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The cognitive manifestations of Alzheimer’s disease (AD) are related to brain network
degeneration, and genetic differences may mediate network degeneration. Several AD-
susceptible loci have been reported to involve amyloid or tau cascades; however,
their relationships with gray matter (GM) volume and cognitive outcomes have yet
to be established. We hypothesized that single-nucleotide polymorphism genotype
groups may interact with apolipoprotein E4 (ApoE4) status or independently exert an
effect on cognitive outcomes. We also hypothesized that GM structural covariance
networks (SCNs) may serve as an endophenotype of the genetic effect, which, in turn,
may be related to neurobehavior test scores. Gray matter SCNs were constructed
in 324 patients with AD using T1 magnetic resonance imaging with independent
component analysis (ICA). We assessed the effects of 15 genetic loci (rs9349407,
rs3865444, rs670139, rs744373, rs3851179, rs11136000, rs3764650, rs610932,
rs6887649, rs7849530, rs4866650, rs3765728, rs34011, rs6656401, and rs597668)
using additive, recessive, and dominant models on cognitive outcomes. Statistical
analysis was performed to explore the independent role of each locus, interactions
with ApoE4 status, and relationships to GM ICA network intensity score. For outcome
measures, we used the Mini-Mental State Examination (MMSE), Cognitive Abilities
Screening Instrument (CASI) total score, and short-term memory (STM) subscores,
adjusted for the covariates of education, disease duration, and age. Clinically, the
CD2AP G allele showed a protective role in MMSE, CASI total, and CASI-STM scores
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independently or via interactions with non-ApoE4 status, while the CR1 A genotype
group was associated with lower STM subscores independent of ApoE4 status. Three
loci showed synergic interactions with ApoE4: BIN 1, MS4A6A, and FTMT. Of the
15 meaningful ICA components, 5 SCNs (anterior and posterior hippocampus, right
temporal, left thalamus, default mode network) showed relationships with general
cognitive performance, in which only the ApoE4 and MS4A6A genotype groups
were independently related to the hippocampus network. The genetic loci MS4A6A,
BIN1, CLU, CR1, BIN1, PICALM, and FGF1 influenced the networks independently
or in synergy. This study suggests that AD-susceptible loci may each exert clinical
significance independently through interactions with ApoE4 status or through SCNs as
an endophenotype and that this effect is associated with the cognitive outcomes.

Keywords: Alzheimer’s disease, single nucleotide polymorphism, independent component analysis,
apolipoprotein E4, structural covariance network, network integrity score

BACKGROUND

The National Institutes on Aging-Alzheimer’s Association (NIA-
AA) criteria (Jack et al., 2018) incorporate diagnostic biomarkers
in the definition of Alzheimer’s disease (AD), and the key
pathology is the presence of amyloid plaque and neurofibrillary
tangles. From a genetic point of view, AD is a complex disease.
For late-onset AD, the apolipoprotein E (ApoE) gene is the most
significant example of a single-nucleotide polymorphism (SNP)
that modifies susceptibility to AD (Singh et al., 2006). The clinical
significance of ApoE4 on brain integrity has been shown in studies
of people with AD (Martins et al., 2005), those with mild cognitive
impairment (Risacher et al., 2013), and the non-demented elderly
(Bretsky et al., 2003; Wisdom et al., 2011). The presence of
the ApoE4 allele (Corder et al., 1993) remains the greatest risk
factor for AD (Farrer et al., 1997), responsible for a 3- to 15-fold
increase in risk. The synergic effect of the ApoE4 allele with other
genetic loci has been reported in previous studies (Mahley, 1988),
which showed that overall pathological cascades may influence
neuropsychiatric outcomes (Hall et al., 2014). Although genetic
effects have been extensively studied, only a few studies have
shown reproducible results. The mechanisms by which ApoE
influences the pathogenesis of AD have been proposed, including
a role in the clearance of amyloid (Koistinaho et al., 2004; Shi
et al., 2017; Ringland et al., 2020). However, whether this is via
interactions between APoE4 and amyloid- or tau-related SNPs
remains to be explored.

Recent large-scale genome-wide association studies (GWASs)
have revealed several SNPs other than ApoE4 that are associated
with susceptibility to AD. In a study by Lambert et al. (2013), a
total of 19 GWAS loci were identified using a discovery sample
of 17,008 patients with AD and 37,154 controls, followed by
replication with 8,572 patients with AD and 11,312 controls.
In 2019, a GWAS meta-analysis reported an additional 29 risk
loci (Jansen et al., 2019). Collectively termed as AD-susceptible
genes, they can only explain a small proportion of the heritability
and influence of SNPs for risk prediction, and the results have
been inconsistent among different ethnicities. For example, the
rs11136000 polymorphism in the clusterin (CLU) gene has been

significantly associated with AD (Zhu et al., 2018) in Caucasian
and Asian populations, but not in people of African or Hispanic
descent (Du et al., 2016). Genetic-gray matter (GM) interactions
may be different among different ethnicities, and so the genetic
effect on the cognitive outcomes may also be different. For
AD, structural imaging is one of the most reliable tools to
reveal correlations with cognitive measures, while links between
reported genotype groups and neuroimaging biomarkers may
help to understand how these SNPs modulate GM. The clinical
significance of these risk loci and their interactions with brain
networks may also help to understand the neurobiology of AD.

Recent research suggests that highly related regions show
covariance in morphometric characteristics, the so-called
structural covariance. Structural covariance networks (SCNs)
have been associated with structural and functional connectivity,
while genetic variations, developmental, degenerative, and
disease staging have been shown to be important covariates of
interest (Alexander-Bloch et al., 2013). SCNs are considered
to be reproducible and heritable models that may represent
disease-related or genetic-associated changes in topology
(Huang et al., 2017; Chang et al., 2018a,b; Chang H. I. et al.,
2019). We hypothesized that AD-susceptible genes may have
greater covariance in GM and that the SCNs may serve as an
endophenotype to reflect the influence of the risk gene. Using
spatial independent component analysis (ICA), the structural
covariance between topographically distant regions can be
modeled without a priori knowledge (Biswal et al., 1995, 2010).
In addition to fully automated spatial component maps of
maximal statistical independence, a network integrity score
(NIS) can be calculated for each ICA map. The NIS describes
the strength of the individual expression in each network, and
a higher NIS indicates a stronger individual expression of the
identified network (Beckmann and Smith, 2004; Segall et al.,
2012). Once an SCN pattern has been identified to distinguish
one group from another, its expression can be prospectively
quantified on an individual basis and correlated with the clinical
or physiological measures of interest. GM SCNs modeled by ICA
may help to clarify SNP-GM relationships, while the NIS can be
used as a dependent variable to test the genetic interactions.
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The NIA-AA criteria define AD as a disease status
because higher diagnostic hierarchy is placed on the in vivo
demonstration of neuropathological status rather than the
presence of clinical symptoms. For a diagnosis of AD, the
presence of amyloid and tau protein is essential (Jack et al.,
2018). To understand the genetic effects of amyloid or tau on
disease progression, we selected 15 amyloid- or tau-related SNPs
belonging to the following genetic loci: CD2AP (rs9349407)
(Furusawa et al., 2019), CD33 (rs3865444) (Bradshaw et al.,
2013; Chen et al., 2021), MS4AE4 (rs670139) (Karch et al.,
2012), BIN1 (rs744373) (Martiskainen et al., 2015), PICALM
(rs3851179) (Zhao et al., 2015), CLU (rs11136000) (Chibnik
et al., 2011), ABCA7 (rs3764650) (Bamji-Mirza et al., 2016;
Zhao Q. F. et al., 2016; Ma et al., 2018), MS4A6A (rs610932)
(Dos Santos et al., 2017), FTMT (rs6887649) (Yang et al., 2015),
SPTLC1 (rs7849530) (Geekiyanage and Chan, 2011), Intergenic
SNP (rs4866650) (Hohman et al., 2014), p73 (rs3765728)
(Wetzel et al., 2008), FGF1 (rs34011) (Kimura et al., 1994),
CR1 (rs6656401) (Chibnik et al., 2011; Biffi et al., 2012), and
EXOC3L2 (rs597668) (Olgiati et al., 2011). In this study, we first
tested whether each SNP exerted an effect on cognitive measures
directly or via interactions with ApoE4. Then, we evaluated
whether the genetic effects on cognitive measures were via an
SCN as an endophenotype.

MATERIALS AND METHODS

This study was conducted in accordance with the Declaration
of Helsinki and was approved by the Institutional Review Board
of Chang Gung Memorial Hospital. The study participants
were treated at the Cognition and Aging Center, Department
of General Neurology, Kaohsiung Chang Gung Memorial
Hospital. The multidisciplinary team was composed of
behavioral neurologists, psychiatrists, neuropsychologists,
neuroradiologists, and experts in nuclear medicine. We enrolled
patients with AD who were diagnosed according to the
International Working Group-2 criteria (Dubois et al., 2014) and
further confirmed using amyloid imaging (TW-ADNI1) if the
consensus panel did not agree on the diagnosis. All of the patients
were in a stable condition under acetylcholine esterase inhibitor
treatment from the time of diagnosis. The exclusion criteria were
a history of clinical stroke, a negative amyloid scan, a modified
Hachinski ischemic score > 4, and depression. After checking
the inclusion and exclusion criteria, a total of 324 subjects (152
males and 172 females) were included and underwent imaging
and genetic tests.

Clinical and Neurobehavioral
Assessments
After enrollment, the demographic data of each patient were
recorded. We also recorded the time of the first symptom
during interviews with family members so that an estimated
duration of onset could be calculated. At baseline, a trained
neuropsychologist administered the neurobehavioral tests using
the Mini-Mental State Examination (MMSE) and Cognitive

1http://tadni.cgmh-mi.com/home

Abilities Screening Instrument (CASI) total score as a global
assessment of cognitive function. The CASI contains nine
subdomains. We used attention, verbal fluency, abstract thinking,
and mental manipulation subdomain scores to assess executive
function (Huang et al., 2013) and orientation, short- and long-
term memory, language ability, and drawing as non-executive
domains. As the salient feature of AD is short-term memory
(STM) impairment, we used CASI-STM subscores as the major
outcome for genetic correlations.

Genotyping
Single-nucleotide polymorphism genotyping was performed
using MassARRAY technology with iPLEX Gold chemistry
(Agena Bioscience, San Diego, CA, United States). The PCR
primers and single base extension primers were designed using
Assay Design Suite version 2.0 software (Redwood City, CA,
United States). The genotyping analysis was performed using
an iPLEX Gold Reagent Kit according to the instructions of the
manufacturer. Briefly, 1 µl of DNA sample (10 ng/µl) was added
to 5 µl of PCR reaction mixture containing 0.2 units of Taq
polymerase, 2.5 pmol each of the PCR primers, and 25 mM each
of the dNTPs. Thermocycling was started at 94◦C for 2 min
followed by 45 cycles of 94◦C for 30 s, 56◦C for 30 s, and
72◦C for 1 min, and a final extension was done at 72◦C for
1 min. Unincorporated dNTPs were dephosphorylated using 0.3
U of shrimp alkaline phosphatase. Purified amplicons were then
subjected to primer extension using an iPLEX Gold Reagent Kit.
Primer extension was performed using a cycling program of 94◦C
for 30 s, followed by 40 cycles of 94◦C for 5 s, and 5 cycles of
52◦C for 5 s, and 80◦C for 5 s within 40 cycles, followed by a final
extension at 72◦C for 3 min. The extended reaction products were
purified using cation exchange resin and then spotted onto a 384-
format SpectroCHIP II array using a MassArray Nanodispenser
RS1000 (San Diego, CA, United States). Mass determination
was done on a MassARRAY Compact Analyzer. The resulting
spectra were processed, and alleles were called using MassARRAY
Typer 4.0 with model-based cluster analysis to analyze the
genotypes of the SNPs. We tested 15 SNPs (rs9349407, rs3865444,
rs670139, rs744373, rs3851179, rs11136000, rs3764650, rs610932,
rs6887649, rs7849530, rs4866650, rs3765728, rs34011, rs6656401,
and rs597668). The risk alleles and minor allele frequencies
(MAFs) are listed in Supplementary Table 1. The ApoE genotype
was determined using rs7412 and rs429358. ApoE4 carriers were
defined as those with one or two E4 alleles.

Image Acquisition
Magnetic resonance images were acquired using a 3.0T magnetic
resonance imaging (MRI) scanner (Excite, GE Medical Systems,
Milwaukee, WI, United States). All MRI images were performed
within 3 months of taking the cognitive tests. High-resolution
structural images were acquired for spatial normalization using
the following protocol: a T1-weighted, inversion-recovery-
prepared, three-dimensional, gradient-recalled acquisition in a
steady-state sequence with a repetition time/echo time/inversion
time of 8,600 ms/minimal/450 ms, a 256 mm × 256 mm field
of view, and a 1-mm slice sagittal thickness with a resolution of
0.5 mm × 0.5 mm × 1 mm.

Frontiers in Aging Neuroscience | www.frontiersin.org 3 December 2021 | Volume 13 | Article 721217

http://tadni.cgmh-mi.com/home
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-721217 December 17, 2021 Time: 11:1 # 4

Chang et al. SNP in AD Structural Covariance

Data Analysis for Neuroimaging
Biomarkers
Image preprocessing and statistical analysis were performed
using SPM12 (Wellcome Trust Centre of Cognitive Neurology,
University College London, United Kingdom2). The T1 images
were reoriented, realigned, and normalized using the standard
Montreal Neurological Institute space. The images were then
segmented into GM and white matter. Related tissue segments
were used to create a custom template using diffeomorphic
anatomical registration with an exponentiated lie algebra
approach, which is one of the highest ranking registration
methods in patients with AD (Cuingnet et al., 2011). To
correct for partial volume effects, the segmentation of tissue
type was performed using partial volume estimation. During the
modulation step, each voxel of the registered GM image was
multiplied by the Jacobian of the warp field that defined the
direction and amount of modulation. The modulated and warped
GM images were then smoothed using a Gaussian kernel of 8 mm
full width at half maximum.

Independent Component Analysis and
Network Integrity Score
The preprocessed spatially normalized modified GM images of
the patients were concatenated to form a subject series and
entered into the ICA process. Spatial ICA was carried out using
the Multivariate Exploratory Linear Optimized Decomposition
into Independent Components software package version 3.153.
The resulting independent components were z-transformed and
visualized using a threshold of z > 1.96 (p < 0.05). In general,
the optimal number of components is related to the data size
and the research questions. A lower number of components
causes a loss of spatial information, while a higher number of
components can result in less meaningful components. In this
study, we set the number of independent components to 25.
Among these 25 components, we determined 15 to be meaningful
based on matching them with the published data and templates
from a study investigating the social brain across childhood
and adolescence (McCormick et al., 2018) and the BrainMap
70-component ICA template4.

Statistical Analysis
We first tested whether each SNP exerted an effect on cognitive
measures directly or via interactions (or synergistically) with
ApoE4. Next, to evaluate whether the genetic effects on cognitive
measures were via the SCN as an endophenotype, we explored the
SCN-cognitive and SCN-SNP relationships. The SCN-cognitive
relationships were explored using a linear regression model
with the cognitive scores as the dependent variable and the
NIS of each SCN as the independent variable, adjusted for age,
education, and disease duration. Finally, we modeled how the 15
SNPs and ApoE4 status may affect the GM SCN (and SCN-SNP
relationship) using a multivariate linear model.

2http://www.fil.ion.ucl.ac.uk/spm/
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
4https://brainmap.org/icns/

Clinical data were expressed as mean ± standard deviation.
The Student’s t-test was used to compare continuous variables,
and the chi-square test was used to compare categorical variables.
To examine the genotype effects on cognitive outcome measures,
we used additive, dominant, and recessive models (Zhao F.
et al., 2016). The dichotomization of the SNP genotype into
different genetic models was based on the risk allele. Based on
the classification, the additive model compared three groups: risk
homozygotes, risk heterozygotes, and non-risk homozygotes. For
the dominant model, the genotype group was dichotomized into
risk (homozygote and heterozygotes) and non-risk groups. For
the recessive group, the risk homozygotes were considered to
be one group and compared with the risk heterozygotes and
non-risk homozygotes. For each SNP, the risk allele is listed
in Supplementary Table 1 according to a literature review of
the Chinese-Han population, and binary group stratification
was based on the Hardy-Weinberg equation for equilibrium.
Using the MMSE, CASI total score, or STM subscore as
dependent variables, we also explored the interactions between
the susceptible SNPs and ApoE4 status (ApoE4 carriers and non-
E4 carriers) using a linear regression model, with education, age,
and duration of disease as covariates. All statistical analyses were
conducted using SPSS software (SPSS version 22 for Windows R©,
SPSS Inc., Chicago, IL, United States). Statistical significance was
set at p < 0.05.

For each component, the intensity was calculated and
recorded as NIS, which was then Z-transformed in the regression
model. Differences in the ICA NIS of each SNP were calculated
using the Student’s t-test based on the predefined groups in
Supplementary Table 1. To understand the clinical significance
of each SCN, we used a linear regression model to explore the
relationships between outcome measures (MMSE, CASI total
score, and executive and non-executive domains) and NIS with
education, age, and duration of disease as covariates. In addition,
to understand the clinical significance of the identified SCN
in the CASI subscores, we also calculated partial correlations
between the extracted SCN NIS and the cognitive scores by
setting the significance value at p < 0.05 and the covariates as
age, educational level, and disease duration (years).

Finally, multivariate linear regression analysis was performed
to assess the SCN-SNP relationships. Fifteen models were run
(one for each SCN NIS), and each model consisted of the
following variables: age, sex, the 15 SNPs, and APOE E4
status. For the SNPs that showed significance on NIS, we
tested the interactions with ApoE4 status. The NIS served
as the dependent variable, with the significant SNP, ApoE4,
and interaction (SNP∗ApoE4) as independent variables. All
independent variables were entered in one block and the
significance value was set at p < 0.05.

RESULTS

Demographic Data of the Patients With
Alzheimer’s Disease
The demographic data and cognitive test scores are shown in
Table 1. All of the enrolled patients had early-stage AD, as the
mean duration of disease was 0.9 ± 1.12 years. Among the
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TABLE 1 | Demographic data of the 324 patients with Alzheimer’s disease.

Case numbers or
scores

Male/Female 152/172

Education (year) 7.8 ± 5.09

Duration of disease (year) 0.9 ± 1.12

ApoE4 carriers (%) 114 (35.19%)

Age (years) 71.6 ± 8.8

Mini-mental state examination 21.1 ± 2.8

Cognition Ability Screening Instrument

Total score (100) 68.6 ± 24.7

Executive function test (40) 25.5 ± 9.6

Attention (8)
Verbal fluency (10)
Abstract thinking (12)
Mental manipulation (10)

6.3 ± 1.63
5.4 ± 3.08
8.1 ± 3.12
5.7 ± 3.50

Non-executive domains (60) 43.2 ± 15.83

Orientation (18)
Short- term memory (12)
Long-term memory (10)
Language ability (10)
Drawing (10)

13.0 ± 5.71
6.1 ± 4.11
8.3 ± 2.42
8.1 ± 2.42
7.7 ± 2.99

Data presented as mean ± standard deviation. Numbers in parentheses
indicate maximal score.

enrolled patients, 114 were E4 carriers (E4 homozygote n = 14).
The risk alleles CD2AP, ABCA7, FTMT, SPTLC1, FGF1, CR1,
and EXOC3L2 were found to be minor alleles (Supplementary
Table 1). Of note, the MAFs of FTMT and CR1 were extremely
low.

For cognitive outcomes (MMSE, CASI total scores, and STM
subscores), gender had no effect when controlling for educational
level. For those with an educational level ≤ 6 years (elementary
school), 7–12 years (high school), and >12 years, none of the
comparisons of test scores between the male and female patients
were significant. There were age effects on MMSE (r = − 0.23,
p < 0.0001), CASI total (r = − 0.259, p < 0.0001), and STM
subscores (r = − 0.271, p < 0.0001). The educational effects on
MMSE (r = 0.432, p < 0.0001), CASI total (r = 0.433, p < 0.0001),
and STM subscores (r = 0.372, p < 0.0001) were also significant.

CD2AP and CR1 on Cognitive Test
Scores
The results of the additive model, dominant model, and recessive
model of each SNP on MMSE and CASI are shown in Tables 2, 3.
The CD2AP G allele was associated with MMSE total score
(Table 2) or CASI total score (Table 3) in the additive or
dominant model, and the G allele was associated with higher
scores. The CD2AP G allele (in the additive or dominant model)
was also associated with a higher STM subscore (Table 4).
The association between the CD2AP G allele and cognitive
scores showed interactions with the non-ApoE4 genotype in
MMSE (Table 2), CASI total score (Table 3), and STM subscore
(Table 4). In the recessive model, the CR1 A allele was associated
with a lower STM subscore (Table 4), while the risk of a

detrimental effect was independent of ApoE4 status. Of note, the
MAF of the A allele in CR1 was 0.029.

Effect of Interactions With the ApoE4
Gene on Short-Term Memory Scores
Short-term memory is the salient feature in AD, and we found
three additional SNPs that showed interactions with the ApoE4
gene: BIN 1, MS4A6A, and FTMT (Table 4 and Supplementary
Figure 1). The E4 allele was related to lower scores in the BIN
1, FTMT, and MS4A6A alleles. The MAF of the G allele in
FTMT was 0.082.

Network Spatial Topography and
Cognitive Significance Validation
A total of 15 ICA components were constructed and considered
to be meaningful networks (Figure 1). The MMSE and CASI
total scores were considered to indicate general cognitive
performance, and their relationships with significant NIS are
shown in Figure 2. Among the significant networks, the anterior
and posterior hippocampus, right temporal, left thalamus, and
default mode network were the most important for general
cognitive performance. We then used NIS as the dependent
variable to explore its relationships with STM, executive
domains, and non-executive domains, adjusted for age and
educational level. The standardized beta coefficients (95%
confidence intervals) and exact p-values are reported in Table 5.
For STM, executive domains, and non-executive domains, the
aforementioned five networks (Figure 2) showed statistical
significance, while the dorsal attentional network also showed
statistical significance. Finally, we examined the relationships
between CASI subdomains and NIS (Supplementary Table 2).
The results suggested that the NIS of the anterior and posterior
hippocampus, right temporal, right thalamus, lateral cerebellum,
and medial cerebellum (all p < 0.0001) were consistently
related to the cognitive test scores adjusted for age and
years of education.

Structural Covariance
Networks–Single-Nucleotide
Polymorphism Relationships
Using the binary classifications as described in Supplementary
Table 1, seven SNPs were found to have an independent effect
on NIS (Figure 3). To avoid possible false positives based
on the 16 × 15 SCN-SNP matrix and a p-value of 0.05, we
further explored the SCN-SNP relationships (Table 6) using
a multivariate linear model. The NIS served as the dependent
variable, and the independent variables included ApoE4
status, rs9349407, rs3865444, rs670139, rs744373, rs3851179,
rs11136000, rs3764650, rs610932, rs6887649, rs7849530,
rs4866650, rs3765728, rs34011, rs6656401, and rs597668,
adjusted for age and sex. Among the tested 16 genetic loci,
the significance of the 7 SNPs (ApoE4, MS4A6A, BIN1, CLU,
CR1, PICALM, and FGF1) showed independent or collinear
relationships with the SCNs. The predictive roles of CLU and
CR1 on supplementary motor cortex SCNs were independent,
and no interactions with ApoE4 were found.
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TABLE 2 | General linear model for single nucleotide polymorphisms on mini-mental score examination*.

Gene Additive model Dominant model Recessive model Interaction with APOE

Group β SE p β SE p β SE p Chi-square p effects

CD2AP GG compares to CC (1/3) 9.180 3.8140 0.016 8.968 3.8115 0.019 –1.025 0.8284 0.216 8.065 0.026 Non-E4

rs9349407 CG compares to CC(2/3) 8.437 3.8528 0.029

CD33 CC compares to AA (1/3) 1.810 2.0389 0.375 2.191 2.0287 0.280 0.875 0.7900 0.268 3.016 0.389 –

rs 3865444 CA compares to AA(2/3) 2.992 2.0962 0.153

MS4AE4 GG compares to TT (1/3) 0.824 1.1392 0.470 1.054 1.0311 0.307 0.097 0.7921 0.903 3.252 0.354 –

s670139 GT compares to TT (2/3) 1.221 1.0883 0.262

BIN1 AA compares to GG (1/3) –0.399 1.2194 0.744 –0.043 1.1009 0.969 0.272 0.7868 0.729 2.559 0.465 –

rs744373 AG compares to GG(2/3) 0.055 1.1708 0.963

PICALM CC compares to TT (1/3) –1.379 1.1078 0.213 –1.294 1.0134 0.202 0.485 0.7764 0.532 2.523 0.471 –

rs3851179 CT compares to TT (2/3) –1.222 1.0822 0.259

CLU CC compares to TT (1/3) –0.803 1.8222 0.660 –0.310 1.8107 0.864 1.373 0.7766 0.077 3.730 0.292 –

rs11136000 TC compares to TT (2/3) 0.650 1.8792 0.729

ABCA7 TT compares to GG (1/3) –0.371 1.1807 0.753 0.108 1.1082 0.922 0.808 0.7645 0.291 6.46 0.091 –

rs3764650 TG compares to GG(2/3) 0.570 1.1754 0.628

MS4A6A GG compares to TT (1/3) –0.270 1.1356 0.806 0.461 1.0307 0.655 1.025 0.7877 0.193 5.518 0.138 –

rs610932 TG compares to TT (2/3) 0.986 1.0831 0.362

FTMT AA compares to GG (1/3) –4.819 6.6353 0.468 –4.801 6.6335 0.469 0.206 1.0325 0.842 1.974 0.160 –

rs6887649 AG compares to GG(2/3) –4.708 6.6912 0.482

SPTLC1 AA compares to GG (1/3) 1.647 3.3356 0.622 1.465 3.3362 0.661 –1.030 0.9562 0.28 7.282 0.053 –

rs7849530 AG compares to GG(2/3) 0.661 3.4251 0.847

Intergenic SNP AA compares to CC (1/3) –1.747 2.1482 0.416 –1.742 2.1286 0.670 0.161 0.7768 0.836 5.89 0.117 –

rs4866650 AC compares to CC(2/3) –1.723 2.1886 0.428

P73 GG compares to AA (1/3) 0.436 1.1243 0.698 0.456 0.7792 0.559 –0.201 1.0410 0.847 2.549 0.467 –

rs3765728 GA compares to AA(2/3) 0.463 0.8381 0.581

FGF1 GG compares to AA (1/3) –0.625 1.2399 0.671 –0.263 1.1872 0.825 0.576 0.7573 0.447 4.296 0.231 –

rs34011 GA compares to AA(2/3) 0.064 1.2681 0.960

CR1 AA compares to GG (1/3) –5.326 6.6206 0.421 5.231 6.6324 0.430 –2.032 1.6498 0.218 4.020 0.259 –

rs6656401 GA compares to GG(2/3) –1.826 1.6971 0.282

EXOC3L2 TT compares to CC (1/3) 0.138 1.1541 0.905 0.329 1.0693 0.758 0.239 0.7718 0.757 7.673 0.045 Non-E4

rs597668 TC compares to CC(2/3) 0.499 1.1362 0.661

*Adjusted for education, disease duration and age.
SE, standard error.

DISCUSSION

Major Findings
In this study, we tested the effects of amyloid- or tau-related
genotypes on cognitive measurements and evaluated whether
the genetic effects on cognitive measures were via SCNs as
an endophenotype. We found that three different mechanisms
modulated the relationships among AD-susceptible loci, GM
network, and cognitive measures. First, an independent role
of the genetic effect on cognitive test scores was found, as
the CD2AP and CR1 genotypes were directly related to CASI
and MMSE scores. Second, the effects of amyloid- or tau-
related genotypes on cognitive measures interacted or had a
synergic effect with ApoE4 status. Finally, we identified several
SCNs that may serve as endophenotypes of AD-susceptible loci
in predicting cognitive outcomes. The SCNs showing clinical
significance with cognitive scores included the hippocampal,
temporal, thalamus, default mode network, and dorsal attention
network. In multivariate regression, seven genotype groups

were found to either exert an independent effect or synergistic
effect on these SCNs. As the SCNs were associated with
different cognitive domains, the identification of genotype-SCN
relationships may help to understand the neurobiology of SNPs
on the cognitive features in AD.

Dominant Model Suggested Protection
of the CD2AP rs9349407 G Allele in
Non-E4 Carriers
The role of rs9349407 as a risk SNP in Han Chinese populations
has been reported (Xiao et al., 2015); however, the findings have
been inconsistent (Jiao et al., 2015). One meta-analysis suggested
that rs9349407 C is a risk allele for susceptibility to AD in East
Asian, American, Canadian, and European populations (Chen
et al., 2015). In our additive and dominant models, patients with
AD with the rs9349407 G allele had higher CASI total and STM
subscores, especially the non-E4 carriers. The minor allele C
of rs9349407 has been associated with neuritic plaque burden,
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TABLE 3 | General linear model for single nucleotide polymorphisms on cognitive ability screening instrument total scores*.

Gene Additive model Dominant model Recessive model Interaction with APOE

Group β SE p β SE p β SE p Chi-square p effects

CD2AP GG compares to CC (1/3) 44.091 14.17 0.002 43.245 14.165 0.002 –4.337 3.0951 0.161 5.989 <0.05 Non-E4

rs9349407 CG compares to CC(2/3) 41.125 14.32 0.004

CD33 CC compares to AA (1/3) 0.406 7.658 0.958 1.048 7.5987 0.890 1.746 2.9576 0.555 2.489 0.477 –

rs 3865444 CA compares to AA(2/3) 2.398 7.8728 0.761

MS4AE4 GG compares to TT (1/3) 2.26 4.2595 0.596 4.152 3.8605 0.282 1.896 2.9644 0.522 6.002 0.112 –

s670139 GT compares to TT (2/3) 5.514 4.0691 0.175

BIN1 AA compares to GG (1/3) 0.089 4.4880 0.984 1.080 4.1155 0.793 1.32 2.941 0.654 3.612 0.306 –

rs744373 AG compares to GG(2/3) 1.791 4.3096 0.678

PICALM CC compares to TT (1/3) –3.254 4.1484 0.433 –2.431 3.7963 0.522 1.986 2.9024 0.494 3.117 0.374 –

rs3851179 CT compares to TT (2/3) –1.733 4.0528 0.669

CLU CC compares to TT (1/3) 0.490 6.8294 0.943 1.801 6.7691 0.790 3.333 2.9119 0.252 2.972 0.396 –

rs11136000 TC compares to TT (2/3) 4.358 7.0434 0.536

ABCA7 TT compares to GG (1/3) 0.127 4.4213 0.977 1.915 4.1498 0.644 2.657 2.8650 0.354 3.034 0.386 –

rs3764650 TG compares to GG(2/3) 3.636 4.4014 0.409

MS4A6A GG compares to TT (1/3) –1.407 4.2567 0.741 0.329 3.8545 0.932 2.588 2.9492 0.380 4.623 0.202 –

rs610932 TG compares to TT (2/3) 1.562 4.0599 0.7

FTMT AA compares to GG (1/3) 26.705 24.7683 0.281 26.328 24.7763 0.288 2.905 3.8570 0.451 2.337 0.126 –

rs6887649 AG compares to GG(2/3) 24.296 24.9768 0.331

SPTLC1 AA compares to GG (1/3) 11.770 12.4733 0.345 11.596 12.4562 0.352 1.663 3.5659 0.641 2.738 0.434 –

rs7849530 AG compares to GG(2/3) 10.829 12.8078 0.398

Intergenic SNP AA compares to CC (1/3) –4.298 8.0343 0.593 –4.654 7.9625 0.559 –0.533 2.9044 0.854 3.990 0.263 –

rs4866650 AC compares to CC(2/3) –5.279 8.1853 0.519

P73 GG compares to AA (1/3) –0.260 4.2196 0.951 1.091 2.9254 0.709 1.076 3.9070 0.783 3.319 0.345 –

rs3765728 GA compares to AA(2/3) 1.606 3.1456 0.610

FGF1 GG compares to AA (1/3) –6.776 4.5323 0.144 –5.592 4.4370 0.208 3.584 2.8329 0.206 5.267 0.153 –

rs34011 GA compares to AA(2/3) –4.123 4.7375 0.384

CR1 AA compares to GG (1/3) 34.971 24.7119 0.157 34.67 24.7429 0.161 –7.488 6.1687 0.225 3.999 0.135 –

rs6656401 GA compares to GG(2/3) –5.771 6.3347 0.362

EXOC3L2 TT compares to CC (1/3) –2.806 4.3082 0.515 –4.447 3.9970 0.266 –1.65 2.8892 0.568 2.783 0.426 –

rs597668 TC compares to CC(2/3) –5.899 4.2413 0.164

*Adjusted for education, disease duration and age.
SE, standard error.

which may explain why non-E4 carriers with the G allele may
have higher cognitive test scores (Shulman et al., 2013).

In this study, we only enrolled patients with clinical AD,
and we tested whether risk SNP alleles or protective SNP alleles
affected cognitive test scores or SCNs. Although not all of our
patients with AD received amyloid scans, our exclusion criteria
reduced the possibility of non-AD pathologies. Rs9349407
is a polymorphism in the CD2AP gene that translates the
scaffolding molecule for signal transduction. Loss of function
of CD2AP has been linked to enhanced Aβ production, tau-
induced neurotoxicity, abnormal neurite structure modulation,
and reduced blood-brain barrier integrity, which has been
implicated in AD pathogenesis (Dubey et al., 2018; Ramos de
Matos et al., 2018).

CR1 rs6656401 A Allele on Cognitive
Outcomes
CR1 is an AD susceptibility locus that also influences AD-related
traits on neuritic plaque deposition and episodic memory decline.

As STM is the salient feature in AD, it was used in this study
as a dependent variable in the SNP genetic model analysis. We
identified the independent role of the rs6656401 A allele on
lower STM subscores, consistent with a previous meta-analysis
of greater risk with the minor allele A in AD (Shen et al., 2015).
A coding variant in the long homologous repeat D region of
the CR1 gene, rs4844609 (Ser1610Thr), has been associated with
episodic memory decline and been shown to account for the
known effect of SNP rs6656401 (Keenan et al., 2012). CR1 risk
allele A was a minor allele with a low MAF in this study, and the
relationship with lower STM may be due to the small number of
patients with the A allele. However, three studies have confirmed
the association between AD susceptibility and the rs6656401 A
allele in Chinese patients (Zhang et al., 2010; Chen et al., 2012;
Jin et al., 2012), although another study showed no association
(Li et al., 2011). Rs6656401 is in the CR1 gene, and complement
system activation in the clearance of amyloid has been proposed
to be a possible mechanism of the risk associated with rs6656401
(Zhang et al., 2010). Although the independent role of rs6656401
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TABLE 4 | General linear model for single nucleotide polymorphisms on cognitive ability screening instrument short-term memory score*.

Gene Additive model Dominant model Recessive Model Interaction with APOE

Group β SE p β SE p β SE p Chi-square p Effects

CD2AP GG compares to CC (1/3) 5.596 2.3663 0.018 5.418 2.3673 0.022 –0.790 0.5135 0.124 7.950 0.019 Non-E4

rs9349407 CG compares to CC(2/3) 4.971 2.3903 0.038

CD33 CC compares to AA (1/3) 1.086 1.2685 0.392 1.225 1.2594 0.331 0.277 0.4910 0.573 5.597 0.133 –

rs 3865444 CA compares to AA(2/3) 1.518 1.3042 0.244

MS4AE4 GG compares to TT (1/3) 0.506 0.7078 0.475 0.675 0.6407 0.292 0.095 0.4923 0.847 6.163 0.104 –

s670139 GT compares to TT (2/3) 0.797 0.6762 0.239

BIN1 AA compares to GG (1/3) 0.488 0.7432 0.511 0.238 0.6819 0.727 –0.442 0.4869 0.364 7.7977 0.046 E4

rs744373 AG compares to GG(2/3) 0.059 0.7136 0.934

PICALM CC compares to TT (1/3) 0.035 0.6895 0.960 0.087 0.6308 0.890 0.061 0.4823 0.899 6.756 0.080 –

rs3851179 CT compares to TT (2/3) 0.132 0.6736 0.845

CLU CC compares to TT (1/3) 0.024 1.1313 0.983 0.268 1.1236 0.811 0.758 0.4824 0.116 6.739 0.081 –

rs11136000 TC compares to TT (2/3) 0.837 1.1667 0.473

ABCA7 TT compares to GG (1/3) 1.112 0.7320 0.129 1.159 0.6856 0.091 –0.190 0.4760 0.690 6.606 0.086 –

rs3764650 TG compares to GG(2/3) 1.204 0.7287 0.098

MS4A6A GG compares to TT (1/3) 0.509 0.7056 0.470 –0.117 0.6389 0.855 0.632 0.4888 0.196 8.070 0.045 Non-E4

rs610932 TG compares to TT (2/3) 0.162 0.6730 0.809

FTMT AA compares to GG (1/3) 5.961 4.1087 0.147 –5.954 4.1075 0.147 0.161 0.6410 0.802 4.598 0.032 E4

rs6887649 AG compares to GG(2/3) 5.921 4.1433 0.153

SPTLC1 AA compares to GG (1/3) 1.145 2.0743 0.581 1.198 2.0720 0.563 0.188 0.5928 0.751 6.861 0.076 –

rs7849530 AG compares to GG(2/3) 1.429 2.1299 0.502

Intergenic SNP AA compares to CC (1/3) 0.597 1.3297 0.653 –0.853 1.3220 0.519 –0.594 –0.4811 0.217 5.203 0.158 –

rs4866650 AC compares to CC(2/3) 1.302 1.3547 0.337

P73 GG compares to AA (1/3) 0.545 0.7934 0.438 –0.424 0.4876 0.385 0.353 0.6516 0.588 6.753 0.080 –

rs3765728 GA compares to AA(2/3) 0.378 0.5244 0.471

FGF1 GG compares to AA (1/3) 0.372 0.7702 0.629 –0.299 0.7369 0.685 0.212 0.4705 0.653 4.551 0.208 –

rs34011 GA compares to AA(2/3) 0.208 0.7877 0.792

CR1 AA compares to GG (1/3) 5.587 4.0857 0.171 5.483 4.1096 0.182 –2.217 1.0189 0.030 4.670 0.198 –

rs6656401 GA compares to GG(2/3) 2.006 1.0473 0.055

EXOC3L2 TT compares to CC (1/3) 0.131 0.7166 0.855 –0.115 0.6647 0.862 –0.382 0.4793 0.425 7.655 0.054 –

rs597668 TC compares to CC(2/3) 0.333 0.7055 0.637

*Adjusted for education, disease duration, and age.
SE, standard error.

minor allele on lower STM was confirmed in this study, it is worth
noting that the A allele was a minor allele and the MAF was only
0.029. Therefore, the findings related to CR1 in this study should
be interpreted with caution.

To understand the effect, we also evaluated SCN intensity
and explored whether the relationships between the rs6656401
A allele and cognitive test results may have been modulated by
SCNs. As shown in our regression model, the dorsal attention
SCN intensity and supplementary motor cortex SCN were
significantly different between the risk and protective alleles,
and the network intensity was also related to the executive and
non-executive domains. Therefore, we suggest that the dorsal
attention network is the endophenotype of the link between
rs6656401 and cognitive outcomes.

Structural Covariance Networks as an
Endophenotype Between Risk
Single-Nucleotide Polymorphism and
Cognitive Test Scores
Based on the relationships between SCN and cognitive
test scores, we identified several significant networks that
predicted general or isolated cognitive function in the patients

(Table 5, Figure 2, and Supplementary Table 2). For these
significant networks, we identified independent or synergic
effects in seven genotype groups that predicted the network
integrity. As the clinical significance of SCNs was established in
regression analysis with different cognitive domains, SCNs may
have served as the endophenotype between the risk SNP group
and cognitive test scores.

ApoE4 Modulated Anterior Hippocampal,
Precentral Gyrus, Supplementary Motor
Cortex and Determined the Salient
Features of Alzheimer’s Disease
By definition, SCNs are based on the similarity of the same
microstructural variations and thus may be influenced by factors
influencing underlying structures such as the expression of
common genetic traits during development. The independent
role of ApoE4 on the anterior hippocampus and precentral and
supplementary motor cortex SCN was established in this study.
As the hippocampal SCN intensity scores were also correlated
with STM subscores in our patients with AD, this finding
supports the role of ApoE4 in linking salient cognitive and
biosignature features in AD.
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FIGURE 1 | Significant structural covariance network (A–O) showing group differences in signal intensities using independent component analysis.

FIGURE 2 | The Z-transformed cognitive (A) Mini-Mental State Examination [MMSE] or (B) Cognitive Ability Screening Instrument [CASI]-structural covariance
network relationships, adjusted for age, years of education, and disease duration (years). Dots represent each participant in this study, and the linear relationships
and 95% confidence intervals of individuals are shown. r = partial correlation coefficient. The exact p-values are shown.

An important finding in this study is the relationship
between ApoE4 and the anterior hippocampal area. Traditional
cytoarchitectonic distribution of the hippocampus (Frederickson
et al., 1983) is a convoluted GM structure encompassing three
architectonically distinct regions: the fascia dentata, the CA

region (which can be subdivided into CA1–CA4 fields), and
the subicular complex. In this study, two hippocampus SCNs
in ICA (anterior vs. posterior hippocampus) showed ApoE4
genotype group differences. The SCN of the hippocampal axis
associated with ApoE4 showing the anterior-posterior axis is
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TABLE 5 | Linear regression model between network intensity score analysis and cognitive test scores (Z transformed).

Area Unstandardized beta; 95% Confidence Interval (p-value)

Index on
Figure 1

Network main structure Short term memory score Non-executive score Executive score

A Basal ganglia –0.312; –0.749 ∼0.116 (p = 0.153) –0.343; –1.984 ∼1.297 (p = 0.681) –0.533; –1.5 ∼0.433 (p = 0.278)

B Anterior hippocampus 1.518; 1.102∼1.934 (p < 0.001) 6.064; 4.486∼7.642 (p < 0.001) 2.118; 1.134∼3.102 (p < 0.001)

C Posterior hippocampus 2.125; 1.717∼2.533 (p < 0.001) 7.691; 6.105∼9.278 (p < 0.001) 3.415; 2.422∼4.407 (p < 0.001)

D Right temporal 1.292; 0.872 ∼1.712 (p < 0.001) 5.045; 3.444 ∼6.646 (p < 0.001) 2.384; 1.419∼3.350 (p < 0.001)

E Right thalamus 0.411; –0.022∼0.844 (p = 0.063) 2.037; –0.388∼3.685 (p = 0.016) 1.219; 0.246∼2.191 (p = 0.014)

F Left thalamus 0.591; 0.164∼1.017 (p = 0.007) 2.354; 0.724∼3.984 (p = 0.005) 1.525; 0.566∼2.484 (p = 0.002)

G Postcentral gyrus –0.477; –0.896∼–0.058 (p = 0.026) –1.447; –3.054∼–0.151 (p = 0.078) –0.409; –1.361∼0.543 (p = 0.398)

H Supplementary motor cortex –0.439; –0.860∼–0.019 (p = 0.041) –1.130; –2.743∼0.484 (p = 0.169) –0.685; –1.637∼0.267 (p = 0.158)

I Inferior cerebellum –0.442; –0.859∼–0.026 (p = 0.037) –1.917; –3.505∼–0.329 (p = 0.018) –0.729; –1.671∼0.214 (p = 0.129)

J Lateral cerebellum –0.181; –0.613∼0.251 (p = 0.410) –0.752; –2.404∼0.9 (p = 0.371) –0.034; –1.010∼0.942 (p = 0.945)

K Medial cerebellum –0.426; –0.853∼0.001 (p = 0.05) –2.595; –4.212∼–0.977 (p = 0.002) –1.262; –2.221∼–0.303 (p = 0.01)

L Default mode network 0.668; 0.253∼1.083 (p = 0.002) 1.263; 0.296∼2.177 (p = 0.01) 2.582; 1.001∼4.170 (p = 0.001)

M Dorsal attention network 0.682; 0.273∼1.092 (p = 0.001) 3.119; 1.566∼4.672 (p = 0.001) 1.956; 1.042∼2.869 (p = 0.001)

N Medial cerebellum –0.073; –0.493 ∼0.346 (p = 0.731) –0.472; –2.075∼1.132 (p = 0.563) –0.635; –1.579∼0.31 (p = 0.187)

O Cingulate network –0.085; –0.333∼0.504 (p = 0.688) 0.567; –1.033∼2.168 (p = 0.486) –0.398; –0.546∼1.3343 (p = 0.407)

consistent with task-related activities or connectivity patterns
(Colombo et al., 1998; Przeździk et al., 2019). A similar anterior-
posterior organization has recently been reported, suggesting
that the gene expression is linked to the distinct molecular
gradient in the hippocampus (Vogel et al., 2020). Among the 15
preselected SNPs and ApoE4, ApoE4 had an independent role
on the anterior hippocampal axis, in contrast to MS4A6A on
the posterior axis. The association with cognitive test scores in
hippocampal SCN intensity scores and the interactions between
the hippocampus and cortical/subcortical structures demonstrate
its close integration within large-scale degenerative systems.

MS4A6A Modulated Posterior
Hippocampus, Right Thalamus, and
Dorsal Attention Networks
A previous study reported interactions between MS4A and
CLU (Lambert et al., 2013) or CD33 on conferring the risk
of AD. Meanwhile, common variants of MS4A6A (rs610932),
MS4A4E (rs670139), CD33 (rs3865444), CD2AP (rs9349407),
CLU, and PICALM have been associated with memory decline
(Hollingworth et al., 2011; Naj et al., 2011; Karch et al., 2012).
These reports emphasize the risk and role of MS4A6A in disease
progression, while our results emphasize the role of MS4A6A
(rs610932) and posterior hippocampus in the clinical features of
AD. Similar to a report with a smaller AD cohort (Chang Y. T.
et al., 2019), the dissociation of the hippocampus (anterior or
posterior) emphasizes the interplay of genetic loci on anatomy.

BIN1 and CLU Modulated Default Mode
Network Structural Covariance Networks
The most commonly affected brain region in AD studies is
the default mode network, and the deposition of amyloid or
tau protein is localized in this network (Hansson et al., 2017;

Jones et al., 2017). The default mode network is regarded
to be an early neuroimaging biosignature (Chang et al.,
2015), and a recent report suggested that the default mode
network may be comprised of multiple, spatially dissociated but
interactive components (Andrews-Hanna et al., 2010), of which
two subsystems are of particular interest. Our SCN results of
associations with BIN1 and CLU are consistent with cores in
the posterior cingulate cortex and anterior medial prefrontal
cortex, which is known as the “dorsal medial prefrontal cortex
subsystem” (or midline core subsystem). The genetic locus
rs744373 near BIN1 (OR = 1.13; 95% CI, 1.06–1.21 per copy of the
minor allele; p = 1.59 × 10−11) has been related to AD, with the
possible mechanism involving tau-related cascade (Franzmeier
et al., 2019). BIN1 also modulated the inferior cerebellum and left
thalamus and could predict cognitive scores in this study.

Limitations and Methodological
Considerations
This study has several limitations. First, we enrolled subjects
with early-stage AD, and we did not include a control group
or subjects with late-stage AD. As the SNPs were preselected
from GWAS results showing significance in AD susceptibility,
the inclusion of a control group may have helped to elucidate
whether these SNPs exerted similar GM modulation patterns in
healthy elderly subjects as in those with AD. However, as these
SNPs each exert different functional activities on the pathogenetic
mechanisms in AD, the use of a pure AD population may help
to maximize the effect of each SNP on regional GM networks.
As a structural covariance matrix is defined by estimating
the interregional correlations of cortical volumes between all
possible pairs of regions defined by anatomy, SCN construction
relies on both the spatial patterns of morphometric and signal
similarities. Given the differences in brain morphometry in
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FIGURE 3 | Significant group differences between the risk and non-risk allele (A–G) in network intensity score (p < 0.05). X axis: SNP group, Y axis: Z transformed
network intensity values.

controls, it would be difficult to match all influential factors.
In this study, we did not include a late-stage AD group based
on two considerations. First, we wanted to examine interactions
between SCNs and SNPs in a more uniform population, so

only subjects with early-stage AD were included. Second, the
enrollment of subjects with late-stage AD may have included
SCNs related to disease progression; however, this was not
the major purpose of this study. The effects of susceptible
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TABLE 6 | Risk allele per structural covariance network of 15 tested single nucleotide polymorphisms (SNP) and ApoE4.

Network SNP Risk allele Unstandardized B (95%CI) Standardized β P-value

Basal ganglia FGF1 (rs34011) A-carrier –0.261(–0.026∼–0.497) –0.142 0.03

Anterior Hippocampus ApoE4 E4 carrier –0.344 (–0.619∼–0.069) –0.164 0.014

posterior Hippocampus MS4A6A (rs610932) T carrier 0.292(0.024∼0.559) 0.154 0.033

Right Thalamus MS4A6A (rs610932) T carrier 0.417 (0.121∼0.712) 0.199 0.006

Left Thalamus BIN1 (rs744373) TT –0.294(–0.557∼–0.031) –0.145 0.028

Precentral Gyrus APOE4 E4 0.421 (0.173–0.669) 0.217 0.001

Supplementary Motor Cortex APOE4 E4 carrier 0.302(0.074∼0.53) 0.169 0.01

CLU (rs11136000) CC 0.258(0.032∼0.484) 0.143 0.025

CR1 (rs6656401) A carrier –0.482(—-0.954∼–0.011) –0.130 0.045

Inferior Cerebellum BIN1 (rs744373) TT –0.335(–0.607∼–0.062) –0.161 0.016

Medial Cerebellum PICALM (rs3851179) GG –0.266 (–0.521∼–0.011) –0.135 0.041

Default Mode Network CLU (rs11136000) CC –0.313(–0.566∼–0.06) –0.157 0.016

BIN1 (rs744373) TT 0.320(0.063∼0.576) 0.161 0.015

Dorsal Attention Network CR1 (rs6656401) A-carrier –0.640(–1.184∼–0.096) 0.103 0.021

FGF1 (rs34011) A-carrier 0.274(0.025∼0.255) 0.137 0.031

MS4A6A (rs610932) T carrier 0.364(0.076∼0.652) 0.175 0.014

The Multivariate linear model was used. Independent variables using ApoE4, rs9349407, rs3865444, rs670139, rs744373, rs3851179, rs11136000, rs3764650,
rs610932, rs6887649, rs7849530, rs4866650, rs3765728, rs34011, rs6656401, rs597668, adjusted for age and gender; dependent variable is the network
integrity score.

SNPs and disease progression are important scientific questions.
However, we focused on the initial hypothesis and tested
the endophenotypic role of SCNs in cognitive outcomes in a
uniform population with early-stage AD. A larger sample size
including subjects with different stages of AD may help to extend
the understanding of susceptible SNPs and brain degeneration
patterns.

Another limitation is the estimation of the number of
components for ICA analysis. Most studies have used 12–30
components in structural networks or resting-state networks.
In this study, we constructed SCN networks and filtered the
clinical significance of a network using correlation analysis with
cognitive measures and by matching with the ICA template
(see footnote 4). From a methodological aspect, the groupwise
structural covariance analysis relied on the morphological
properties of each voxel with the rest of the brain across a
group of participants. The registration of the structural data of
a single participant to the template involves linear and non-
linear deformation that can result in inaccuracies in subregions.
In this report, we emphasized well-characterized networks to
explain the SNP effect, where the network significance was
established by correlations with cognitive measures. Finally,
the use of 15 AD-susceptible SNPs to validate the underlying
pathological mechanisms may have oversimplified the genetic
interactions. However, these SNPs were chosen based on their
significance in large-scale GWASs in which they were all involved
in amyloid or tau cascades, so the hypothesis was to test
their effect on cognitive scores. We only tested interactions
between each SNP and ApoE4 status, as ApoE4 remains
the strongest predictor. The interpretations of interactions
between SNPs and SCNs were based on a literature review of
possible alterations in functional pathways and may not fully
explain the in vivo situation. Therefore, the findings should be
interpreted with caution.

CONCLUSION AND FUTURE
PERSPECTIVES

In AD, our findings demonstrated amyloid or tau-related SNP
effects that may influence SCNs independently or synergistically
with ApoE4. The use of SCNs as an endophenotype allowed us to
assume the independent and synergistic role of putative SNPs to
predict cognitive measures. The complex interplay among these
SNPs in our study suggests that the hierarchical order of SNPs
modulates GM networks.
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