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Abstract: Within the ever-growing healthcare industry, dental informatics is a burgeoning field of
study. One of the major obstacles to the health care system’s transformation is obtaining knowledge
and insightful data from complex, high-dimensional, and diverse sources. Modern biomedical
research, for instance, has seen an increase in the use of complex, heterogeneous, poorly documented,
and generally unstructured electronic health records, imaging, sensor data, and text. There were
still certain restrictions even after many current techniques were used to extract more robust and
useful elements from the data for analysis. New effective paradigms for building end-to-end learning
models from complex data are provided by the most recent deep learning technology breakthroughs.
Therefore, the current study aims to examine the most recent research on the use of deep learning
techniques for dental informatics problems and recommend creating comprehensive and meaningful
interpretable structures that might benefit the healthcare industry. We also draw attention to some
drawbacks and the need for better technique development and provide new perspectives about this
exciting new development in the field.
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1. Introduction

The use of information technology (IT) in healthcare practice and research is a global
goal for many nations [1]. In the last fifty years, IT capabilities have advanced dramat-
ically. Several advancements have enabled new and beneficial applications of IT in the
medical field. The interdisciplinary discipline of medical informatics (MI) combines soft-
ware, computer science, medicine, information science, statistics, cognitive sciences, and
mathematics [2]. This field’s task and mission is to reduce costs while improving health
care services, and also care errors by using concepts, tools, methods, software techniques,
and modeling [3,4]. MI can be considered of as a subdiscipline of dental informatics (DI);
hence MI has some influence on DI’s progress. Despite the similarities between DI and MI
in medical research, it is important to perform separate studies that are specifically focused
on DI. Information science and computer applications improve dental research, practice,
management, and education, which has enormous potential in the relatively new field of
DI. The use of computing in dentistry is only one aspect of DI. The initial practitioners of
DI defined their strategy as the use of information science to address medical issues. More
recent publications have described MI as a cascade from analysis to effect. A four-part
structure is suggested by one previous study. The four parts are: formulation of the system
development, evaluation, medical model, and system installation and modification. The
inherent challenges at each phase in this procedure are the biggest challenge for much of
DI [5]. Sadly, most dentists are unaware of what DI is, what its objectives are, what it has
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accomplished so far, and how they might participate in it [6]. DI may provide a variety of
tools and applications for the purpose of clinical practice of the oral diagnosis of illnesses,
the contraindications, indications and prescription of particular medications to patients
with particular problems, and other areas. Technological advances have made a significant
contribution to the introduction of innovative conservative techniques in several medical
branches. These procedures stand out for their significant decrease in operating time
and invasiveness as well as their significant enhancement of patients’ psychological and
physical comfort. Likewise, as in other industries, dentistry has incorporated the digital
workflow in a variety of sectors, including treatment planning, designing, prototyping,
implant surgery, and the creation of specialized prosthetics.

Digital dentistry technology, especially in recent years, have been crucial in alter-
ing patient interactions and developing creative and all-encompassing restorative ap-
proaches [7,8]. Cone beam computed tomography (CBCT) has made it possible to improve
diagnostic datasets through digital radiography and data collection [9]. Additionally, the
implementation of CAD–CAM technology and 3D manufacturing processes (such as stere-
olithography, 3D printing, etc.) and modern treatment modalities for procedures involving
dental implants, such as computer-guided implant surgery, can be introduced owing to
implant dentistry [10]. In comparison to conventional surgical approaches, this strategy
resulted in considerable improvements and simplification, increasing implant location
accuracy while also enhancing patient comfort and compliance [11,12]. By utilizing mixed
reality (MR), virtual reality (VR) and augmented reality (AR) to improve students’ learning
and clinical training, contemporary digital technologies have the ability to fundamentally
alter dentistry on both an educational and clinical level. These technologies could be helpful
tools for dental doctors in their work. Significant improvements in computational tech-
niques for data analysis and processing are being driven by subjects including computer
science, information science, statistics, biomedical informatics, and others. For example,
text mining, data analysis, medical diagnosis, and hypothesis generation [13,14] all employ
machine learning (ML), which was originally a relatively unexplored area of artificial intel-
ligence (AI). More advanced ML algorithm-based techniques have recently been used to
improve oral health [15]. One of these methods is generally recognized as being DL, which
has proven to be effective in both disease prediction and prognosis. Numerous publications
on oral disorders employing DL have been published during the past few years [16–19].
DL algorithms are effective at handling the difficulties and complexities of oral disease
automated diagnosis. There have been numerous review studies on the detection and
classification of oral disorders to date, but very few have been capable of offering a clear
path forward for scholars. Even though this research provided an excellent literature review
of dental disorders and applications, they should have covered more DL-related topics. The
majority of the review studies [20–34] dentistry primarily focused on classic ML methods
or generic artificial neural networks (ANNs), when feature extraction for diagnosis is re-
quired [35], and where feature extraction is involved for diagnosis. They could not address
emerging DL architectures on dental disease diagnosis, such as generative adversarial
networks (GANs) [36], extreme learning machines (ELMs) [37], or graph convolutional
networks (GCNs) [38,39], etc. Although several review publications for dental medical
imaging techniques and digital technologies are accessible [7], they are unable to cover
all imaging modalities utilized in the identification and classification of dental illnesses.
Additionally, they failed to provide an exhaustive summary of the merits and demerits of
earlier research, making their analysis of learning-based deep approaches unclear. Because
of this, this study provides a solid foundation for a thorough and critical examination of
modern DL-based digital dentistry technology and dental disease diagnostics. Based on
their popularity, we chose studies from 2017 to 2022 to conduct this study. In this study,
the researcher advocated a systematic review approach that will assist upcoming scholars
in figuring out the general framework of a dental diagnostic based on DL. This research
provides a detailed picture of the deep neural network designs used in several DI areas to
identify dental diagnostics. Imaging approaches for identifying and categorizing dental
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diagnostics are also covered in this study. Lastly, this systematic literature review (SLR)
points future scholars toward a number of open research challenges and opportunities. This
study, in our opinion, provides a valuable framework for scientists who work on classifying
medical images, who may be involved in the switch to DL-based dentistry diagnostics, and
who use various medical images.

The following is the study structure of the current paper. Section 2 includes a three-step
demonstration of research methodology that includes planning, executing, and report-
ing the review. The conclusions of the selected publications, research topics, customary
practices, data formats, and performance approaches are covered in Section 3. The sci-
entific contribution of this review, management implications, and academic implications
are addressed in Section 4, along with a discussion of current remedies. The restrictions
and potential research directions demonstrated in Section 5, and Section 6 includes the
conclusion in its final form.

2. Research Methodology

The philosophy from references [40] was followed in this SLR. There are three phases
to the research process. The phases of defining research topics, designing, and verifying
review methods are addressed in the initial planning phase. In the second phase, data
extraction, information synthesis, and the finding and selection of pertinent research are
discussed. Writing and validating the SLR is covered in third part. Figure S1 (kindly refer
to the Supplementary File) shows how all three steps progress.

2.1. Plan Review

The crucial research questions and the creation of review protocols are laid out in this
initial stage of the research process by using the right searching techniques.

2.1.1. Research Questions

The current paper aims the following research questions posed in this SLR, and
potentially all of them are later addressed with appropriate solutions.

RQ #1: What are the existing DL techniques used in dental practice? The study
objective is to determine the relevance of digital imaging methods employed in the dentistry
profession by researchers and clinics for their models, frameworks, or applications. DI
deals with a wide range of data that is hard to monitor, interpret, and extract useful
information from.

RQ #2: Which categories of DI are adopting to use of the DL techniques? This
research issue is related to the categories of DI. The goal of this research is to have a
thorough understanding of the procedures used in DI. The purpose of this study is to look
at the applications, frameworks, and models that leverage DL approaches solve DI issues.
Furthermore, phrases like “data informatics”, “deep learning”, “dentistry”, and “dental
data” were used to acquire pertinent data in a novel way.

RQ #3: Which type of images and datasets are used in dental informatics along
with DL techniques? The goal of this research question is to discover picture data, datasets,
and approaches for dealing with DI problems. For ongoing study and future representation,
the image, datasets, and relevant data can be used. It can also be employed for information
retrieval and predictive analysis. As a result, detailed approaches for information retrieval,
data formats, and performance metrics are discussed later.

RQ #4: What are the performance measurement techniques that are used to mea-
sure the performance of DL techniques in dental informatics? The purpose of this re-
search question is to discover the DL model, framework, and techniques’ performance
used in DI. The images and other relevant formats of data that are used in DL models will
be reviewed and reported.
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2.1.2. Review Protocols

The review protocol’s development and authentication support the selection of rele-
vant keywords when looking for relevant articles and literature sources.

2.1.3. Searching Keywords

The researchers tried to narrow the search to the most relevant particular keyword
to ensure that the evaluation closely covers DL approaches for DI and the following steps
were taken out.

• Taking the key terms from our research questions and extracting them.
• Referring to the terms by various names.
• Adding keywords from pertinent publications to our search terms.

To find the most immediately pertinent works in the literature, the researchers utilized
the primary alternatives and added the “OR operator” and “AND operator”, as shown
in Table 1.

Table 1. Inclusion and exclusion criteria description of research studies.

ID Keywords

1 (“Data Learning” OR “DL”) AND (“Dental Informatics” OR “DI”) AND (“Image Data” OR “Dental Data”)
2 (“Data Learning” OR “DL”) AND (“Dental Informatics” OR “DI” OR “Dentistry”) AND (“Image Data” OR “Dental Data”)
3 (“Data Learning” OR “DL”) AND (“Dental Informatics” OR “DI” OR “Dental”) AND (“Image Data” OR “Dental Data”)
4 (“Data Learning” OR “DL”) AND (“Dental Informatics” OR “DI” OR “Dentist”) AND (“Image Data” OR “Dental Data”)

2.1.4. Literature Resources

The selection of relevant publications for primary review studies was obtained from
the databases Web of Science, Scopus, ACM Digital Library, Springer, Science Direct, and
IEEE Explorer. Databases such as ISI and Scopus indexed papers and certain publications
from prominent conferences containing the most comprehensive coverage of quality articles
on our subject. By using the sophisticated search options given by each of these databases,
the search phrase was created. Our search included the years 2017 through 2022.

2.2. Conduct Review

This section includes the pattern of conducting the review by using research ques-
tions, keywords, and protocols as a guide. According to Table S1a,b, this phase is mainly
concerned with article inclusion and exclusion.

2.2.1. Study Selection

Figure 1 depicts the entire process of study selection. The web search yielded a total of
1355 articles. A total of 155 articles were short-listed after filtration by using title, keyword,
inclusion, and exclusion criteria. Table S1a,b reveal the inclusion and exclusion criteria.
There were 33 articles from other fields, such as biology, illness, and other languages,
that were replicated in other databases, and 22 articles from different concepts, such as
visualization, prediction, and other languages. After undergoing the whole article reading,
30 items are deleted from the list.

The criteria for choosing related research articles based on keywords are described in
Table S1a,b. Repeated research articles and those that may not address all of the research
questions were omitted.

The quality checklist criteria for study evaluation are included in Table S2. The
questions are primarily meant to assist in the selection of studies that are more relevant,
thorough, and comprehensive in nature.
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Figure 1. Flowchart review process and identifying the number of relevant studies.

2.2.2. Data Extraction

The researcher has used the data-extraction techniques listed in Table S3 to gather the
data required to address our research questions and contributions.

2.2.3. Information Synthesis

The extracted data were consolidated at this point in order to respond to the study
questions. The narrative synthesis approach was employed to answer our study’s questions.
As a result, we presented our findings by using tables and charts.

2.3. Report Review

Our four research questions were addressed by using data that was taken from the
original studies.

3. Results

Approximately 79 studies were included in the evaluation. A total of 40 studies in
total were related to the DL techniques that are being used in the dental practice, and 39
were used to answer the categories of DI that are using the DL techniques. However, the
same studies (i.e., studies used for DI using DL techniques) contributed to answer the
question related to the type of images used to evaluate the DL techniques in dentistry. A
total of 56 studies were evaluated to find the performance measurement techniques used to
evaluate the DL techniques in dentistry, as shown in Table 2.
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Table 2. RQ Selected Studies.

RQ Studies

Deep learning techniques 40
Dental informatics using deep learning 39

Images to evaluate deep learning techniques 73
Performance measurement techniques to evaluate the deep learning techniques 56

Figure S2 illustrated the amount of research on DL carried out in the domain of
dentistry per year. As clearly shown in the figure, there is a significant increment in the
amount of research carried out in this domain. There were only three research pieces found
in this domain in 2017; however, the number significantly increased in the coming years to
9, 11, 21, 29 and 6 in the years of 2018, 2019, 2020, 2021 and early 2022, respectively.

3.1. What Are the Existing DL Techniques Used in Dental Practice?

A total of 40 studies were reviewed in this SLR discussing the DL techniques used in
dental practice. The following subsections explain DL techniques used for DI.

3.1.1. Artificial Neural Networks (ANNs)

Dental disease diagnosis with ANN is a very active study field in medicine right
now. The first research studies in the literature used ANN based upon radiographic
images as an alternative for radiation-related caries (RRC) detection to predict RRC lesions
with a 99.2% accuracy [41] rate. This technique demonstrates that further research on
RRC prediction and detection might enhance dental treatment for head-and-neck cancer
(HNC) patients. Li et al. [42] developed a segmentation architecture for detecting areas
with five frequent gum disorders in their study. The proposed semantic segmentation
architecture is based on the DeepLabv3+ network with Xception and MobileNetV2 as
the backbone. Most of the gum inflammation region may be correctly divided into four
or five groups by using the suggested segmentation methodology. Laplacian filtering,
statistical extraction of features, morphological operations, window-based adaptive cutoff,
and backward-propagation neural network (BPNN) are all parts of the diagnostic system
proposed in [43]. The BPNN algorithm is utilized in this study to classify whether a tooth
surface has dental caries (DC) or is normal. This model based on BPNN can predict DC
more accurately. Zanella–Calzada et al. [44] aimed to investigate the determinants of oral
health based on dietary and demographic characteristics by using dense ANN. ANN has a
learning method which is called the extreme learning machine (ELM), a single hidden-layer
feedforward neural network (SLFN) [45]. Rochman et al. [46] applied the ELM approach
to estimate the number of patient visits in Dental Poli. ELM generates prediction output
with a 0.0426 low error rate. Combining the Hu moment invariant (HMI) method with
ELM, [47] devised and implemented a unique classification technique for CBCT images of
teeth. The results showed that the devised methodology is better compared to a statistically
significant ANN. Another study uses an algorithm that combines principal component
analysis (PCA) evaluation and extreme learning to apply ML to the categorization of teeth.
Overall, the research was able to categorize molars, premolars, canines, and incisors with
an accuracy of 79.75% [48]. Li et al. [49] developed another automated technique for
categorizing tooth kinds on dental pictures by utilizing ELM and a gray-level cooccurrence
matrix (GLCM) [50]. Experiments indicate that the suggested technique is more sensitive
and precise than the naïve Bayes and the wavelet energy. The suggested method has the
benefit of achieving higher accuracy in classification without requiring exact segmentation
of the teeth. Table 3 summarized the studies that apply ANNs.
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Table 3. ANN selected studies.

Authors Name and Year Methods Results Authors
Suggestions/Conclusions

Faria et al., (2021) [41] Custom-made ANN
Detect accuracy = 98.8%,
predict accuracy = 99.2%,

AUC= 0.9886, 0.9869

This approach may be
beneficial for detecting and

predicting the RRC’s
development in other photos.

Li et al., (2021) [42] DeepLabv3+, Xception and
MobileNetV2

AUC = 0.7, precision = 0.606,
recall = 0.415, mIOU = 0.650

Small dataset was used and
data augmentation cannot

overcome all biases present in
small dataset.

Geetha et al., (2020) [43] Customized BPNN

Accuracy = 97.1%,
false positive (FP) rate = 2.8%,

ROC area = 0.987,
PRC area = 0.987

High quality datasets and
improved algorithm can
demonstrate good results
towards dental practice.

Zanella-Calzada et al.,
(2018) [44] Customized ANN Accuracy = 0.69,

AUC values = 0.69 and 0.75

This model can help dentists
by providing an easy, free and

fast tool for the
diagnosis of DC.

Rochman et al., (2018) [46] ELM Low error rate = 0.0426 ELM is a powerful
predictive tool.

Li et al., (2018) [47] HMI and ELM

Sensitivities of incisors,
canine, premolar, and molars

were 78.25 ± 6.02%,
78.00 ± 5.99%, 79.25 ± 7.91%,

and 78.75 ± 5.17%

Compared to the ANN
approach, this method had a

greater classification.

Lu et al., (2018) [48] PCA and ELM Accuracy = 79.75%

They are not able to detect the
correct name for each

landmark, especially for the
teeth with similar

teeth anatomy.

Li et al., (2018) [49] GLCM, ELM
Sensitivity= 72%,
specificity= 70%,
accuracy= 71%

This method is more sensitive
and accurate than the wavelet

energy and naïve
Bayes classifier.

3.1.2. Recurrent Neural Networks (RNNs)

RNNs are an ANN algorithm that discovers time-dependent correlations between in-
put data by merging the historical data stored in hidden layers also with current input value.
Alarifi and Al Zubi [51] examine the dental implant therapy consecutive measure by using
a memetic search optimization and genetic scale recurrent neural network (MSGSRNN).
Due to its low error rate, the described approach requires a greater degree of precision
(99.25). Kumari et al. [52] implement a novel hybrid DC segment by using ResneXt-RNN
and FOC-KKC. In a pre-processing step, noise filtering and contrast-limited adaptive his-
togram equalization (CLAHE) are conducted. Caries are further segmented by using fused
optimal centroid K-means with K-mediods clustering algorithm (FOC-KKC). Compared to
traditional approaches, the proposed MResneXtRNN and novel segmentation algorithm
for caries prediction have shown improved performance. Long short term memory (LSTM),
out of the suggested variations of RNN, has been a cutting-edge model for several situa-
tions in the last few years. In 2021, Singh and Sehgal [53] proposed a novel LSTM model
by using CNN for diagnosing detecting DCs in periapical dental pictures. A CNN was
used to extract features from periapical dental pictures, and then short-term and long-term
dependencies were calculated. This study has studied the G.V. Black categorization with
the categorization of DC categories as its primary objective. The experimental examination
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of optimum CNN-LSTM displayed competitive performance in the categorization of dental
images. Table 4 shows the studies that used RNN technique.

Table 4. RNN Selected Studies.

Authors Name and Year Methods Results Authors
Suggestions/Conclusions

Alarifi and AlZubi, (2018) [51] MSGSRNN
Accuracy = 99.25%,
sensitivity = 97.63%,
specificity = 98.28%

Outlined methodology
analyzes patient

characteristics and aids to
know the failure and success

rate of the process of
implant treatment

Kumari et al., (2022) [52] M–ResneXt–RNN,
HSLnSSO algorithm

Accuracy = 93.67,
sensitivity = 94.66,
specificity = 92.73,

precision = 92.44, FPR = 7.27,
FNR = 5.34, NPV = 94.88,

FDR = 7.56, F1-Score = 93.54,
MCC = 87.35

Difficult to distinguish tiny
items and produces rather

coarse characteristics.

Singh and Sehgal, (2021) [53] customized CNN-LSTM Accuracy = 96%
This model gets lower

performance using
large datasets.

3.1.3. Convolutional Neural Networks (CNNs)

In the dentistry industry, CNN diagnosis accuracy approaches human skill levels [44,54].
Radiographs are commonly utilized as image inputs for CNNs to diagnose diseases in den-
tistry. Dental disease detection has been taught specifically on bitewings [43,55], periapical
radiographs [56], and panoramic X-rays [57]. Periapical images are highly beneficial for
diagnosing possible caries, periodontal bone loss, and periapical issues [58]. Lee et al. [56]
adopted a pre-trained GoogleNet Inception v3 network for the diagnosis and prediction of
dental caries by using 3000 periapical radiographs. The premolar and molar areas, as well
as the premolar–molar region, demonstrated exceptionally high accuracy of 82%, 89%, and
88%. Similarly, Ref. [57] suggested using CNN to identify caries in the third molar by using
a clipped picture of the third molar from a panoramic radiography image. Only simple
arrangements with little overlaps are possible to see in bitewing pictures of the crowns
of posterior teeth [59]. In dentistry, panoramic radiographies are frequently employed
because they allow for the screening of a significant anatomical area with only a little
amount of radiation exposure [60]. Near-infrared light transillumination (NILT) is more
beneficial when taken in youngsters or at shorter intervals, as in high-risk persons. Several
in vivo and in vitro investigations examined the accuracy of NILT, concluding that it is
appropriate for identifying both primary and secondary caries lesions [61,62]. By using
transfer learning, a CNN was utilized to categorize dental disorders such as dental caries,
periapical infection and periodontitis. The researchers classified dental disorders by using
the pre-trained model VGG16, attaining an overall accuracy of around 88% throughout
radio visiographic (RVG) X-ray scans [16]. A caries probability map is also created by
using a CNN, and crown areas are retrieved by using optimization techniques and an
edge-based level set approach to segment crown regions [63]. The research depicts that
the proposed system achieves a higher performance. In the CNN model, periapical radio-
graphs performed exceptionally well in diagnosing dental caries [64–66]. Dental image
diagnosis information was integrated into an automated, simplified dental image analysis
technique by employing a CNN. A method for evaluating the quality of an automated
root canal treatment was presented by Yang et al. [67]. The investigators used a dental
scan-based automatic apical foreman-area recognition technique for the root canal filling
therapy. This study’s authors used a labelled dataset of periapical radiography images
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taken both before and after treatment. This allowed the authors to identify the apical
foreman and the area around it by utilising the filling area attained a 0.749% F1 score. The
deep CNN algorithm proved effective in determining PCT diagnosis and prediction. To
assess the potential utility and accuracy of a computer-assisted detection system based on
a deep CNN algorithm for the diagnosis and prediction of periodontally damaged teeth
(PCT) was developed. The deep CNN algorithm exhibited a greater diagnostic accuracy
for recognizing PCT in premolars than in molars, according to the current study [68]. They
discovered that the network had comparable results to a skilled periodontist. In 2019, Al
Kheraif et al. [69] handled the critical area segmentation of dental pictures by using CNN
and deep learning and showed an improvement in accuracy of 97.07%. Typical segmenta-
tion techniques, such as common-edge detection, may fail to remove noise and damaged
pixels from input pictures. The CNN technique was utilized on panoramic radiography
to identify maxillary sinusitis and explain its diagnostic performance. Murata et al. [70]
assessed the diagnostic performance of a DL system by employing panoramic radiographs
to diagnose maxillary sinusitis. It was compared to the performance of two residents and
two radiologists. The system’s diagnostic efficiency was comparable to that of radiologists.
However, AI performed better than dental residents. On panoramic dental radiographs,
deep CNNs were utilized to identify apical lesions [71] and periodontal bone loss (pBL) [72].
For analyzing pBL on panoramic radiographs, a custom CNN trained on a small number
of picture segments exhibited at least an equivalent discriminating skill as dentists. The
proposed method using deep DCNNs gives the classification accuracy of 0.81 (0.02). By
utilizing ML-based technology, dentists’ diagnostic efforts when using radiographs might
decrease [72]. From panoramic dental radiographs, a hybrid CNN and SVM technique was
utilized to detect apparent dental caries/periapical infection, changed periodontal bone
height, and third molar impactions [73], whereas panoramic dental radiographs were used
for teeth recognition [74,75], classification of dental problems [74] and tooth decay [76] in
X-ray images. A two-staged attention segmentation network (TSASNet) [77] was developed
to locate and categorize teeth in radiographs. First, the attention model is used to establish
the approximate placement of the tooth. Following this, the exact tooth boundaries are
identified with a precision of 96.94% by using a deep convolution network. The dental and
background segmentation methods were employed in a dental X-ray for automated tooth
and backdrop segmentation by utilizing the U-Net convolution network DL approach [78].
The experimental findings demonstrate that the suggested U-Net convolutional network
achieves a classification precision of 97.61% on average.

In the early phases, Sobel edge detection with deep CNN was employed to forecast cav-
ities. The gradient direction of Gx and Gy is determined by using the Sobel edge-detection
method [79]. The algorithm executed the Sobel edge identification by using DCNN to detect
the cavities with the efficient accuracy of 96.08%. Automatic feature segmentation of com-
mon radiographic abnormalities, including alveolar bone loss, interradicular radiolucency
and dental caries was achieved by using DL-based networks such U-Net, Segnet, XNet,
U-Net +, and Densenet [80]. CNNs were also used to identify locations in periapical exams
based on the presence of periodontal bone loss [81] and other dental disease detection [82]
indicators. Tajinda et al. integrated segmentation and classification tasks for grading peri-
odontitis from periapical radiography images to create the hybrid network for periodontitis
stages from radiograph (HYNETS) end-to-end DL network. By combining segmentation
networks and a classification network, HYNETS uses a multi-task learning technique to
provide a complete, interpretable solution with extremely accurate and reliable results [83].
Together with data pre-processing and augmentation techniques, Szu-Yin Lin and Hao-Yun
Chang have created an innovative and effective two-phase DPR detection and methodol-
ogy to help dentists in diagnosis by using advanced DL algorithms. Orthodontics, dental
restoration, endodontic therapy, implant, impaction, and dental prosthesis are among the
dental problems that are instantly detected [84]. To categorize the teeth positions by using
a proposed correlation module that makes use of the information between teeth positions,
Zhang et al. [85] employed DL methods and used a particular label creation methodol-
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ogy to partition the teeth classification job before using a multi-task CNN. The results of
these approaches are satisfactory for the purposes intended. For the automated diagno-
sis [86] of dental caries based on periapical pictures, an MI-DCNNE model, developed by
Imak et al., is used as a multi-input deep CNN ensemble. The proposed MI-DCNNE tech-
nique was more successfully implemented by using a score-based ensemble approach with
99.13% accuracy score [87]. Several researchers demonstrate a DL strategy for identifying
and localizing dental lesions [88] in TI images automatically and dental carries in NILT
images [89,90] and on the children’s first permanent molar [91]. Their research shows
that using a DL technique to analyze dental photos can improve caries detection speed
and accuracy, as well as complement dental practitioners’ diagnosis and improve patient
outcomes [88]. Rana et al. present an automated approach for segmenting dental images
pixel by pixel and successfully distinguish gingival inflammation from healthy gums. Oral
pictures are used to segment gingival diseases. The automated technology uses intraoral
pictures at point-of-care settings to assist in avoiding severe periodontal disease and tooth
loss by detecting gingival inflammation early in patients [92]. A Mask R-CNN model can
identify and categorize dental caries throughout the whole 7-class ICDAS scale [93]. They
used deep learning to diagnose dental cavities in intraoral pictures acquired by intraoral
cameras, attaining precisions of 0.667, 0.889, and 0.778 in the most frequent, worst classes
and centroid pixel class. Tanriver et al. [94] evaluated the usefulness of image-processing
technologies in the detection of oncology. With a second stage classifier network, a two-
stage DL model was suggested to identify oral cancer and categorize the discovered area
into three categories of benign oral, and possibly malignant carcinoma. By using the expert
standard as a reference, Schlickenrieder et al. assess a CNN trained to identify and catego-
rize fissure sealants from intraoral images. According to this investigation, a trained CNN
recognized sealant intraoral pictures with 98.7% agreement with reference judgments [95].
The DL method called YOLOv3 was suggested by Takahashi et al. [96] for identifying dental
implants and tooth restorations. However, the effectiveness of that method was limited
in identifying tooth-colored prostheses. To identify white spot lesions in dental pictures
obtained with a digital camera, Askar et al. used DL approaches. They demonstrated
satisfactory accuracy in identifying white spot lesions, particularly fluorosis [97]. Table 5
shows the studies that used the CNN technique.

Table 5. CNN selected studies.

Authors Name and Year Methods Results Authors Suggestions/Conclusions

Prajapati et al., (2017) [16]
Transfer learning

with VGG16
pre-trained model

Accuracy = 88.46%
Transfer learning with the VGG16

pre-trained model achieved
better accuracy.

Lee et al., (2018) [56]
Pre-trained

GoogLeNet Inception
v3 network

Accuracy of 89%, 88%, and 82%
was observed in the premolar,

molar, and both the
premolar-molar regions.

In terms of diagnosing dental caries,
Deep CNN algorithms are

anticipated to be among the best
and most productive technique.

Vinayahalingam et al.,
(2021) [57]

CNN MobileNet V2
Accuracy = 0.87,
sensitivity = 0.86,

specificity = 0.88, AUC = 0.90

This method forms a promising
foundation for the further

development of automatic third
molar removal assessment.

Choi et al., (2018) [63] Customized CNN F1max = 0.74, FPs = 0.88
This system can be used to detect
proximal dental caries on several

periapical images.

Lee et al., (2021) [65] Deep CNN (U-Net)
Precision = 63.29%,

recall = 65.02%,
F1-score = 64.14%

Clinicians should not wholly rely on
AI-based dental caries detection

results, but should instead use them
only for reference.
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Table 5. Cont.

Authors Name and Year Methods Results Authors Suggestions/Conclusions

Yang et al., (2018) [67] Customized CNN F1 score = 0.749 The method doesn’t always work
on images of molars.

Lee et al., (2018) [68]
Pre-trained deep

CNN (VGG-19) and
self-trained network

Premolars (accuracy = 82.8%),
molars (accuracy = 73.4%)

Using a low-resolution dataset can
reduced the accuracy of the

diagnosis and prediction of PCT.

Al Kheraif et al., (2019) [69] Hybrid graph-cut
technique and CNN Accuracy = 97.07%

The DL with convolution neural
network system effectively

recognizes the dental disease.

Murata et al., (2019) [70] Customized
AlexNet CNN

Accuracy = 87.5%,
sensitivity = 86.7%,
specificity = 88.3%,

AUC = 0.875

The AI model can be a supporting
tool for inexperienced dentists.

Krois et al., (2019) [72] Custom-made CNN
Accuracy = 0.81,
sensitivity = 0.81,
Specificity = 0.81

ML-based models could minimize
the efforts.

Zhao et al., (2020) [77]

Customized
Two-staged attention

segmentation
network

Accuracy = 96.94%,
dice = 92.72%, recall = 93.77%

Failure to properly divide the
foreground image into teeth areas

due to inaccurate
pixel segmentation.

Fariza et al., (2020) [78] U-Net convolution
network Accuracy = 97.61%

Segmentation with the proposed
U-Net convolution network results

in fast segmentation and smooth
image edges.

Lakshmi and Chitra,
(2020) [79]

Sobel edge detection
with deep CNN Accuracy = 96.08%

Sobel edge detection with deep
CNN is efficient for cavities

prediction compared to
other methods.

Khan et al., (2021) [80] U-Net + Densenet121 mIoU = 0.501,
Dice coefficient = 0.569

DL can be a viable option for
segmentation of caries, ABR, and

IRR in dental radiographs.

Moran et al., (2020) [81]
Pre-trained ResNet

and an
Inception model

Accuracy = 0.817,
precision = 0.762, recall = 0.923,

specificity = 0.711,
negative predictive = 0.902

Clinically, the examined CNN
model can aid in the diagnosis of
periodontal bone deterioration
during periapical examinations.

Chen et al., (2021) [82] Customized Faster
R-CNN Precision = 0.5, recall = 0.6

Disease lesions with too small sizes
may not be indications for

faster R-CNN.

Lin and Chang, (2021) [84] ResNet Accuracy = 93.33%
In the second stage, endodontic

therapy is the most vulnerable to
incorrect labeling.

Zhang et al., (2022) [85] Customized
multi-task CNN

Precision = 0.951, recall = 0.955,
F-score = 0.953

The method can provide reliable
and comprehensive diagnostic

support for dentists.

Yu et al., (2020) [91] Customized
ResNet50-FPN

Accuracy = 95.25%,
sensitivity = 89.83%,
specificity = 96.10%

Only implement caries detection for
First Permanent Molar not all teeth.

Rana et al., (2017) [92] Customized CNN AUC = 0.746, precision = 0.347,
recall = 0.621

Dental professionals and patients
can benefit from automated

point-of-care early diagnosis of
periodontal diseases provided.
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Table 5. Cont.

Authors Name and Year Methods Results Authors Suggestions/Conclusions

Tanriver et al., (2021) [94]
Multiple pre-trained
NNs; EfcientNet-b4

architecture

sensitivity = 89.3,
precision = 86.2, F1 = 85.7

The suggested model shows
significant promise as a low-cost,

noninvasive tool to aid in screening
procedures and enhance

OPMD identification.

Schlickenrieder et al.,
(2021) [95]

pre-trained
ResNeXt-101–32x8d accuracy = 98.7%, AUC = 0.996

More training is needed in AI-based
detection, classification of common
and uncommon dental disorders,

and all types of restorations.

Takahashi et al., (2021) [96] YOLO v3 and SSD mAP = 0.80, mIoU = 0.76
This method was limited accuracy

in identifying
tooth-colored prosthese.

3.1.4. Generative Adversarial Networks (GANs)

With exceptional performance, GAN can train the generative model of any data
distribution by using adversarial approaches. Since its inception, GAN has attracted a lot of
attention due to its outstanding performance. The innovative adversarial learning concept
of GAN permeates all facets of deep learning significantly, leading to a number of new
research avenues and applications, which is especially important. Goodfellow et al. [98]
introduced GAN to the DL space. As its name implies, GAN, a class of generative models,
is trained in an adversarial environmental deep neural network. Kim et al. [99] used masks
to remove the interdental space, and then GAN was used to recreate the edge outlines.
The proposed method increased the precision to 0.004 mm when compared to separated
scanning without interdental areas. Due to the masking of nearby normal structures,
the size of the mask was, nevertheless, negatively correlated with the accuracy of the
reconstruction. Kokomoto et al. [100] demonstrated the creation of full-color intraoral
images by using progressive growth of generative adversarial networks (PGGAN), and
they assess the quantity and visual quality of the produced intraoral photos according
to paediatric dentists. Without raising any privacy issues, the obtained intraoral images
can be used as instructional materials or as data augmentation for DL. Table 6 shows the
studies that used GAN technique.

Table 6. GAN selected studies.

Authors Name and Year Methods Results Authors Suggestions/Conclusions

Kim et al., (2020) [99] CNN, GLCIC, Edge Connect
Improvement of
0.004 mm in the

tooth segmentation

The segmentation approach for complete
arch intraoral scan data is efficient,

time-saving, and as accurate as a manual
segmentation method.

Kokomoto et al., (2021) [100] PGGAN p value < 0.0001
The quantity of trained photos has a

significant impact on PGGAN’s ability to
generate realistic visuals.

3.1.5. Graph Neural Networks (GNNs)

Graphs are a type of data representation that is related to non-Euclidean, irregular
domains. Several physical human operations create data that is contained in a graph form
by default. Graphs by their very nature capture relationships between things, making them
potentially highly helpful for encoding relational information between variables in these
applications [101]. As a result, the extension of GNN into non-structural (unordered) and
structural (ordered) contexts has received a lot of attention. In order to learn additional dis-
criminative geometric characteristics for 3D dental model segmentation, Zhang et al. [102]
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offer a novel two-stream GCN capable of processing coordinates and normal vectors sepa-
rately. Another method proposed by Zheng et al. [103] called TeethGNN is a graph-based
neural network for semantic dental teeth segmentation. They introduced a novel two-
branch architecture: a semantic branch to produce facet-wise semantic labels and an offset
branch to predict an offset-to-centroid vector for each graph node. Although graph-based
representations are becoming increasingly frequent in the medical arena [104–109], they
are still uncommon compared to traditional DL methods, and their promise to solve a wide
range of difficult medical issues has yet to be completely realized. Table 7 shows the studies
that used GNN technique.

Table 7. GNN selected studies.

Authors Name and Year Methods Results Authors Suggestions/
Conclusions

Zhang et al., (2021) [102] PointNet, DGCNN, PointNet++,
PointCNN, MeshSegNet

Accuracy = 95.25,
mIoU = 88.99

TSGCNet cannot robustly handle
special cases with 12 teeth.

Zheng et al., (2022) [103] Modified Dynamic Graph CNN
(DGCNN)

mIoU = 97.49,
accuracy = 98.94

The proposed teeth segmentation
is robust to rotten, missing,

crowded, and ectopic-tooth cases.

3.2. Which Categories of DI Used DL Techniques?

Approximately 39 research papers were studied to find various categories of DI
using different DL applications in dentistry. The following subsections present various DI
categories that used DL techniques.

3.2.1. Computer Aided Design (CAD)/Computer Aided Manufacturing (CAM)

CAD–CAM is a newly developed scope of dental restoration and prosthodontics
rehabilitation that employs CAD–CAM systems to design and fit a variety of dental restora-
tions, including zirconium crowns, fixed bridges, dental implant restorations, orthodontic
appliances, dental (inlays, veneers, onlays), and removable dentures (partial and/or com-
plete) [110]. The epithelial dysplasia illness has been classified by using a CAD approach.
The algorithm collects a wide range of features and qualities, then sorts them into two
categories according to their relative importance [111]. Features were retrieved by using
the oriented FAST and rotated BRIEF (ORB) method and classified with the support vector
machine (SVM). Oral epithelial dysplasia classification accuracy was 92.8% using the sug-
gested method. Chatterjee et al. [112] suggest a computer-assisted technique to diagnose
oral pre-cancer/cancer using an oral exfoliative cytology. They used a combination of
statistical features such as morphology, intensity, color, texture, and histogram for diagnosis
of oral malignancy. They reported maximum recall of 94.58 % by using a random forest
classifier. With 3D STL models of a die scanned from patients, AI displayed significantly
good performance in forecasting the debonding probability of CAD–CAM CR crowns. This
technology could be used to help dentists during or after restorative procedures, as well
as in other troublesome cases, such root or die fractures [113]. Various approaches were
proposed for 3D dental model segmentation and classification. To categorize mesh cells,
Xu et al. [114] advocated reshaping hand-crafted geometric characteristics as 2D picture
patches to train 2D convolutional neural networks. The mesh labeling approach achieves
a level of precision of 99.06% (as measured in area) that is directly usable in orthodontic
CAD systems, surpassing the accuracy of state-of-the-art geometry-based methods. A
technique for segmenting and classifying teeth on 3D digital dental molds is proposed
by Tian et al. [115], which employs sparse voxel octree and 3D CNN. This approach suc-
cessfully segments teeth with an accuracy of 89.81%. Table 8 shows the studies that used
CAD–CAM technique.
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Table 8. CAD–CAM selected studies.

Authors Name and
Year Methods Results Authors Suggestions/Conclusions

Adel et al., (2018) [111] SVM, ORB Accuracy = 92.8% Regarding the detection of oral epithelial dysplasia,
this approach had the highest success rates.

Chatterjee et al.,
(2018) [112]

SVM, k nearest neighbor,
random forest. Accuracy = 90%

Predictive classifiers are better able to distinguish
between illness and control groups when statistical

and cytomorphometric features are combined.

Xu et al., (2018) [114] Customized CNN Accuracy = 99.06%
It directly satisfies the industrial clinical treatment
demands and is also robust to any possible foreign

matters on dental model surface.

Tian et al., (2019) [115] Sparse voxel octree and
3D CNN Accuracy = 95.96%

the proposed method has great application
potential in the computer-assisted orthodontic

treatment diagnosis.

3.2.2. Three-Dimensional (3D) Printing

Three-dimensional modeling applications in dentistry extend from oral and maxillo-
facial surgery, oral implantology, and prosthodontics to periodontology, endodontics, and
orthodontics [116,117]. Tian et al. [118] present a pragmatic and scientific review of 3D print-
ing technology in dentistry. Liu et al. [119] present a feature extraction approach that is an
end-to-end DL for 3D printings of tooth models. The experiment has a 92.6% accuracy on
the validation set. Due to the wide diversity of teeth in the dental model, there is also the
difficulty of how to better utilize geometric aspects of the teeth, in addition to the necessity of
manually marking a significant number of data samples.

3.2.3. Electronic Dental Records (EDR)

EDR systems are extensively utilized in the dental practice and serve as an important
resource for data-driven clinical decision-making research. Cui et al. [120] used electronic
dental data to build a clinical decision support (CDS) model that predicts tooth-extraction
treatment in clinical scenarios (EDRs). The model demonstrated a 96.2% of accuracy and
proved to be a potent regressor and classifier, achieving ideal performance with structured
data. Kang et al. [121] suggested utilizing ML to forecast a DC model in personalized
medicine. The suggested approach, called DCP, employs DL models as well as several ML
models. Random forest has achieved the highest performance compared to other machine
learning methods, with an accuracy of 92%, an F1 score of 90%, precision of 94%, and a
recall of 87%. Chen et al. [122] proposed a method for extracting data from Chinese EDRs
for clinical decision support systems byy using natural language processing (NLP). They
apply hybrid methods combining a keyword-based method and DL methods (word2vec
and sentence2vec), and the resulting models have an F1 score of 88% and 83%, respectively.
Table 9 shows the studies that used EDR technique.

Table 9. EDR selected studies.

Authors Name and Year Methods Results Authors Suggestions/Conclusions

Cui et al., (2021) [120] Extreme Gradient Boost
(XGBoost) algorithm

Accuracy = 96.2,
Precision = 86.5,

Recall = 83.0

ML methods showed promise for forecasting
multiclass issues, such as varying therapies

depending on EDRs.

Kang et al., (2022) [121] RF, ANN, CNN, GBDT,
SVM, LR, LSTM

Accuracy = 92%,
F1-score = 90%,
precision = 94%,

recall = 87%

ML is strongly recommended as a
decision-making aid for dental practitioners in

the early diagnosis and treatment of tooth caries

Chen, (2021) [122] NLP F1-score 83% and 88%
The NLP workflow might be used as the initial

stage to training data-based models with
structured data.
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3.2.4. Cone Beam Computed Tomography (CBCT)

Endodontics, orthodontics, implant usage, oral surgery, and oral medicine have all
benefited from the use of CBCT [123]. DL and AI have considerable potential for providing
completely automated CBCT analysis, which can help decrease subjectivity and inaccura-
cies. This skill can also aid in the streamlining and expediting of healthcare processes. On
dental cone-beam computed tomography (CT) images, a DCNN was used to classify tooth
kinds. The use of a deep CNN with an AlexNet network architecture for tooth classification
in dental CBCT pictures was researched by Miki et al. [124]. In addition to its potential
utility in forensics, the seven-tooth-type categorization result has practical applications in
the automated generation of dental charts. Sorkhabi and Khajeh [125] presented a 3D CNN
approach to assess the alveolar bone density by using CBCT volumetric data, which may be
used for classification of alveolar bone density. In addition, Jaskari et al. [126] investigated
a DL technique for automated localization of the mandibular canals by using a CNN seg-
mentation on a clinically varied dataset of cone beam CT volumes. Kwak et al. [127] have
proposed using 3D U-Nets to identify and classify the mandibular canal in CBCT scans.
A dental segmentation automated technique was used in the trials along with algorithms
based on 3D, 2D, and 2D SegNet. A new set of 3D annotated mandibular photos was
proposed by [128]. In 2020, Kim et al. built two multi-channel DL models to classify
skeletal malocclusions on CBCT images [129]. The suggested models attained an overall
precision greater than 93%. Orhan et al. created a smart algorithm built on U-Net struc-
ture to spontaneously recognize periapical diseases and quantify their volumes on CBCT
images [130]. This technique attained a detect ability of 89% without any statistically signif-
icant differences comparing manual and automated volumetric estimates. Cui et al. [131]
described a technique for the identification and segmentation of teeth from CBCT images
using a 3D area proposal network with a learned-similarity matrix. Mask R-CNN was
applied to recognize teeth in CBCT scans, and a Dice score of 0.9237 was achieved. By
using a 3D convolution network, Chen et al. [132] extracted a single tooth from a small
dataset (25 scans) of CBCT scans and achieved a structural similarity of 0.936 coefficient.
Lee et al. [133] selected a U-Net architecture approach to segment teeth for implants by
labeling all sections of two CBCT specimens and five slices of other samples. They de-
veloped a multi-stage training procedure, with each stage 491 expanding the distance
between the teeth. Wang et al. assessed DL for multiclass CBCT image classification, which
combines tooth and jaw bone (maxilla and mandible) segmentation at the same time [134].
To identify the distal root structure of the mandibular first molar on panorama diagnostic
imaging, Hiraiwa et al. [135] employed a DL system (GoogleNet and AlexNet). Both DL al-
gorithms performed diagnostics marginally better than highly trained radiologists. Dental
panoramic radiography and CBCT scans based on a deep CNN (DCNN) were examined
by Lee et al. [136] for the diagnosis and detection of odontogenic cystic lesions (OCLs),
particularly periapical cysts, dentigerous cysts, and dontogenic keratocysts. An innovative
AI system based on DL techniques was examined to ascertain the real-time performance
of CBCT imaging diagnostic of anatomical landmarks, pathologies, clinical efficacy, and
safety when employed by dentists in a clinical scenario [137]. Dental CBCT mandible
segmentation using a unique end-to-end method based on shape-aware segmentation for
mandible segmentation (SASeg) was proposed by Qiu et al. [138]. A mean mandible shape
is used by SASeg’s prior shape feature extractor (PSFE) module, and recurrent connections
preserve the mandible’s continuity structure. To categorise C-shaped canal morphology
in mandibular second molars from CBCT volumes and to assess the effectiveness of three
different architectures, a DL model was developed [139]. Various DL methods were used
like U-Net, residual U-Net, and Xception U-Net architectures for image segmentation and
classification of C-shape anatomies. Table 10 shows the studies that used CBCT technique.
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Table 10. CBCT selected studies.

Authors Name
and Year Methods Results Authors Suggestions/Conclusions

Miki et al., (2017) [124] AlexNet network Accuracy = 91.0%
Automated filling of dental data for forensic
identification can benefit from the suggested

tooth categorization approach.

Sorkhabi and Khajeh,
(2019) [125] Customized 3D CNN

Hexagonal prism
(precision = 84.63%),

cylindrical voxel shapes
(precision = 95.20%)

This method may help the dentists in the
implant treatment from diagnosis to surgery.

Jaskari et al., (2020) [126] Customized FCDNN

DSC were 0.57 (SD = 0.08)
for the left canal and 0.58
(SD = 0.09) for the right

canal

Automated DL neural network-based system
when applied to CBCT scans can produce high

quality segmentations of mandibular canals.

Kwak et al., (2020) [127] 2D SegNet, 2D and 3D
U-Nets

2D U-Net
(accuracy = 0.82), 2D

SegNet (accuracy = 0.96),
3D U-Net

(accuracy = 0.99)

With the help of DL, a dentist will be able to
create an automated method for detecting

canals, which will considerably improve the
effectiveness of treatment plans and the comfort

of patients.

Kim et al., (2020) [129] CNN-based DL models Accuracy = 93%

This method aims at assisting orthodontist to
determine the best treatment path for the

patient be it orthodontic or surgical treatment or
a combination of both.

Orhan et al., (2020) [130] U-Net Accuracy = 92.8%
AI systems based on DL methods can be useful
in detecting periapical pathosis in CBCT images

for clinical application.

Cui et al., (2019) [131] Customized 3D CNN
DSC = 92.37%,
DA = 99.55%,
FA = 96.85%

The segmentation will fail when there is
extreme gray scale value in CT image and if the

tooth has the wrong orientation.

Chen et al., (2020) [132] Multi-task 3D FCN
combined with MWT

Dice = 0.936 (±0.012),
Jaccard index = 0.881

(±0.019)

The multi-task 3D FCN combined with MWT
can segment individual tooth of various types

in dental CBCT images.

Lee et al., (2020) [133]
Fully automated

CNN-based U-Net
structure

Dice = 0.935,
Recall = 0.956,

Precision = 0.915

Some portions of the wisdom teeth were
usually undetected.

Wang et al., (2021) [134] Customized CNN Dice similarity
coefficient = 0.934 ± 0.019

DL has the potential to accurately and
simultaneously segment jaw and teeth in

CBCT scans.

Hiraiwa et al.,
(2019) [135] AlexNet and GoogleNet Accuracy = 86.9%

The deep learning system showed high
accuracy in the differential diagnosis of a single
or extra root in the distal roots of mandibular

first molars.

Lee et al., (2020) [136] GoogLeNet Inception-v3
architecture

Sensitivity = 96.1%,
specificity = 77.1%,

AUC = 0.91

Deep CNN architecture trained with CBCT
images achieved higher diagnostic performance

than that trained with panoramic images.

Ezhov et al., (2021) [137] Customized CNN

The sensitivity values for
aided and unaided

groups were 0.8537 and
0.7672 while specificity
was 0.9672 and 0.9616

respectively.

The proposed AI system significantly improved
the diagnostic capabilities of dentists.

Qiu et al., (2021) [138] Customized CNN Dice (%) = 95.29 This model can be viewed as a training goal for
a particular application.

3.2.5. Finite Element Analysis (FEA)

Roy et al. [140] developed a unique technique for designing the form and geometry
of dental implants by using ANN, FEA, genetic algorithms, and the desirability function
in aggregation to achieve targeted microstrain. Lin and Su [141] use the finite element
approach to conduct a biomechanical investigation of the influence of four typical occlusion
circumstances on the various placements of dental implants. Another study suggested
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by Prati et al. [142] used an FEA to calculate the stress distribution created in the root
dentine canal during the mechanical rotation of five distinct NiTi endodontic tools (FEA).
Furthermore, Phanijjiva et al. [143] created a unique actual geometry of a complete tooth
3D model by utilizing a CT scan system and performed static structural assessments by
using FEA.

3.2.6. Virtual Reality (VR)/Augmented Reality (AR)/Mixed Reality (MR)

Li et al. [144] present an overview of the existing dental simulators on related tech-
nologies, benefits and drawbacks, methods of measuring efficacy, and future research
possibilities. Gandedkar et al. [145] provide insight into the limitations of traditional educa-
tion and investigate the existing and future uses of VR, AR, and AI in orthodontic teaching
and research. Dyulicheva et al. [146] report the creation of a virtual reality simulator for
dental offices that includes immersion in a VR scenario and simulation of tooth drilling.
Dixon et al. [147] want to test the contemporaneous validity of the evaluation as well as the
provision of qualitative feedback for cavity preparations by using VR dental simulators.
The primary use of AR in dentistry is connected to overlaying digital information in the
actual environment, essentially “enhancing reality”, and live communication systems be-
tween collaborators and patients via the exchange of photographs, videos, and 3D models.
AR was originally utilized in dentistry for educational reasons as a technique by which to
objectively evaluate pupils and provide immediate feedback [148]. Rao et al. [149] used ML
and AR validation methods to improve 3D renderings of skeletal landmarks for instructing
the students in orthodontic cephalometry’s science. Touati et al. [150] compare two unique
AR communication tactics in dentistry. These tactics allow the user to rapidly test a virtual
grin proposition by capturing a series of photos from various angles or by utilizing the
iPad as an improved mirror. Monterubbianesi et al. [151] review the uses of VR, AR and
MR in dentistry, as well as future digitalization problems, such as robotics and AI.

3.2.7. Teledentistry

The use of teledentistry for distant consultation, treatment planning, dental screening,
and diagnosis, and has been proven to be beneficial over the years. It has been shown to
be equivalent to real-time consultations in places with restricted facilities access, among
schoolchildren, and in long-term healthcare institutions [152,153]. Al-Khalifa and Al
Sheikh [154] aimed to survey the Saudi dentists’ view of the benefits of teledentistry in
enhancing dental practice and patient care. This study’s responses indicated that dental
practitioners were prepared to use the teledentistry technique. Babar et al. [155] offer
a data management approach for smart dental planning based on big data analytics.
Teleconsultation, telediagnosis, teletriage, and telemonitoring are teledentistry modules
with key tasks in dental practice [156].

3.3. Which Types of Images Are Used to Evaluate DL Techniques?

The studies used in RQ1 and RQ2 have been used to evaluate the type of images that are
used to evaluate DL techniques. Different types of images were used by different researchers
based on the techniques they used in DI. Radiographic images [16,41,43,56,63–65,67–85,87,157],
near-infrared light transillumination (NILT) [88–90], intraoral images [66,86,91–93,95–97,158–160], 3D
model [102,113–115,161] were used in the research for dental diseases diagnostic on the
3D dental model. The studies on the dental disease’s diagnostic on the CBCT dental model
used the CT images [124], 3D CT scans [131], CT datasets [162], CBCT and panoramic ra-
diographs [135,136], CBCT images [125–127,129,130,133,139,163–165], 3D CBCT images [166],
CBCT datasets [128,167] and CBCT scans [132,134,137,138,168,169], whereas EDR [120–122]
images were used to evaluate DL techniques in the studies of dental disease diagnostics
through the EDR model. Table 11 shows the images that used to evaluate DL techniques.
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Table 11. Types of images to evaluate DL techniques.

Image Type No. of Studies Studies References

Radiographic images 25

Faria et al., (2021) [41], Geetha et al., (2020) [43], Lee et al., (2018) [68], Prajapati et al.,
(2017) [16], Choi et al., (2018) [63], Lee et al., (2018) [56], Yang et al., (2018) [67],
Al Kheraif, (2019) [69], Murata et al., (2019) [70], Krois et al., (2019) [72], Ekert et al.,
(2019) [71], Verma et al., (2020) [73], Zhao et al., (2020) [77], Mahdi et al., (2020) [75],
Fariza et al., (2020) [78], Lakshmi and Chitra, (2020) [79], Moran et al., (2020) [81],
Muresan et al., (2020) [74], Lakshmi and Chitra, (2020) [76], Cantu et al., (2020) [64],
Khan et al., (2021) [80], Vinayahalingam et al., (2021) [157], Lee et al., (2021) [65],
Chen et al., (2021) [82], Kabir et al., (2021) [83], Lin and Chang, (2021) [84], Zhang et al.,
(2022) [85], Imak et al., (2022) [87]

NILT 3 Casalegno et al., (2019) [88], Schwendicke et al., (2020) [89], Holtkamp et al., (2021) [90]

Intraoral images 11
Rana et al., (2017) [92], Moutselos et al., (2019) [93], Welikala et al., (2020) [158], Yu et al.,
(2020) [91], Schlickenrieder et al., (2021) [95], Hossam et al., (2021) [86], Saini et al.,
(2021) [66], Takahashi et al., (2021) [96], Askar et al., (2021) [97], Goswami et al.,
(2021) [159], Shang et al., (2021) [160]

3D Model 5 Xu et al., (2018) [114], Tian et al., (2019) [115], Yamaguchi et al., (2019) [113], Cui et al.,
(2021) [161], Zhang et al., (2021) [102]

CT/CBCT images 26

Miki et al., (2017) [124], Roy et al., (2018) [140], Cui et al., (2019) [131], Phanijjiva et al.,
(2018) [143], Huang et al., (2021) [162], Hiraiwa et al., (2019) [135], Lee et al., (2020) [136],
Sorkhabi and Khajeh, (2019) [125], Jaskari et al., (2020) [126], Kim et al., (2020) [129],
Kwak et al., (2020) [127], Orhan et al., (2020) [130], Chung et al., (2020) [163], Lee et al.,
(2020) [133], Wang et al., (2021) [134], Zheng et al., (2020) [164], Kurt Bayrakdar et al.,
(2021) [165], Ezhov et al., (2021) [137], Jang et al., (2021) [166], Qiu et al., (2021) [138],
Sherwood et al., (2021) [139], Shaheen et al., (2021) [168], Alsomali et al., (2022) [167],
Cipriano et al., (2022) [128], Liu et al., (2022) [169], Chen et al., (2020) [132]

EDRs 3 Cui et al., (2021) [120], Kang et al., (2022) [121], Chen et al., (2021) [122]

3.4. What Are the Performance Measurement Techniques Used to Measure DL Techniques?

Every DL pipeline has performance measurements. The model was evaluated on the
test dataset of photos after training and validation. Visualization, prediction, and decision
making are the key roles in an efficient and effective system. Approximately 56 studies
were evaluated to determine the performance measurement techniques used to evaluate DL
techniques in the dental practice. Table 12 shows various types of performance measures
in different researches studied in this SLR where ‘ X’ indicates that the measure was used
by the researcher to evaluate the performance whereas "7" indicates that the measure was
dropped by the researcher. However, accuracy, sensitivity, specificity, precision, recall, and
F1 score are still the most used performance measurement in most of the studies. Model
performance techniques are shown in Table 12.

Table 12. Performance measures of deep learning methods.
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De Araujo Faria et al., (2021) [41] X 7 7 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Li et al., (2021) [42] 7 X X 7 7 7 7 X 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7

Geetha et al., (2020) [43] X 7 7 7 7 7 X 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7

Zanella-Calzada et al., (2018) [44] X 7 7 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Li et al., (2018) [47] 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Lu et al., (2018) [48] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Li et al., (2018) [49] X 7 7 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Alarifi and AlZubi, (2018) [51] X 7 7 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
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Table 12. Cont.
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Kumari et al., (2022) [52] X X 7 X X X 7 7 7 7 7 X X X 7 7 X X 7 7 7 7 7

Singh and Sehgal, (2021) [53] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Prajapati et al., (2017) [16] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Lee et al., (2018) [56] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Vinayahalingam et al., (2021) [57] X 7 7 7 X X 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Choi et al., (2018) [63] 7 7 7 X 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Lee et al., (2021) [65] 7 X X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Yang et al., (2018) [67] 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Lee et al., (2018) [68] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Al Kheraif et al., (2019) [69] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Murata et al., (2019) [70] X 7 7 7 X X 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Krois et al., (2019) [72] X 7 7 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Zhao et al., (2020) [77] X 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7 7

Fariza et al., (2020) [78] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Lakshmi and Chitra, (2020) [79] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Khan et al., (2021) [80] 7 7 7 7 7 7 7 7 7 7 X 7 7 7 7 7 7 7 X 7 7 7 7

Moran et al., (2020) [81] X X X 7 7 X 7 7 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7

Chen et al., (2021) [82] 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Lin and Chang, (2021) [84] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Zhang et al., (2022) [85] 7 X X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Yu et al., (2020) [91] X 7 7 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Rana et al., (2017) [92] 7 X X 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Tanriver et al., (2021) [94] 7 X 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Schlickenrieder et al., (2021) [95] X 7 7 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Takahashi et al., (2021) [96] 7 7 7 7 7 7 7 7 7 7 X 7 7 7 X 7 7 7 7 7 7 7 7

Zhang et al., (2021) [102] X 7 7 7 7 7 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7

Zheng et al., (2022) [103] X 7 7 7 7 7 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7

Adel et al., (2018) [111] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Chatterjee et al., (2018) [112] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Xu et al., (2018) [114] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Tian et al., (2019) [115] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Cui et al., (2021) [120] X X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Kang et al., (2022) [121] X X X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Chen, (2021) [122] 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Miki et al., (2017) [124] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Sorkhabi and Khajeh, (2019) [125] 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Jaskari et al., (2020) [126] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7

Kwak et al., (2020) [127] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Kim et al., (2020) [129] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Orhan et al., (2020) [130] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Cui et al., (2019) [131] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 X X X 7

Chen et al., (2020) [132] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7 X

Lee et al., (2020) [133] 7 X X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7 7

Wang et al., (2021) [134] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7 7

Hiraiwa et al., (2019) [135] X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Lee et al., (2020) [136] 7 7 7 7 X X 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Ezhov et al., (2021) [137] 7 7 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Qiu et al., (2021) [138] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7 7
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4. Discussion

For this SLR, relevant papers (papers published related to DL in dentistry) were
picked from the databases Scopus, Web of Science, Springer, ACM Digital Library, IEEE
Explorer, and Science Direct. To conduct this review, we chose research spanning 2017 to
2022 depending on their popularity. The study was carried out to advocate a systematic
review process that would aid future researchers in determining the general framework
of a DL-based dental diagnostic. Approximately 48 research papers were studied to
answer questions related to DL techniques that are used in different fields of DI using
different types of images and performance measurement to evaluate DL techniques. DL,
which represents AI, is applied in a variety of societal contexts, including the medical
and dental industries, to address real-world problems. The advancement of DL is being
ramped up by the advent of self-learning back-propagation techniques which enhance
data outputs and process technology in small, gradual changes. As the precision of DL
algorithms in healthcare continues to improve, we should expect to see more teamwork in
computer-assisted diagnosis. The development of AI-based dental applications is absolutely
intriguing. Despite the fact that DL has been found to have potential uses in dentistry in
several studies, these systems are still far from being able to replace dental experts. Rather,
AI should be considered as a supplementary asset that may help dentists and experts.
To guarantee that humans retain the capacity to supervise treatment and make educated
decisions in dentistry, it is critical to ensure that DL is incorporated in a safe and regulated
manner. The route to effective DL integration in dentistry will need dental and continuing
education training, a task that most institutions are now unprepared to meet. MR is a novel
phrase that blends features of generative DL, VR, and AR into computer-superimposed
information overlays into computer-generated data patches for enhanced teaching and
preoperative scheduling. First findings from the multiple DL systems being developed for
different areas of dentistry are promising, suggesting that reinforcement learning has a
promising future in the dental treatment field. DL technologies have shown potential as a
valuable tool for oral health practitioners.

The main focus of the research was on the DL that are used in the dental practice.
The study focuses on the various DL techniques (such as ANN, CNN, and GAN) and the
applications of DL (such as CAD/CAM, 3D printing, CBCT etc.) utilized in dental proce-
dures. Endodontics, orthodontics, implants, oral surgery, oral medicine, periodontology,
zirconium crowns, fixed bridges, dental implant restorations, orthodontic devices, and
DI are among the topics covered in the study. (inlays, veneers, onlays), and removable
dentures (partial and/or complete) where DL techniques were applied. Moreover, the
study determines the type of images required to evaluate the DL practices in dentistry.
The performance measurement techniques discussed determine how the researchers can
benefit from measures such as accuracy, F1 score, ROC, precision, and recall. The ability of
CNNs to recognize and identify anatomical features has showed promise. Some have been
taught to recognize and classify teeth from periapical radiographs, for example. Dentists
have also employed CNNs to identify and diagnose dental caries. Deep CNNs offer a lot of
promise for enhancing the sensitivity of dental caries’ detection, and this, along with their
speed, makes them one of the most useful tools in this field. ANNs offer a lot of promise in
terms of assisting in clinical decision-making. To get predictable outcomes for patients, it
is critical to schedule orthodontic treatments thoroughly. Teeth extractions, on the other
hand, are not commonplace as part of an orthodontic treatment plan. As a result, before
beginning irreversible operations, it is critical to make the best clinical judgement possible.
In individuals with malocclusion, an ANN was used to evaluate if tooth extraction was
necessary before orthodontic therapy. Early identification and diagnosis of oral lesions is
critical in dental offices because early detection improves prognosis greatly. Because certain
oral lesions are precancerous or cancerous, it is critical to obtain an accurate diagnosis and
treat the patient appropriately. CNN is beneficial for diagnosing head and neck lesions.

In dentistry, DL has a higher diagnostic accuracy than medical imaging techniques
like X-ray or computerized temography (CT) scans for diagnosing oral disorders. Several
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publications that use DL to treat oral problems have been published in recent years. DL
systems can handle the complexities and challenges of autonomous oral disease diagnosis.
To date, many review studies on the identification and categorization of oral illnesses have
been completed, but only a few of them can provide a clear roadmap for future researchers.
Despite the fact that these papers provided a thorough review of the literature on dental
diseases and applications, they may have overlooked a few DL concerns.

The preponderance of dental review studies focused on traditional ML or ANNs,
which employ feature extraction for diagnosis. They couldn’t handle existing DL architec-
tures for identifying dental diagnosis, such as GCNs, GANs, and ELMs. Although a few
review articles on dentistry medical imaging techniques and digital dental technologies
have been published, they would be unable to include all imaging modalities used in the
identification and categorization of dental diseases. This study lays a strong platform for a
comprehensive and critical examination of existing DL-based digital dentistry technologies
and dental disease identification.

4.1. Contribution

DI is a fairly inexperienced area with a lot of potential for using computer and infor-
mation sciences to improve dentistry, teaching, management and research. DI encompasses
more than just the use of computers in dentistry. This paper provides an in-depth look
into deep-neural networks used to detect dental problems. Based on the findings and
subsequent discussion, researchers and dentists who work with vast collections of dental
pictures, files, and databases will benefit from the knowledge provided by this SLR. As
previously indicated, the most recent ML and DL approaches might be useful in identifying,
segmenting, categorising, and visualising dental illnesses that are present in a variety of
forms. Performance measuring methods will also help in the choice of the best methods,
tools, models, and frameworks.

It was expected from the SLR that researchers who would like to work on medical
image classification with an emphasis on DL-based dental diagnostics utilizing a range of
medical images will find this review informative.

4.2. Implications for Practice

In terms of diagnosing oral disorders, prescribing, indications, and contraindications
of certain pharmaceuticals in patients with certain circumstances. DI has several clinical
uses and instruments. DI provides possible treatments for various dental disorders, but
it has limits. Its progress will need individual and profession-wide efforts. Digital dental
technology has had a significant impact on how dentists approach patients and how they
build novel and complete restorative treatments. Based on the findings and subsequent dis-
cussion, researchers and dentists who work with vast collections of dental pictures and files
will benefit from the knowledge provided by this SLR. As previously indicated, the most
recent ML and DL approaches might be useful in identifying, segmenting, categorizing, and
visualizing dental illnesses that are present in a variety of forms. Performance measuring
methods will also help in the choice of the best methods, tools, models, and frameworks.
In comparison with previous surgical approaches, this methodology offered substantial
simplicity and improvements, boosting implant location accuracy while also enhancing
patient comfort and compliance. Modern digital technologies have the ability to change
dentistry on an educational and clinical level by utilizing AR, VR, and MR to improve
students’ learning and clinical training. Both their academic and practical knowledge
might grow for the students. These technologies might be useful to dental professionals in
their work.

5. Limitations and Future Recommendations

Because DL is a keyword used in many applications, data accessibility and domain
context are the SLR’s two biggest limitations. Due to the paper’s acceptance and publication
period being between 2017 and 2021, certain pertinent articles were not readily available.
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The selection of English-language studies is a minor restriction. The following are our
opinions on the potential applications of DL in DI.

• The need to collect and annotate a dental image dataset. When compared to other
imaging fields, the dentistry industry finds it difficult to obtain annotated data, which
is necessary for DL applications. Dental data annotation is costly, laborious, and time
consuming because it requires professionals to devote a lot of their time to it. In
addition, it might not always be achievable in unusual circumstances.

• Advancement in DL methods. For supervised DL, the majority of DL algorithms
rely on annotated data. To address the issue of enormous data unavailability, the
supervised DL industry needs switch from being supervised to unsupervised or
semi-supervised. How useful can unsupervised and semi-supervised methods be in
medicine as a result, and how can we move from supervised learning to transform
learning without sacrificing accuracy while keeping in mind how sensitive healthcare
systems are?

• Implementation of AR or VR applications in various fields of dental medicine and
education. By testing the capabilities of AR and VR virtually before putting them to
use on patients, dental surgeons and trainees can gain knowledge and confidence in
their abiilty to use these methods. Although several research studies have highlighted
important limits for users working with haptics, dental surgeions and trainees can
perform common and difficult treatments quickly and efficiently by using real-time
haptic feedback on virtual patients [170]. There are several potential uses for AR and
VR in dentistry, including specialized dental fields, dental education and training, oral
and maxillofacial surgery, and pediatric dentistry.

• Implement an automated tooth disease diagnosis system based on DL methods.The
dental care industry has been severely affected by the COVID-19 pandemic [171]. In-
deed, it is necessary to progress an automated method for scanning teeth, identifying,
categorizing, and diagnosing dental diseases.

• Structuring electronic dental records through DL for a clinical decision support
system. Medical informatics’ fundamental and difficult objective is to extract informa-
tion from unstructured clinical text [172].

• GNN-based approach. The most commonly used methods in the DL disciplines is the
GNN. By using this method, it is possible to create artificial data that resembles real
data nearly exactly and to comprehend the links (i.e., visual relationships) between
them, which aids in the identification and classification of dental illnesses. Therefore,
GNN might be a great option for handling data ambiguity.

6. Conclusions

The current study reviewed all of the noteworthy publications on DL methods for
healthcare analysis in this publication. Based on the area of DI, we suggested a classification
strategy for arranging the current articles and highlighted numerous significant research
prototypes. We also talked about the benefits and drawbacks of applying DL methods to DI.
We also discuss some of the most urgent open issues and promising future developments.
In recent decades, research on DL and healthcare analysis has been particularly popular.
Each year, a large number of new emerging models and developing procedures are created.
We believe that this study can give readers a thorough grasp of the important elements of
this discipline, explain the most significant developments, and cast some light on potential
future research.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Full Name
SLR Systematic Literature Review
DL Deep Learning
DI Dental Informatics
MI Medical Informatics
IT information technology
CAD Computer-aided design
CAM computer-aided manufacturing
CBCT Cone Beam Computed Tomography
CT Computerized Tomography
EDR Electronic Dental Record
EHR Electronic Health Records
FEA Finite Element Analysis
FEM Finite Element Method
VR Virtual Reality
AR Augmented Reality
ML Machine Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
GAN Generative Adversarial Network
ELM Extreme Learning Machines
GCN Graph Convolutional Network
RNN Recurrent Neural Network
RRC Radiation-Related Caries
NILT Near-infrared Light Transillumination
PCT Periodontally Damaged Teeth
pBL Periodontal Bone Loss
SVM Support Vector Machine
DPR Dental Panoramic Radiograph
TI Transillumination
R-CNN Region-based Convolutional Neural Network
GNN Graph Neural Network
FP False Positive
ROC Receiver Operating Characteristic
PRC precision recall curve
AUC Area Under Curve
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mIOU mean Intersection over Union
NPV Negative Predictive Value
mAP Mean Average Precision
IOU Intersection Over Union
DSC Dice similarity coefficient
DA Detection Accuracy
FA identification accuracy
FPR false-positive predictions
MI-DCNNE multi-input deep convolutional neural network ensemble
ICDAS International Caries Detection and Assessment System
DNN Deep Neural Network
UCDA novel caries detection and assessment
TSGCNet two-stream graph convolutional network
PGGAN progressive growing of generative adversarial networks
SLFNs Single-Hidden Layer Feed forward Neural Networks
LSTM Long Short-Term Memory
SSD Single Shot MultiBox Detector
BPNN Back-Propagation Neural Network
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