterial strains (Figure 4). These results also showed that
with a longer contact time on the AgNP-coated discs with the pathogens, a decrease in
the CFU/mL was observed. No bacterial survival was observed after 3 h and 4 h contact
time with AgNP-ABS discs for Gram-negative and -positive strains (Figure 4). In summary,
we demonstrated that a surface coating of ABS plastic with an AgNP concentration of
19.72 ng/cm2 is sufficient to kill bacterial cells after 3 h contact.

Among the Gram-negative species, A. baumannii showed the most rapid reduction
in CFU count with a log reduction > 3.0 after 0.5 h exposure with a total killing after 2 h
exposure. In the case of P. aeruginosa, a total killing was measured after 3 h of contact
time. Non-pathogenic and pathogenic E. coli showed similar loss of viability patterns as a
function of contact time, with complete loss of viability after 3 h of contact time.
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Figure 3. Analysis of AgNPs on the ABS disks.Disks were analyzed by SEM to determine the AgNPs distribution. The SEM
analysis was performed according to the Materials and Methods section. (A) Disks were treated with AgNPs, and the sizes
of the AgNPs are shown in the inset. (B) Untreated disks (control). (C) Selected area of the treated disk used for X-ray
spectroscopy. (D) Analysis of elements detected by SEM-EDS.
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Figure 4. Antibacterial activity of AgNPs impregnated on ABS 3D-printed discs.The antibacterial
activity of the discs was assessed on plastics and according to the materials and methods sec-
tion. Results are expressed as the log number of viable bacterial colonies (CFU/mL) as a function
of the contact time in hours. (a) non-pathogenic E. coli, (b) pathogenic E. coli, (c) A. baumannii,
(d) P. aeruginosa, and (e) MRSA with and without AgNP coating. Shown are the means ± SE of
three independent experiments. A t-test was used for statistical analysis, * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001. NS, no significance.

Regarding the antifungal activity AgNP-coated of the discs, it seemed that the AgNPs
could not entirely reduce the fungal viability of C. albicans within the same range of contact
time (4 h) as seen with the bacterial strains. However, after 19 h of contact time, we
eventually observed the complete killing of C. albicans (Figure 5).
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3.4. AgNPs Show Reduced Effectiveness after Usage Testing

We interrogated the longevity of adhesion of our AgNP coating by observing the
change in the number of A. baumannii CFU before AgNP application, during, and after
10 use cycles. As a baseline, we demonstrated that AgNP-ABS discs exposed once to
A. baumannii showed a rapid reduction in bacterial activity with total loss of viability after
2 h (Figure 6). However, after three use cycles, we found that 2 h of contact time was no
longer sufficient to abolish bacterial activity entirely, but 3 h of contact time was adequate
for complete loss of viability until the eighth use cycle (Figure 6). Overall, we observed that
AgNP-ABS discs across all contact times decreased their effectiveness after 10 use cycles.
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Figure 6. Antibacterial activity of ABS 3D-printed discs as a function of use cycles. The antibacterial activity of the discs on
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4. Discussion

This study demonstrated that an AgNP coating on standard ABS 3D-printed plastic
displayed antimicrobial activity against a suite of bacteria and a fungus commonly re-
lated to healthcare-associated infections. This AgNP-mediated loss of bacterial viability
depended on contact time and degree of usage (Figures 4 and 5). Antibacterial testing of the
AgNP-ABS plastic was carried out on both Gram-negative and -positive bacterial species.
AgNP-coated ABS plastic demonstrated higher elimination rates for Gram-negative bac-
teria than Gram-positive bacteria. For example, log reductions ranging between 2.5 to
4 CFU/mL were measured when the Gram-negative strains were exposed to the treated
disks for 2–3 h (Figure 4a–d).

In contrast, around 1 log reduction was observed when the Gram-positive MRSA
strain was exposed to the treated disks for 4 h. The differences in the rate of loss of
viability between the Gram groups are likely due to differences in their cell wall structure.
Gram-negative bacteria have an additional protective outer membrane compared to Gram-
positive bacteria that prevents many molecules (e.g., antibiotics) from passing through the
cell. Moreover, the cell wall of Gram-positive bacteria has a thicker layer of peptidoglycan
than Gram-negative bacteria [1]. While all the mechanistic antibacterial actions of AgNPs
have not been fully elucidated, it has been reported that AgNP permeates through this
outer membrane and creates pit-like structural damage to the cell wall [30].

Moreover, AgNPs have been shown to damage the peptidoglycan cell wall of Gram-
positive bacteria in a similar fashion [31]. Therefore, the presence of this outer membrane
could be irrelevant to the antibacterial efficacy and somewhat dependent on the thickness
of the cell wall layer. The thinner peptidoglycan layer could be a reason why AgNPs are
more effective at killing Gram-negative bacteria.

Aligning with our results, Gram-positive bacteria have been reported in the literature
to be more resistant to AgNP-inhibition than Gram-negative bacteria [32,33]. While AgNPs
have generally shown a more significant bactericidal effect on Gram-negative bacteria
than Gram-positive bacteria in literature, this may not be the sole factor in determining a
strain’s susceptibility to AgNPs. For example, it has been demonstrated that the antimi-
crobial efficiency of AgNPs can vary within different strains of E. coli, suggesting that it
is influenced by other factors than simply the structure of the bacterial membrane [34].
This observation aligns with our findings that our tested pathogenic E. coli strain shows
greater resistance to the bactericidal effects of AgNP than the non-pathogenic E. coli strain
(Figure 2A,B). For instance, after 30 min of contact time, a significant reduction in colonies
was only observed in non-pathogenic E. coli.

Moreover, bactericidal activity is dependent on the shape of the nanoparticle [35].
For example, truncated triangular nanoplates show greater efficiency in inhibition of
bacterial activity than spherical and rod-shaped AgNPs. The surface interaction between
AgNPs and cell membranes may have a role in inhibition rates. However, the specific
estimation of how the surface area of NPs relates to the AgNP mechanism of action has
yet to be explored. Notably, all of the testing in our study was done solely on AgNP-ABS
created with one type of AgNP. We speculate that our presented results of the relative
antimicrobial effects between different strains of bacteria may differ if another shaped
AgNP was used. Our main intent was to demonstrate that our coating technique can
harness the antimicrobial properties of AgNPs onto the surface of 3D-printed ABS.

In the present study, C. albicans demonstrated a higher degree of resistance to the
antimicrobial effects of AgNP. For example, with a contact time of 4 h, we did not observe
a significant reduction of fungal viability, unlike with our bacterial strains. However, with
a longer contact time of 24 h, AgNP-ABS plastic eliminated all viable C. albicans cells (3 log
reduction) (Figure 5).

The antifungal activity of NPs against fungal strains has not been completely eluci-
dated. For example, previous studies reported that the antifungal activity against C. albicans
depended on the size and the element used in the AgNP fabrication, the fungal strain, ROS
production, etc. For instance, a killing activity against C. albicans was observed with NP
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sizing 5 nm, whereas a size of 100 nm showed no activity [36]. In the same report, ROS
production increased after exposure to 5 nm AgNPs to C. albicans. Still, no ROS increase
was measured when the same AgNPs were exposed to the yeast Saccharomyces cerevisiae
used as control [36]. In addition, other extracellular and intracellular interactions of AgNPs
with C. albicans cells might explain the antifungal activity. For instance, the net charge of the
AgNPs can interact with the fungal cell wall, causing cell lysis as a result of an unbalance
in the electrostatic homeostasis of the wall [37], leading to its destruction [33,38,39].

The difference in resistance we observed between fungal and bacterial strains to
AgNPs may result from differences between fungal and bacterial cell walls composed
of chitin and beta-glucans as opposed to peptidoglycans, which may afford additional
protection from AgNP action. Despite the difference in action time, the AgNP-ABS plastic
ultimately demonstrated antimicrobial activity with each tested bacterial and fungal strains.

The generation of higher levels of intracellular ROS surpassing endogenous produc-
tion due to cellular metabolism is a known theme in the toxicity of AgNPs. For example,
ROS are toxic molecules reacting with multiple biomolecules, such as proteins, DNA, and
lipids, leading to the cell’s death [12,40]. Furthermore, regardless of the internalization of
the AgNPs, Ag+ can be released from the NPs and react with cysteines, thiols, and indole
groups, leading to a loss of enzymatic activity in the cell and blocking vital metabolic
functions [1,37,41].

These results indicate that our novel coating standard ABS 3D-printed plastic with
AgNPs is a reliable technique to create an antimicrobial surface. The combination of acetone
and AgNPs in solution successfully deposited AgNPs onto the standard ABS 3D-printed
plastic surface without disrupting the AgNPs’ antimicrobial effects. Despite the porosity of
ABS 3D-printed structures, microbes can be eliminated from the surface of ABS plastics.
The treatment of acetone on the ABS plastic may have also aided in decreasing the porosity
of the AgNP-ABS discs [27].

We also report good durability of AgNP attachment to ABS plastic after using our
cycle modeling experiments (Figure 6). The decrease in AgNP antimicrobial activity with
usage is likely due to the slow leeching of Ag+ ions off the ABS plastic after contact with
aqueous solutions. AgNP leeching is difficult to avoid entirely and occurred in other
reported methods of AgNP application [17,18,42].

The method of acetone smoothing described here allows for the continued re-application
of NPs without reprinting the whole plastic part. Future studies may consider the applicabil-
ity of our AgNP-coated ABS plastics for use in medical devices and equipment production.

5. Conclusions

In conclusion, we proposed a novel approach to applying an AgNP coating to ABS
plastics. This methodology exploits the highly reactive reaction of ABS plastic to acetone.
The partial dissolution of the surface of printed objects allows AgNPs to be embedded
into the outer layer of the polymer matrix. The resulting AgNP-ABS plastic demonstrates
effective antimicrobial activity against common multi-drug resistant bacterial and fungal
species. This antimicrobial property also shows reasonable durability with continued
aqueous contact. These findings point towards the plausible usage of our presented
technique to create antimicrobial 3D prints.

Moreover, the application of 3D printing is attractive because it allows for on-demand
customized production and low volume manufacturing with minimal costs. Aligning with
this intent, our proposed technique of AgNP incorporation involves minimal steps and
low-cost accessible materials. For this reason, it is a feasible option for adding antimicrobial
properties to 3D products for industrial usage, but more importantly, for independent
purposes. The simple application of an AgNP-acetone suspension can significantly increase
the value of 3D-printed products, especially those used in the healthcare sector and contact
with a wide range of microbes.
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