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OBJECTIVES: To evaluate the contribution of a preextubation chest X-ray (CXR) 
to identify the risk of extubation failure in mechanically ventilated patients.

DESIGN: Retrospective cohort study.

SETTINGS: ICUs in a tertiary center (the Medical Information Mart for Intensive 
Care IV database).

PATIENTS: Patients greater than or equal to 18 years old who were mechanically 
ventilated and extubated after a spontaneous breathing trial.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Among 1,066 mechanically venti-
lated patients, 132 patients (12%) experienced extubation failure, defined as rein-
tubation or death within 48 hours of extubation. To predict extubation failure, we 
developed the following models based on deep learning (EfficientNet) and ma-
chine learning (LightGBM) with the training data: 1) model using only the rapid-
shallow breathing index (RSBI), 2) model using RSBI and CXR, 3) model using 
all candidate clinical predictors (i.e., patient demographics, vital signs, laboratory 
values, and ventilator settings) other than CXR, and 4) model using all candidate 
clinical predictors with CXR. We compared the predictive abilities between mod-
els with the test data to investigate the predictive contribution of CXR. The pre-
dictive ability of the model using CXR as well as RSBI was not significantly higher 
than that of the model using only RSBI (c-statistics, 0.56 vs 0.56; p = 0.95). The 
predictive ability of the model using clinical predictors with CXR was not signif-
icantly higher than that of the model using all clinical predictors other than CXR 
(c-statistics, 0.71 vs 0.70; p = 0.12). Based on SHapley Additive exPlanations 
values to interpret the model using all clinical predictors with CXR, CXR was less 
likely to contribute to the predictive ability than other predictors (e.g., duration of 
mechanical ventilation, inability to follow commands, and heart rate).

CONCLUSIONS: Adding CXR to a set of other clinical predictors in our predic-
tion model did not significantly improve the predictive ability of extubation failure 
in mechanically ventilated patients.

KEY WORDS: chest X-ray; extubation; intubation; machine learning; mechanical 
ventilation; reintubation

Identifying the optimal timing of extubation in mechanically ventilated 
patients in ICUs is of great interest to intensivists. Both long-term mechan-
ical ventilation with delayed extubation and reintubation as a result of pre-

mature extubation are known to be associated with higher mortality due to 
secondary medical complications, such as ventilator-associated pneumonia or 
muscle weakness (1–4). Thus, protocols for ventilator weaning and extubation 
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have been developed to reduce the total duration of 
mechanical ventilation and minimize the risk of extu-
bation failure (5–8).

Protocol-based ventilator weaning and extubation 
may reduce the risk of extubation failure (6–8); how-
ever, patients eligible for the protocol of a previous 
study still experienced postextubation respiratory 
failure (9.7%) and reintubation (5.2%) (9). A previous 
study indicated that among clinical parameters used 
for ventilator weaning and extubation, a tolerance for 
spontaneous breathing trial (SBT), factors affecting 
airway competence, and a stable cardiovascular system 
are key predictors of extubation failure (5). Given that 
chest X-rays (CXRs) have a crucial role in ICUs for 
evaluating the severity of cardiopulmonary illness and 
the complications caused by indwelling devices (10), 
preextubation CXR findings are thought to be bene-
ficial to more accurately assess the risk of extubation 
failure. As exemplified by the study by Rackley et al 
(11) showing that 40% of patients subsequently diag-
nosed with acute lung injury had bilateral infiltrates 
on their CXRs 12 hours prior to their diagnoses, pre-
extubation CXR findings could prognosticate future 
postextubation respiratory failure. However, as a rou-
tine CXR is not recommended for a preextubation 
assessment as per expert opinion (12), there have been 
no studies that evaluated the usefulness of preextuba-
tion CXR for the risk assessment of extubation failure. 
In this context, we developed machine learning-based 
models that predict extubation failure using clinical 
parameters with and without CXR available at the time 
of extubation. By comparing the prediction perfor-
mance of each model, we aimed to evaluate the pre-
dictive ability of a preextubation CXR in mechanically 
ventilated patients.

MATERIALS AND METHODS

Study Design and Patients

This is a retrospective cohort study using the Medical 
Information Mart for Intensive Care IV (MIMIC-IV) 
dataset Version 1.0 (13) and the Medical Information 
Mart for Intensive Care Chest X-ray (MIMIC-CXR) 
dataset Version 2.0.0 (14). MIMIC-IV is an exten-
sive, publicly available database consisting of deiden-
tified health-related data from over 60,000 patients 
admitted to the ICUs of the Beth Israel Deaconess 
Medical Center in the United States from 2008 to 

2019. MIMIC-CXR is a large publicly available data-
set of CXRs in DICOM format. Approval by the re-
search ethics committee was not needed for this study 
because MIMIC-IV and MIMIC-CXR are deidentified 
according to the HIPAA Safe Harbor provision, and 
only credentialed authors who signed and conformed 
to the specified data use agreement accessed and ana-
lyzed the data (13). Because of this, the TXP Medical 
Ethical Review Board waived the requirement for 
the ethical approval statement and informed consent 
(TXPREC-008) on January 20, 2022.

Study Participants

The inclusion and exclusion criteria are shown in 
Figure 1. We identified patients greater than or equal 
to 18 years who were mechanically ventilated and extu-
bated in the ICU. Our analysis was limited to the first 
intubation and extubation episode during the first ICU 
stay of each patient regardless of the number of ICU 
stays during the hospitalization. We excluded patients 
using the following criteria: patients without a record 
of completing the SBT; patients whose rapid-shallow 
breathing index (RSBI) could not be calculated due to 
missing data on either tidal volume (TV) or respiratory 
rate (RR) measured by ventilators (15, 16); patients 
without CXRs taken within 48 hours before extuba-
tion; and patients palliatively extubated (i.e., patients 
for whom vasopressors [epinephrine, norepinephrine, 
dopamine, and dobutamine] were stopped within 6 hr 
before extubation and died within 24 hr after extuba-
tion) (17).

Measurements and Candidate Predictors

The following clinical variables were extracted from the 
MIMIC-IV database as candidate predictor input to 
prediction models (18–22): patient demographics (age, 
sex, body mass index, Charlson Comorbidity Index, 
the maximum Sequential Organ Failure Assessment 
score in first 24 hr of ICU stay, and duration of me-
chanical ventilation); average vital signs during the 
last 6 hours before extubation (heart rate, mean arte-
rial blood pressure, body temperature, Glasgow Coma 
Scale [GCS], and history of vasopressor administra-
tion); average values of arterial blood gas during the 
last 6 hours before extubation (pH, Pao2/Fio2 ratio, ar-
terial CO2 pressure, and bicarbonate); the latest labora-
tory tests in the last 48 hours before extubation (WBC, 
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hemoglobin, platelet, prothrombin time-international 
normalized ratio, activated partial thromboplastin 
time, sodium, potassium, chloride, inorganic phos-
phorus, lactate, glucose, blood urea nitrogen, and cre-
atinine); average ventilator parameters during the last 
6 hours before extubation (peak inspiratory pressure, 
positive end-expiratory pressure, pressure support, 
TV, RR, and Fio2); the RSBI during the SBT calculated 
using the average value of TV and RR within 1 hour 
from the SBT initiation; and the latest CXR image in 
the last 48 hours before extubation.

Outcomes and Variables

The predicted outcome was a failure of extubation, de-
fined as reintubation or death within 48 hours of extu-
bation (21). If there was no record of reintubation or 
death within that interval after extubation, the extuba-
tion was considered successful.

Statistical Analysis

After identifying patients and extracting variables from 
the database, we examined and imputed missing values 
and outliers using MissForest (23), a nonparametric 
machine learning-based method for imputation. The 

valid ranges of variables 
and proportions of miss-
ing values are shown in 
Supplemental Table 1 
(http://links.lww.com/
CCX/B10).

We used summary sta-
tistics to delineate the char-
acteristics of the extracted 
and imputed data. For cat-
egorical variables, the pro-
portions were calculated 
by dividing the number of 
events by the total number 
of patients. For continuous 
variables, median and in-
terquartile ranges were 
calculated.

The entire architecture 
of the models is shown in 
Supplemental Figure  1 
(http://links.lww.com/
CCX/B10). To predict the 

probability of extubation failure using the data avail-
able at the time of extubation, we applied two machine 
learning and deep learning models. First, to extract 
features from the CXR images, we used image prepro-
cessing (24) (e.g., randomly rotating, cropping, or hor-
izontally flipping images) and EfficientNet (25), which 
is a convolutional neural network (CNN)–based model 
known to achieve much better accuracy and efficiency 
with fewer hyperparameters than other CNN mod-
els (e.g., VGG [26], InceptionNet [27], ResNet [28], 
DenseNet [29], or VisionTransformer [30]) in image 
classification. To avoid model overfitting given the 
insufficient sample size of our study, we selected the 
EfficientNet. We trained and tuned EfficientNet mod-
els and predicted probabilities of extubation failure 
using nested stratified five-fold cross validation (31) to 
make predictions of extubation failure on images not 
used during training or tuning. The predicted prob-
abilities were treated as extracted features from CXR 
images. Second, they were concatenated with other 
candidate clinical predictors. Third, concatenated fea-
tures were input to LightGBM, a high-performance 
machine learning algorithm based on gradient boost-
ing and decision trees, which ensembles predictions 
of many decision trees and outputs the probability 

Figure 1. Flow diagram of study participants’ selection for analysis. Among a total of 76,540 ICU 
admissions from 2008 through 2019, we identified 1,066 mechanically ventilated patients. RR = 
respiratory rate, RSBI = Rapid-Shallow Breathing Index, SBT = spontaneous breathing trial, TV = 
tidal volume.

http://links.lww.com/CCX/B10
http://links.lww.com/CCX/B10
http://links.lww.com/CCX/B10
http://links.lww.com/CCX/B10
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of extubation failure (32). We used LightGBM-based 
models with probability calibration (33) to improve 
each model’s prediction ability for extubation failure. 
We trained and tuned the LightGBM-based models 
and predicted probabilities of extubation failure using 
nested stratified five-fold cross validation in the same 
way as the EfficientNet models. Hyperparameters were 
optimized using the five-fold cross validation method 
for area under the receiver-operating-characteristic 
curve (AUROC) by Bayesian optimization, which 
is suitable for efficiently optimizing models (34). We 
compared the predictive abilities of an EfficientNet-
based image classification model with only CXR and 
four LightGBM-based models using a set of different 
variables: 1) model using only RSBI, 2) model using 
RSBI and CXR, 3) model using all candidate clinical 
predictors without CXR, and 4) model using all candi-
date clinical predictors with CXR.

As for performance measures, we calculated the 
AUROC, the area under the precision-recall (PR) curve, 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) using the pre-
dicted probabilities for the test data. The test by DeLong 
et al (35) was used to test the significance of AUROC 
scores between the feature combinations input into the 
LightGBM-based models. Cutoffs to calculate sensitivity, 
specificity, PPV, and NPV were selected based on the 
Youden index (36). We also plotted calibration curves 
(33) of the prediction models. To consider the different 
weights of different misclassification types with a direct 
clinical interpretation (e.g., trade-offs between underes-
timation and overestimation), we performed a decision 
curve analysis (DCA) (37). DCA is a method to evaluate 
clinical usefulness of prediction models (38). For each 
model trained with each combination of the features, 
the decision curve was plotted based on the net benefit 
of each model. Finally, we performed SHapley Additive 
exPlanations (SHAP) (39), a game-theoretic approach 
for explaining the influence of input variables on the pre-
diction of a machine learning model by approximating 
the Shapley value. The SHAP value of each variable was 
estimated using the LightGBM model with all the vari-
ables, and a summary plot was created for the variables 
in the descending order of the SHAP value.

A p value of less than 0.05 was considered statis-
tically significant. We performed all analyses with 
Google BigQuery, Python (Version 3.7.9) and R 
(Version 4.1.1).

RESULTS

Participants’ Characteristics

There were a total of 76,540 admissions to the ICU 
from 2008 to 2019. We identified 1,066 patients who 
met the inclusion criteria. Among them, we identi-
fied 132 extubation failures (12.4%), consisting of 
85 reintubations and 47 deaths within 48 hours after 
extubation. We excluded 30 patients who were possibly 
palliatively extubated.

Patients’ characteristics are shown in Supplemental 
Table 2 (http://links.lww.com/CCX/B10). Compared 
with patients with successful extubations, patients with 
extubation failure were more likely to have been ven-
tilated longer (2.8 vs 2.2 d; p < 0.01), less likely to obey 
commands in assessments of GCS (71 patients [54%] 
vs 711 patients [76%]; p < 0.01), more likely to receive 
vasopressors (34 patients [26%] vs 158 patients [17%]; 
p < 0.01), and have higher RRs (20 vs 18/min; p < 0.01), 
whereas there were no clinically significant differences 
in other characteristics.

Performance of the Developed Models

The diagnostic performance and receiver-operating-
characteristic, PR, and calibration curves of models 
are shown in Table  1, Figure 2, and Supplemental 
Figure 2 (http://links.lww.com/CCX/B10). The 
EfficientNet-based image classification model using 
only a CXR had a similar diagnostic performance 
(AUROC, 0.55 [95% CI, 0.49–0.60] to the LightGBM 
model using only RSBI (AUROC, 0.56 [95% CI, 
0.51–0.62]).

The addition of CXR to RSBI did not improve 
the prediction ability (AUROC, 0.56 [95% CI, 0.51–
0.62] for the model using only RSBI vs 0.56 [95% CI, 
0.52–0.62] for the model using CXR as well as RSBI; 
p = 0.95). The prediction model using other clin-
ical predictors had a higher discrimination ability 
than the model using only RSBI. However, the addi-
tion of CXR did not improve the predictive ability 
(AUROC, 0.70 [95% CI, 0.65–0.75] for the model 
using clinical predictors with CXR vs 0.71 [95% CI, 
0.66–0.76] for the model using clinical predictors 
without CXR; p = 0.12). As for sensitivity, specificity, 
PPV, and NPV, there were no clinically significant 
differences between the LightGBM-based models 
with and without CXR.

http://links.lww.com/CCX/B10
http://links.lww.com/CCX/B10
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Decision Curve Analysis

Decision curves of prediction models are shown in 
Figure 2. The X-axis indicates threshold probabilities 
for extubation failure. If the probability predicted by 
the model is higher than the threshold, the extubation 
is considered to have failed. The Y-axis indicates the 
net benefit over a specified range of threshold prob-
abilities of extubation failure, calculated across the 
range of threshold probabilities by using the following 
formula: sensitivity × prevalence − (1 − specificity) × 

(1 − prevalence) × threshold/(1 − threshold), where 
prevalence is the frequency of extubation failure, cal-
culated across the range of threshold probabilities. The 
unit of the net benefit is true-positive. For example, if 
the difference in net benefits between two models is 
0.1, it means one model can accurately identify one 
additional patient positive for a diagnostic test out 
of every 10 patients in the target population than the 
other model. There were no clinically significant differ-
ences in the net benefit between the LightGBM-based 
model using only RSBI and the model using RSBI and 

TABLE 1. 
Diagnostic Performance of the EfficientNet-Based Model and Four LightGBM-Based 
Models to Predict Extubation Failure

Models

Area Under the  
Receiver-Operating- 
Characteristic Curve  

(95% CI) pa

Area Under  
the Precision-
Recall Curve 

(95% CI) Sensitivity Specificity

Positive 
Predictive 

Value

Negative 
Predictive 

Value

CXR 0.55 (0.49–0.60) - 0.14 (0.00–0.16) 0.66 0.44 0.14 0.90

RSBI 0.56 (0.51–0.62)
0.95

0.15 (0.10–0.19) 0.48 0.65 0.16 0.90

RSBI + CXR 0.56 (0.51–0.62) 0.14 (0.10–0.18) 0.61 0.57 0.17 0.91

RSBI + other 
variablesb

0.70 (0.65–0.75)

0.12

0.25 (0.13–0.33) 0.62 0.69 0.22 0.93

RSBI + CXR + 
other variablesb

0.71 (0.66–0.76) 0.24 (0.13–0.34) 0.66 0.66 0.21 0.93

CXR = chest X-ray, RSBI = Rapid-Shallow Breathing Index.
aWe compared the area under the curve between each LightGBM-based model with and without CXR using the DeLong test.
bWe used all clinical parameters listed in Supplemental Table 2 (http://links.lww.com/CCX/B10).

Figure 2. Curves to evaluate predictive abilities of the EfficientNet-based model and four LightGBM-based models. A, Receiver-
operating-characteristic curves. The corresponding values of the area under the receiver-operating-characteristic curve for each model (i.e., 
the c-statistics) are presented in Table 1. B, Precision-recall curves. The corresponding values of the area under the precision-recall curve 
for each model are presented in Table 1. C, Decision curve analysis. The X-axis indicates threshold probabilities for extubation failure. The 
Y-axis indicates net benefit. The unit of the net benefit is true positive. CXR = chest X-ray, RSBI = Rapid-Shallow Breathing Index.

http://links.lww.com/CCX/B10
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CXR. Similarly, we did not find clinically meaningful 
differences in the net benefit between the models 
using all candidate clinical predictors with and without 
CXR. The models using other candidate clinical pre-
dictors had the higher net benefit than treating all or 
no patients, with threshold probability ranging from 
about 0.1–0.5.

SHapley Additive exPlanations

SHAP values with prediction models using all variables 
are shown in Figure 3. CXR was not likely to have an 
impact on the prediction model for extubation failure 
compared with other clinical predictors (e.g., inability 
to follow commands, use of vasopressors, and higher 
RRs during SBT).

DISCUSSION

Using data on 1,066 mechanically ventilated patients in 
the ICU from the MIMIC-IV database, we investigated 
whether CXR data could improve the performance of 
machine learning-based prediction models for extuba-
tion failure. Our study showed that adding CXR to a 
set of other candidate clinical predictors did not sig-
nificantly enhance the predictive ability for extubation 
failure in mechanically ventilated patients. In addition, 
as the SHAP values of our prediction model suggest, 
CXR may contribute less to the predictive performance 
of extubation failure than other predictors such as in-
ability to follow commands (motor response of GCS 
< 6), use of vasopressors, and higher RRs during SBT.

Identifying the risk of extubation failure is clinically 
important, and RSBI was developed as a simple assess-
ment method for extubation failure (40). In a pre-
vious meta-analysis (41), the sensitivity and specificity 
of RSBI in predicting extubation failure were higher 
than those of our study (sensitivity, 0.58 vs 0.48; and 
specificity, 0.83 vs 0.65). This is possibly because we 
included patients at a relatively low risk of extubation 
failure. RSBI of more than 100 is known to be a risk fac-
tor for extubation failure, but only 0.2% of patients in 
our study had RSBI of more than 100. Furthermore, a 
prediction model using LightGBM in a previous study 
had a higher discrimination ability than our model 
(AUROC, 0.81 vs 0.71) (21). We believe that this is 
possibly because the study did not exclude patients 
who were palliatively extubated and instead classified 
them as extubation failure. Given that patients who 

were palliatively extubated are more likely to be crit-
ically ill than those who were successfully extubated, 
it may have been easier to predict extubation failure in 
such severely ill patients.

Some intensivists may routinely order CXRs to eval-
uate the severity of cardiopulmonary diseases and the 
complications caused by indwelling devices (10). In a 
web-based Delphi study from France, Hejblum et al 
(12) reported that CXRs should be considered rou-
tinely right after specific procedures and during me-
chanical ventilation for respiratory failure, whereas a 
routine CXR was not recommended for a preextuba-
tion assessment. However, there has been no quali-
tative evidence on the utility of a preextubation CXR 
beyond expert consensus. Given that the lung infil-
trates might precede future postextubation respiratory 
failure in some patients (11), we hypothesized that a 
routine CXR right before extubation might be justi-
fied from a risk-benefit perspective to evaluate poten-
tial preexisting lung infiltrates. However, our findings 
suggested that the utility of a preextubation CXR to 
the prediction of extubation failure was limited. Thus, 
to make the most of the information extracted from 
CXRs to assess the risk of extubation failure, it may be 
necessary to follow longitudinal changes in CXRs over 
time.

This study applied comprehensive methods to in-
corporate images and other features into machine 
learning-based models, tune hyperparameters, train 
the models efficiently, and evaluate performance of 
those models. Our approach can be applied within 
many frameworks for machine learning (e.g., PyTorch 
[42], TensorFlow [43], or Scikit-learn [44]). We used 
EfficientNet to incorporate images into machine learn-
ing-based models, but other object detection models 
(e.g., YOLO [45], SSD [46], or DETR [47]) or seg-
mentation models (e.g., U-Net [48], PSPNet [49], or 
DeepLab [50]) can efficiently extract useful features 
from a cross-sectional preextubation CXR to predict 
extubation failure. However, since there were no anno-
tations of CXRs in the MIMIC-CXR dataset, we could 
not use these models in this study. Hyperparameter 
tuning or optimization is an essential aspect of ma-
chine learning to achieve the desired metric values. We 
used Bayesian optimization to search for a better com-
bination of hyperparameters with a smaller number of 
trials than the conventional grid search (51). Nested 
cross validation for hyperparameter optimization and 
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model evaluation can also contribute to efficiently 
evaluating developed models. An ROC curve and a PR 
curve are standard methods to describe how accurately 
each model can predict outcomes. DCA is also an 
approach to evaluate the clinical utility of the models. 
SHAP is a game-theoretic method to explain the im-
pact of each predictor on the predictive output. These 
exhaustive and flexible approaches will accelerate fu-
ture research on clinical prediction models.

Our study has several limitations. First, there are 
several sources of selection bias in the exclusion cri-
teria (e.g., exclusion of patients with missing data on 
SBT records, TV and RR values during the SBT and 
CXRs, and patients who were possibly palliatively 

extubated). We acknowl-
edge that our findings may 
lack external validity and 
cannot be extrapolated to 
the patients excluded from 
our analysis. However, 
included patients were 
likely more ill than those 
excluded from our anal-
ysis (e.g., patients consid-
ered clinically at low risk of 
extubation failure without 
SBT), and thus, our study 
is clinically meaningful in 
that it investigated whether 
CXR is useful for iden-
tifying patients at high 
risk of extubation failure. 
Furthermore, given that 
CXRs are more likely to 
augment prediction in 
the included (likely to be 
sicker) patients than those 
in the excluded (likely to 
be less sick) patients and 
that our findings showed 
no improvement in the 
predictive performance 
in the high-risk popula-
tion included in the anal-
ysis, we believe that our 
results have the potential 
to be extrapolated to all 
mechanically ventilated 

patients. Second, our data from the MIMIC-IV da-
tabase included missing data (0.1–45% of data were 
missing depending on the variable), which could be a 
potential source of bias. However, we prioritized using 
several clinically important variables even though the 
missing proportion was high (e.g., 45% of the data on 
MAP was missing) and attempted to minimize the risk 
of bias by the random forest imputation method, a rig-
orous and widely used technique for the imputation 
of missing data (52, 53). Third, due to the retrospec-
tive nature of this study, we could not consider in our 
models some clinically important predictors of extuba-
tion failure (e.g., cough strength, sputum volume, and 
degree of disuse syndrome) because these data were 

Figure 3. SHapley Additive exPlanations (SHAP) summary plot of top 20 variables of LightGBM-
based model using all candidate clinical predictors with chest X-ray (CXR). The horizontal axis 
represents SHAP values, and a dot indicates the attribution of each variable at a feature value  
from the data sample. The color of a dot indicates the absolute value of each variable (e.g., red  
dots represent higher feature values, and blue dots represent lower feature values). The higher  
the SHAP value, the higher the possibility of extubation failure. The vertical axis represents all  
variables input to the prediction models, which are sorted based on the impact on the prediction  
models, which was calculated by averages of absolute SHAP values across all data. APTT =  
activated partial thromboplastin time, GCS = Glasgow Coma Scale, PFR = Pao2/Fio2 ratio,  
PT-INR = prothrombin time-international normalized ratio, RSBI = Rapid-Shallow Breathing Index.
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unavailable in the MIMIC-IV dataset (9, 54). Fourth, 
our study was based on data from a single center in 
the United States, and our findings may not be gener-
alizable to other hospital settings. However, the utility 
of a preextubation CXR for predicting extubation 
failure might not vary across hospital settings because 
CXRs simply reflect the patients’ physiologic condi-
tion. Finally, although our findings showed that CXR 
before extubation might not be useful in predicting 
extubation failure, this is possibly because of technical 
issues with the EfficientNet-based image classification 
model or incorporation of the extracted features from 
CXRs into the LightGBM-based prediction models. 
The image classification model alone did not have suf-
ficient performance, but it should be noted that the 
predictive performance of CXR for extubation failure 
was as good as that of RSBI, which is widely used to 
estimate the risk of extubation failure in the ICU. In 
addition, a CXR before extubation may still be useful 
for estimating the risk of extubation failure by observ-
ing longitudinal changes in cardiopulmonary condi-
tions through repeated CXRs of a patient. Whether the 
changes in CXRs over time could be a good predictor 
for extubation failure was not verified in this study, and 
further studies on the utility of longitudinal CXRs are 
warranted.

CONCLUSIONS

Using the data on mechanically ventilated patients 
from the MIMIC-IV database, we found no significant 
qualitative differences in the predictive performance 
of extubation failure between the machine learning-
based prediction models using clinical parameters 
with and without CXR. A cross-sectional preextuba-
tion CXR may not contribute to the prediction of extu-
bation failure.
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