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Abstract: Umami is an important widely-used taste component of food seasoning. Umami peptides
are specific structural peptides endowing foods with a favorable umami taste. Laboratory approaches
used to identify umami peptides are time-consuming and labor-intensive, which are not feasible
for rapid screening. Here, we developed a novel peptide sequence-based umami peptide predictor,
namely iUP-BERT, which was based on the deep learning pretrained neural network feature extraction
method. After optimization, a single deep representation learning feature encoding method (BERT:
bidirectional encoder representations from transformer) in conjugation with the synthetic minority
over-sampling technique (SMOTE) and support vector machine (SVM) methods was adopted for
model creation to generate predicted probabilistic scores of potential umami peptides. Further
extensive empirical experiments on cross-validation and an independent test showed that iUP-BERT
outperformed the existing methods with improvements, highlighting its effectiveness and robustness.
Finally, an open-access iUP-BERT web server was built. To our knowledge, this is the first efficient
sequence-based umami predictor created based on a single deep-learning pretrained neural network
feature extraction method. By predicting umami peptides, iUP-BERT can help in further research to
improve the palatability of dietary supplements in the future.

Keywords: umami peptide; prediction; deep learning; BERT; SMOTE

1. Introduction

Umami taste determines the deliciousness of foods. Many foods possess umami
ingredients, such as meat products [1,2], mushroom [3], soy sauce [4], seafoods [5], and fer-
mented foods [6]. In addition to sweet, bitter, salty, and sour, umami taste was recognized
as the fifth taste, which is characterized as a meaty, savory, or broth-like flavor [7]. The
perception of sweet, bitter and umami taste is inspired by the binding of taste components
to the G protein-coupled receptor [8,9]. The main umami taste receptor is an independent
heterodimeric T1R1/T1R3 receptor [10,11]. Umami ingredients are widely used in food
production, with several health benefits [12]. Umami peptides are a group of specific
structural peptides, which endow foods with a favorable umami taste [6]. The primary
structure of umami peptides is usually short linear peptides, with a molecular weight
distribution of less than 5000 Da. Dipeptides and tripeptides account for approximately
60% of the isolated umami peptides [3,10]. Longer linear peptides, including pentapep-
tides, hexapeptides, heptapeptides, and octapeptides, were also discovered to possess
strong umami intensity [1,2,5,13]. The binding mechanism of umami peptides to the taste
receptor was distinguished from that of other umami ingredients, indicating their special
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taste attributes [10,14]. Moreover, umami peptides displayed synergy with typical umami
substances, such as monosodium glutamate (MSG) [15]. Some showed umami-enhancing
effects in MSG or NaCl solution [16]. Several health benefits, including reducing dietary salt
content, antioxidant activity [17], inhibiting the activities of dipeptidyl peptidase-IV [18]
and angiotensin I converting enzyme [17,18], have been reported for umami peptides.
Therefore, umami peptides could be a good supplement to other traditional umami sub-
stances and display prospective application in the food seasoning industry.

The existing laboratory approaches used to identify and characterize umami peptides,
including RP-HPLC [19], MALDI-TOF-MS [13], LC-Q-TOF-MS [3], and UPLC-ESI-QTOF-
MS/MS [20] analyses, are time-consuming and labor-intensive, which restrict the high-
throughput and rapid screening of umami peptides. Therefore, applying accurate and effi-
cient computer-assisted methods to identify umami peptides is a necessity and complemen-
tary to the experimental methods [21]. The knowledge of the interaction of umami peptides
with the taste receptors promoted the search for new novel umami peptides. Computational
approaches, such as molecular docking and homology modeling, have been applied to iden-
tify umami peptides [21,22]. By conjugating estimated propensity scores of amino acids and
dipeptides with the scoring card method (SCM), the first sequence-based umami peptide
predictor, namely iUmami-SCM (http://camt.pythonanywhere.com/iUmami-SCM (ac-
cessed on 14 November 2020)) [23], was developed. It analyzes and predicts umami sensory
peptides merely based on the information of the primary peptide sequence, without know-
ing the advanced structure. IUmami-SCM afforded sensitivity (Sn), the deduced balanced
accuracy (BACC), and Matthew’s coefficient correlation (MCC) of 0.714, 0.824, and 0.679,
respectively. Nevertheless, the artificial feature extraction method and only a single type of
feature was used as the input of machine learning (ML) models. Consequently, the sequence
feature information of iUmami-SCM is insufficient and the performance is not very satis-
factory. Recently, the ML-based umami peptide meta-predictor, namely UMPred-FRL [24],
was created based on a feature representation learning approach, with an open-access
web server at http://pmlabstack.pythonanywhere.com/UMPred-FRL (accessed on 20
December 2021) Seven different feature encodings, comprising amino acid composition,
dipeptide composition, composition transition-distribution, amphiphilic pseudo-amino
acid composition, and pseudo-amino acid composition, were conjugated with the six well-
known ML algorithms (k-nearest neighbor (KNN) [25], extremely randomized trees, partial
least squares, random forest (RF) [26], logistic regression (LR) [27], and support vector
machine (SVM) [28,29]) Compared with its baseline models, higher accuracy was achieved
on the benchmark dataset. It also outperformed the iUmami-SCM method consistently on
the independent test dataset [24]. Yet, the overall prediction performance of UMPred-FRL
is still not efficient enough, with accuracy (ACC) to be 0.888, MCC to be 0.735, Sn to be
0.786, and BACC to be 0.860. This may be caused by an inefficient manual ML feature
exaction method being used. Therefore, for rapid and specific umami peptide screening,
more robust, accurate, and higher sensitivity prediction models are needed.

Deep learning is an algorithm in ML, which enables the computer to learn to use fea-
tures while learning how to extract features: Learn how to learn [30]. It could automatically
transform raw protein sequences into a form utilized effectively by ML, without the need
of preprocessing or prior characterization of data. It is now increasingly being adapted in
protein recognition, where complex informatics pipelines could be replaced with models
that predict structures directly from sequences [30]. Bidirectional encoder representations
from transformer (BERT) refers to a transformer-based deep learning method created by
Google for pretraining natural language processing [31,32]. The core of BERT is a trans-
former language model with a variable number of encoder layers and self-attention heads.
It takes use of a new masked language model and can generate deep bidirectional lan-
guage representations, providing a pretraining and fine-tuning approach, using enormous
amounts of unlabeled data. BERT creates general-purpose understandings first before using
task-specific data to address a variety of applications with the least amount of architectural
change. After pretraining, an additional output layer was added for fine-tuning, and a

http://camt.pythonanywhere.com/iUmami-SCM
http://pmlabstack.pythonanywhere.com/UMPred-FRL


Foods 2022, 11, 3742 3 of 16

state-of-the-art performance was obtained for various downstream tasks [32]. With a global
receptive field, BERT can effectively capture more global context information than the con-
volutional neural network-based models. Recently, BERT has achieved gratifying results
in the prediction of various functional peptides, such as bitter peptides [33], antimicrobial
peptides [34], and human leukocyte antigen peptides [35]. Soft symmetric alignment (SSA)
has defined a brand-new method to compare arbitrary-length sequences within vectors [36].
An initial pretrained language model is used to encode a peptide sequence, as a three-tier
stacked BiLSTM encoder output is meanwhile utilized. Each peptide sequence creates
the final embedding matrix by employing a linear layer, RL×121, in which L represents the
peptide length. In the SSA embedded model, the model was trained and optimized using
the SSA strategy [37,38].

Here, we created a novel ML-based predictor, namely iUP-BERT, which employed a
deep learning pretrained neural network feature extraction method for model development.
For model performance improvement, the synthetic minority oversampling technique
(SMOTE) [39] was applied first to overcome the data imbalance. To achieve higher pre-
diction accuracy, the pretrained sequence embedding technique SSA or BERT was then
combined with five different ML algorithms (KNN, LR, SVM, RF, and light gradient boost-
ing machine (LGBM) [38]) to build several models. The features of the BERT method
combined with the SVM model were finally selected and used to raise the prediction
efficacy after optimization. The results from both the 10-fold cross-validation and inde-
pendent test represented that the application of the deep representation learning BERT
method remarkably improved the model performance in identifying umami peptides.
IUP-BERT achieved higher accuracy than existing methods based on peptide sequence
information alone.

2. Materials and Methods
2.1. Overall Framework

Figure 1 illustrates the overall framework of iUP-BERT. The main steps are as follows:

1. Upon the introduction of the peptide sequence, the pretrained sequence embedding
technique, BERT, was used for feature extraction. For comparison, the SSA sequence
embedding technique was included.

2. After the feature extraction, BERT was fused with SSA to make an 889D fusion
feature vector.

3. The SMOTE was used to overcome the data imbalance.
4. For feature space optimization, the LGBM feature technique method was used.
5. Five different ML algorithms (KNN, LR, SVM, RF, and LGBM) were combined with

the above techniques to build several models. The features of the BERT-SMOTE-SVM
model were selected and applied to raise the prediction accuracy after optimization.

6. The optimized feature representations were combined to establish the final iUP-
BERT predictor.

2.2. Datasets

For fair comparison, the same peptide datasets (Supplementary File S1) used in
previous umami peptide ML models were chosen [24]. In the datasets, 140 peptides
either from experimentally validated umami peptides [10,15,16,20] or from BIOPEP-UWM
databases [40] were taken as positive samples, whereas the negative samples were 302 non-
umami peptides, identified as bitter peptides [41,42]. All peptide sequences in both the
positive and negative samples were unique. The training dataset includes 112 umami and
241 non-umami peptides. The independent test dataset contains 28 umami and 61 non-
umami peptides.
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Figure 1. Overview of iUP-BERT development. The illustration depicts the 6 main steps for model
development. (1) The peptide sequence was included as text and feature-extracted by the BERT
model and SSA method. (2) The 788D BERT extracted feature was fused with the 121D SSA ex-
tracted features to make an 889D fusion feature vector, with individual feature vectors as comparison.
(3) The SMOTE method was used to overcome the data imbalance. (4) The LGBM feature selec-
tion method was used to attain the best feature combinations. (5) Five different ML algorithms
(KNN, LR, SVM, RF, and LGBM) were combined with the above techniques to build several models.
(6) The final iUP-BERT predictor was established by combining the optimized feature representations.
Here, BERT is for Bidirectional Encoder Representations from Transformers; SSA is for Soft Sequence
Alignment; SMOTE: Synthetic Minority Oversampling Technique; LGBM is for Lighting Gradient
Boosting Machine; D is for Dimension; KNN is for K-Nearest Neighbors; LR is for Logistic Regression;
SVM is for Support Vector Machine; RF is for Random Forest.
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2.3. Feature Extraction

To extract different and effective features on umami peptide recognition, two deep rep-
resentation learning feature extraction methods, the pretrained SSA sequence embedding
model and the pretrained BERT sequence embedding model, were used. Meanwhile, the
dataset was either pretrained with the SMOTE embedding model or not. To identify specific
umami peptides, the models were trained on an alternate dataset. More comprehensive
predictive models were created after comparison of different feature encoding schemes.

2.3.1. Pretrained SSA Embedding Model

SSA defines a brand-new approach to compare arbitrary-length sequences within
vectors [36]. An initial pretrained model is utilized to encode a peptide sequence, as a
three-tier stacked BiLSTM encoder output is utilized meanwhile (Figure 1) Each peptide
sequence creates the final embedding matrix by employing a linear layer, RL×121, in which
L represents the peptide length. A model like this, which was trained and optimized by the
SSA method, is called an SSA embedded model.

Consider two embedded metrics of RL×121, with the names P1 and P2 for two distinct
peptide sequences with varying lengths, L1 and L2

P1 = [α1,α2, · · · ,αL1] (1)

P2 = [β1,β2, · · · ,βL2], (2)

where αi and βi represent the 121D vector.
If each amino acid sequence is encoded into a vector representation sequence, called

P1 and P2, we created an SSA mechanism to calculate the similarity between two amino
acid sequences. Based on their embedded vectors, the similarity between the two sequences
was determined as follows:

ω̂ = − 1
W

L1

∑
i=1

L2

∑
j=1
τij‖αi − βj‖1 (3)

τij is calculated by the following Formulas (4)–(7)

ρij =
exp

(
−‖αk − βj‖1

)
∑L1

k=1 exp
(
−‖αk − βj‖1

) (4)

σij =
exp(−‖αi − βk‖1)

∑L2
k=1 exp(−‖αi − βk‖1)

(5)

τij = σij + ρij − ρijσij (6)

W =
L1

∑
i=1

L2

∑
j=1
τij (7)

A completely differentiated SSA reversely matched these parameters to the sequence
encoder parameters. Individual peptide sequence was transformed into an embedding
matrix, RL×121, using the trained model. A 121D SSA feature vector was produced by
averaging pooling procedures.

2.3.2. Pretrained BERT Embedding Model

BERT is a powerful natural language processing-inspired deep learning method [31].
The core of BERT is a transformer language model which has a variable number of encoder
layers and self-attention heads, as shown in Figure 1. It provides a pretraining and fine-
tuning approach, using enormous amounts of unlabeled data [32,33].
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Here, the traditional BERT architecture was used to construct a BERT-based peptide
prediction model (Figure 1) There is no need to systematically design and select feature
encodings in advance. Peptide sequences were taken as input directly and passed on to the
BERT method to generate feature descriptors automatically. First, the peptide sequences
were converted into the token representation of k-mers as input, and the positional em-
bedding was added to obtain the final input token. Then, the semantics of the context was
captured through the multi-head self-attention model. Certain adjustments were made
through linear transformation, thus ending the forward propagation of the first layer (as
shown in Figure 1) There are 12 such layers in the model. The result was used for the
pretraining task of BERT. The mask task is still the traditional method, covering the part
and then predicting, and backpropagating through the cross-entropy loss function. A 768D
BERT feature vector was produced by the BERT-trained model.

2.3.3. Feature Fusion

To obtain the most superior feature combination, the 121D SSA eigenvector was
combined with the 768D BERT eigenvector, which generated the 889D SSA+BERT fusion
feature vector.

2.3.4. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is also called the “artificial minority oversampling method”. It is an improved
scheme based on the random oversampling algorithm [39]. The random oversampling
algorithm generates additional minority samples through adopting a simply copying
samples strategy. As a result, it has the risk of model overfitting, where the feature
information is too specific and not general enough. The SMOTE method can effectively
achieve the class balance in training data [43]. The basic idea is to analyze the minority
samples, synthesize new categories of samples accordingly, and add artificially simulated
new samples to the dataset. Briefly, the sampling nearest neighbor algorithm calculates the
KNN of each minority class sample [43]. N samples are randomly selected from K neighbors
for random linear interpolation to construct new minority class samples. Combination was
made subsequently between the new samples and the original data to create a new training
set. The program is kept running until the data imbalance meets the relevant requirements.

2.4. Machine Learning Methods

Five commonly used high-performance ML models were used for modeling.
The k-nearest neighbor algorithm (KNN) model [25] is to find the K sample that is

most similar as the given new sample, or the K sample that is “closest to it”. If most of the
K samples belong to a certain class, the sample also belongs to the same class.

Logistic regression (LR) [27] is a generalized linear model. It uses the sigmoid func-
tion to simulate the data distribution and act as the dividing line between positive and
negative samples.

The support vector machine (SVM) [28,29] is to find a segmentation curve that max-
imizes the closest distance (also known as the interval) between data points of different
classes. For binary classification, SVM is to get the furthest classification boundary and to
make sure that the slight deviation of data would not have much impact.

Random forest (RF) [26] is an ensemble learning algorithm. It uses the samples with
retractable samples to train multiple decision trees. Each node of the training decision tree
only uses the partial features of the sampling, and it votes with the prediction results of
these trees during the prediction. The voted majority class of a sample is the class to which
the sample belongs.

Lighting gradient boosting machine (LGBM) [38] adopts the histogram algorithm.
It converts continuous floating-point features into k discrete values, and constructs the
histogram with a width of k. Then, the training data are traversed and the cumulative
statistics of each discrete value in the histogram are collected. It uses a depth-limited
leaf-wise strategy and supports parallel computing.
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2.5. Performance Evaluation

Six widely used binary classification metrics were applied for performance evaluation,
which are ACC, MCC, Sn, specificity (Sp), and BACC [44–48]. Here, TP is the given true
positive sample number of umami peptides. TN is the true negative sample number of
non-umami peptides. FP is the false positive sample number of non-umami peptides. FN
is the false negative sample number of umami peptides.

ACC =
TP + TN

TP + TN + FP + FN
(8)

MCC =
TP× TN− FP× FN

(
√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

(9)

Sn =
TP

TP + FN
(10)

Sp =
TN

TN + FP
(11)

BACC =
Sn + Sp

2
(12)

The receiver operating characteristic curve (ROC) is a curve drawn according to a
series of different classification methods (boundary value or decision threshold), with
the true positive rate (sensitivity) as the ordinate and false positive rate (specificity) as
the abscissa. ROC displays the relationship between true positives and false positives at
different confidence levels [12,35,49]. Nevertheless, the ROC curve cannot clearly indicate
which classifier is more superior. Thus, the area under the receiver operating characteristic
curve (auROC) is usually adopted as an additional metric for model evaluation. The
classifier with a larger auROC value performs better. The value of auROC for proposed
models was computed and used to compare with the models reported previously.

For the model evaluation method, the widely used K-fold cross-validation method and
independent testing method were adopted. Firstly, the K-fold cross-validation were applied
for model training and validation evaluation based on the training set. In this study, the K
value was 10. That is, the training set was randomly divided into ten parts, of which nine
were used for training and one for validation. The performance of the trained model was
evaluated by the average of 10 validation scores. Independent testing was to use additional
new data, not in the training set, to test and evaluate the trained model. A good model
requires good metrics value for both K-fold cross-validation and independent testing.

3. Results and Discussion
3.1. Preliminary Performance of Models Trained with or without SMOTE

To overcome the data imbalance in modeling, the SMOTE method was first applied
to the modeling. Meanwhile, to explore the embedding feature types in umami peptides,
different models were built based on two deep representation learning feature extraction
methods, the pretrained SSA embedding model and the pretrained BERT embedding model,
in combination with five distinct widely-used ML algorithms (KNN, LR, SVM, RF, and
LGBM) The performance of the different combination models pretrained with or without
SMOTE was compared by performing the repeated stratified 10-fold cross validation tests
10 times (Figure 2)
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Figure 2. The performance of 10-fold cross-validation metrics of SSA and BERT features using differ-
ent algorithms pretrained with or without SMOTE. (A) KNN; (B) LR; (C) SVM; (D) RF; (E) LGBM.

For 10-fold cross-validation results (Figure 2), all five algorithm models using the
SMOTE method based on either the SSA or BERT feature performed better across five
metrics (ACC, MCC, Sn, auROC, and BACC) than the models not using SMOTE, with
Sp as the exception. The scores after model parameter optimization are listed in Table 1.
For example, the average ACCs of KNN, LR, SVM, RF, and LGBM based on SSA with
SMOTE are 0.842, 0.857, 0.917, 0.915, and 0.917, respectively, which exceeded that of the
models without SMOTE by 1.08%, 10.44%, 10.88%, 9.45%, and 7.63%, respectively. A similar
improvement was also observed in the 10-fold cross-validation results based on the BERT
feature (Figure 2 and Table 1) Although the best Sp values based on the SSA feature with
SMOTE (0.913) were lower than those of the model without SMOTE (0.938), the overall
best Sp score (0.959) was still obtained from the BERT feature optimized using the SMOTE
method. For SMOTE performance in the independent test of the SSA or BERT feature
vector (Table 1), still, the best scores were achieved using the SMOTE method across the
five metrics. Take values based on SSA for example, the ACC is 0.866, with MCC to be
0.683, Sn to be 0.814, auROC to be 0.916, and BACC to be 0.825. These results indicate
that increasing the sampling with SMOTE could effectively overcome the data imbalance
and improve model performance in predicting umami peptides. Particularly, we noted
that the BACC scores based on the five algorithms in the cross-validation results were
the same as ACC with SMOTE being used (Figure 2 and Table 1) As the metric BACC
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reflected the level of data balance, the data became balanced after SMOTE application, and
BACC became redundant. Similar results were observed in the subsequent cross-validation
analysis with SMOTE.

Table 1. Performance metrics of two different deep representation learning features using five
machine learning models with or without SMOTE.

Feature Model SMOTE Dim
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp auROC BACC ACC MCC Sn Sp auROC BACC

SSA b

KNN c − 121 0.833 0.607 0.663 0.913 0.849 0.788 0.825 0.575 0.596 0.930 0.876 0.763
LR c − 121 0.776 0.485 0.634 0.842 0.814 0.738 0.780 0.498 0.679 0.826 0.839 0.752

SVM c − 121 0.827 0.588 0.613 0.925 0.909 0.769 0.857 0.658 0.668 0.944 0.907 0.806
RF c − 121 0.836 0.609 0.618 0.938 0.902 0.778 0.826 0.578 0.557 0.949 0.879 0.753

LGBM c − 121 0.852 0.664 0.721 0.913 0.896 0.817 0.827 0.583 0.621 0.921 0.880 0.771

KNN c + 121 0.842 0.709 0.962 a 0.721 0.930 0.841 0.787 0.555 0.814 0.774 0.885 0.794
LR c + 121 0.857 0.722 0.904 0.809 0.902 0.856 0.772 0.485 0.682 0.813 0.843 0.748

SVM c + 121 0.917 0.835 0.921 0.913 0.967 0.917 0.864 0.675 0.696 0.941 0.916 0.819
RF c + 121 0.915 0.833 0.921 0.908 0.967 0.915 0.866 0.683 0.714 0.936 0.895 0.825

LGBM c + 121 0.917 0.835 0.929 0.904 0.964 0.917 0.827 0.585 0.643 0.911 0.887 0.777

BERT b

KNN c - 768 0.836 0.610 0.679 0.908 0.879 0.794 0.807 0.537 0.618 0.893 0.872 0.756
LR c − 768 0.836 0.649 0.824 0.842 0.888 0.833 0.855 0.660 0.743 0.907 0.912 0.825

SVM c − 768 0.830 0.613 0.727 0.880 0.910 0.803 0.820 0.599 0.775 0.841 0.875 0.808
RF c − 768 0.859 0.667 0.714 0.925 0.925 0.820 0.819 0.567 0.643 0.900 0.900 0.771

LGBM c − 768 0.830 0.609 0.705 0.889 0.898 0.797 0.830 0.596 0.668 0.905 0.915 0.786

KNN c + 768 0.884 0.775 0.954 0.813 0.928 0.884 0.820 0.625 0.857 0.803 0.881 0.830
LR c + 768 0.911 0.825 0.959 0.863 0.952 0.911 0.843 0.635 0.750 0.885 0.905 0.818

SVM c + 768 0.923 0.849 0.888 0.959 0.984 0.923 0.876 0.706 0.714 0.951 0.926 0.832
RF c + 768 0.898 0.797 0.909 0.888 0.967 0.898 0.896 0.793 0.905 0.888 0.971 0.897

LGBM c + 768 0.896 0.793 0.905 0.888 0.971 0.896 0.843 0.635 0.750 0.885 0.920 0.818

a Best performance values are in bold and are underlined. b SSA: soft symmetric alignment; BERT: bidirectional
encoder representations from transformer. c KNN: k-nearest neighbor; LR: logistic regression; SVM: support
vector machine; RF: random forest. LGBM: light gradient boosting machine. “−” indicates without the SMOTE
method; “+” indicates with the SMOTE method.

3.2. The Effect of Different Feature Types

Meanwhile, from the cross-validation results (Figure 2 and Table 1), the BERT feature
vector developed using the SVM algorithm with SMOTE method performed best out of all the
combinations tested across the five metrics (ACC, MCC, Sp, auROC, and BACC) Among them,
ACC was 0.923 (0.65–18.9%) higher than the other options, with MCC being 0.849 higher by
1.67–75.0%, Sp being 0.959 higher by 2.24–33.0%, auROC being 0.884 higher by 1.76–20.9%,
and BACC being 0.923 higher by 0.65–20.0%. Nevertheless, the SSA feature vector conjugated
with KNN and SMOTE algorithms outperformed all the BERT combinations across the Sn
metric (0.962) Regarding the performance of the BERT feature vector based on SVM with
SMOTE in the independent test (Table 1), ACC was 0.876 lower by 2.03% compared with that
of the BERT feature based on RF using SMOTE, with MCC being 0.706 lower by 11.0%, Sn
being 0.714 lower by 21.1%, Sp being 0.951 higher by 7.09%, auROC being 0.926 lower by
4.63%, and BACC being 0.832 lower by 7.24%. Yet, the BERT-SVM-SMOTE combination was
still supposed to be the best model out of all the combinations.

3.3. The Effect of Feature Fusion

To further improve the model performance and obtain more information, the SSA and
BERT features were combined to make fusion features. The fusion feature was combined
with the five algorithms (KNN, LR, SVM, RF, and LGBM) to train baseline models and im-
prove model performance. Table 2 displayed the 10-fold cross-validation and independent
testing results of the SSA-BERT fusion features with or without SMOTE. The performance
metrics of the individual and fused features with SMOTE according to the ML methods are
summarized in Figure 3. Consistent with the results in Section 3.1, for the 10-fold cross-
validation (Table 2), the SSA-BERT fusion feature with five models using SMOTE displayed
a remarkably higher value than the models without SMOTE except for the Sp value, and
the BACC score was the same as ACC with SMOTE being used. Particularly, the best
performance of the fusion feature was slightly superior to the BERT feature alone across
four metrics, with ACC being 0.934 higher by 1.19%, MCC being 0.867 higher by 1.90%, Sn
being 0.971 higher by 1.25%, and BACC being 0.934 higher by 1.19%. However, the best
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performance of the fusion feature in the independent test results across all the six metrics
(ACC = 0.876, MCC = 0.724, Sn = 0.857, Sp = 0.934, auROC = 0.919, BACC = 0.871) was in
any aspect lower than the corresponding scores in the BERT feature alone (ACC = 0.896,
MCC = 0.793, Sn = 0.905, Sp = 0.951, auROC = 0.971, BACC = 0.897) with SMOTE (Figure 3
and Table 2) Thus, the feature fusion of SSA and BERT is not a beneficial choice for model
optimization in umami peptide automatic prediction.

Table 2. Performance metrics of fusion features using five machine learning models with or with-
out SMOTE.

Feature Model SMOTE Dim
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp auROC BACC ACC MCC Sn Sp auROC BACC

SSA b +
BERT b

KNN c − 889 0.836 0.610 0.679 0.909 0.908 0.794 0.820 0.576 0.679 0.885 0.900 0.782
LR c − 889 0.844 0.640 0.750 0.888 0.900 0.819 0.876 a 0.716 0.821 0.902 0.910 0.862

SVM c − 889 0.858 0.667 0.732 0.917 0.921 0.825 0.854 0.658 0.750 0.902 0.906 0.826
RF c − 889 0.841 0.620 0.643 0.934 0.906 0.788 0.831 0.599 0.679 0.902 0.906 0.790

LGBM c − 889 0.813 0.553 0.625 0.900 0.892 0.763 0.831 0.606 0.714 0.885 0.921 0.800

KNN c + 889 0.888 0.787 0.971 0.805 0.932 0.888 0.831 0.643 0.857 0.820 0.883 0.838
LR c + 889 0.917 0.836 0.954 0.880 0.951 0.917 0.876 0.724 0.857 0.885 0.906 0.871

SVM c + 889 0.934 0.867 0.938 0.929 0.980 0.934 0.820 0.563 0.571 0.934 0.916 0.753
RF c + 889 0.915 0.830 0.929 0.900 0.968 0.915 0.820 0.592 0.750 0.852 0.919 0.801

LGBM c + 889 0.919 0.840 0.950 0.888 0.963 0.919 0.843 0.643 0.786 0.869 0.919 0.827

a Best performance values are in bold and are underlined. b SSA: soft symmetric alignment; BERT: bidirectional
encoder representations from transformer. c KNN: k-nearest neighbor; LR: logistic regression; SVM: support
vector machine; RF: random forest. LGBM: light gradient boosting machine. “−” indicates without the SMOTE
method; “+” indicates with the SMOTE method.

3.4. The Effect of Feature Selection

As described in Section 3.3, feature fusion was not superior to BERT feature alone.
In the training set, the sequence vector had 121 dimensions based on SSA feature, and
768 dimensions based on BERT, respectively. The feature vectors had 889 dimensions based
on the combined fusion feature. Higher dimensions indicated a higher risk of information
redundancy, that would result in model overfitting. Feature selection is a good way to solve
this problem, which removes redundant and indistinguishable features [38]. The LGBM
feature selection method has been proved to an effective approach for feature selection
and was successfully applied for ML-based bio-sequence classification [38,50]. Here, we
also used it to find the optimized feature space for umami peptide prediction task. Table 3
presented the performance metrics of the individual and fused features created based on
five ML models (KNN, LR, SVM, RF, and LGBM) in conjugation with SMOTE. A visual
illustration of the outcomes was shown in Figure 4.

From the 10-fold cross-validation results (Figure 4 and Table 3), using feature selection,
all the individual or fusion features based on the SVM algorithm outperformed the other
four algorithms (KNN, LR, RF, and LGBM) across four metrics, namely ACC, MCC, Sp,
and BACC. The best performance was observed in the BERT feature encoding alone based
on the SVM algorithm with 139 dimensions over all the other options (Table 3), with
ACC (0.940) better by 0.86–7.31%, MCC (0.881) better by 1.97–17.31%, Sp (0.917) better by
0.44–13.35%, and BACC (0.940) better by 0.86–7.31%. These results indicate that selecting
a feature descriptor is an effective method for optimizing the performance of the umami
peptide prediction model. For the independent test (Table 3), although the highest scores of
ACC (0.921), MCC (0.825), Sn (0.929), Sp (0.951), and BACC (0.923) were obtained based on
the SSA feature either in conjugation with KNN (43 dimensions) or SVM (29 dimensions),
yet the BERT feature still performed better than the other options across the auROC (0.933)
metric based on SVM with 139 dimensions. Additionally, the scores of the other four metrics
based on BERT, namely ACC (0.899), MCC (0.774), Sn (0.893), and BACC (0.897), were the
second best among all the models. The results of both cross-validation and independent
testing suggest that the BERT feature based on the SVM algorithm (139D) was the best
option for umami peptide prediction.
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Table 3. Performance metrics of individual and fused features according to the machine learn-
ing methods.

Feature Model SMOTE Dim
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp auROC BACC ACC MCC Sn Sp auROC BACC

SSA b

KNN c + 43 0.892 0.788 0.942 0.842 0.938 0.892 0.921 a 0.825 0.929 0.918 0.914 0.923
LR c + 41 0.884 0.768 0.900 0.867 0.938 0.884 0.888 0.745 0.857 0.902 0.919 0.879

SVM c + 29 0.909 0.820 0.946 0.871 0.962 0.909 0.899 0.761 0.786 0.951 0.913 0.868
RF c + 30 0.892 0.784 0.892 0.892 0.957 0.892 0.888 0.735 0.786 0.934 0.914 0.860

LGBM c + 39 0.902 0.805 0.905 0.900 0.958 0.902 0.899 0.763 0.821 0.934 0.919 0.878

BERT b

KNN c + 163 0.888 0.786 0.967 0.809 0.950 0.888 0.865 0.723 0.929 0.836 0.909 0.882
LR c + 29 0.876 0.751 0.884 0.867 0.937 0.876 0.888 0.739 0.821 0.918 0.913 0.870

SVM c + 139 0.940 0.881 0.963 0.917 0.971 0.940 0.899 0.774 0.893 0.902 0.933 0.897
RF c + 79 0.921 0.843 0.938 0.905 0.973 0.921 0.865 0.694 0.821 0.885 0.923 0.853

LGBM c + 174 0.917 0.834 0.929 0.905 0.982 0.917 0.876 0.711 0.786 0.918 0.916 0.852

SSA b +
BERT b

KNN c + 65 0.900 0.806 0.954 0.846 0.942 0.900 0.876 0.742 0.929 0.852 0.898 0.891
LR c + 74 0.915 0.832 0.950 0.880 0.941 0.915 0.888 0.745 0.857 0.902 0.902 0.879

SVM c + 39 0.932 0.864 0.950 0.913 0.981 0.932 0.888 0.745 0.857 0.902 0.909 0.879
RF c + 168 0.909 0.818 0.925 0.892 0.974 0.909 0.876 0.716 0.821 0.902 0.917 0.862

LGBM c + 114 0.919 0.839 0.942 0.896 0.979 0.919 0.876 0.724 0.857 0.885 0.920 0.871

a Best performance values are in bold and are underlined. b SSA: soft symmetric alignment; BERT: bidirectional
encoder representations from transformer. c KNN: k-nearest neighbor; LR: logistic regression; SVM: support vector
machine; RF: random forest. LGBM: light gradient boosting machine. “+” indicates with the SMOTE method.
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3.5. Comparison of iUP-BERT with Existing Models

The efficacy and robustness of the iUP-BERT model in umami peptide identification
was evaluated subsequently. Its predictive performance was compared with that of the
existing methods, namely iUmami-SCM and UMPred-FRL. As shown in Table 4, from the
cross-validation results, iUP-BERT apparently outperformed iUmami-SCM and UMPred-
FRL across ACC, MCC, Sn, auROC, and BACC. Regarding the independent test results,
iUP-BERT produced remarkably better results in the five metrics than iUmami-SCM and
UMPred-FRL; for ACC by 1.23–3.93%, for MCC by 5.31–13.99%, for Sn by 13.6–25.07%, for
auROC by 1.52–3.90%, and for BACC by 4.30–8.86%. Taken together, the comparisons show
that iUP-BERT based on the BERT-SVM-SMOTE combination is more effective, reliable,
and stable than the existing methods for umami peptide prediction.

Table 4. Cross-validation and independent test results of iUP-BERT and the existing methods.

Classifier
10-Fold Cross-Validation Independent Test

ACC MCC Sn Sp auROC BACC ACC MCC Sn Sp auROC BACC

iUP-BERT 0.940 a 0.881 0.963 0.917 0.971 0.940 0.899 0.774 0.893 0.902 0.933 0.897
iUmami-SCM 0.935 0.864 0.947 0.930 0.945 0.939 0.865 0.679 0.714 0.934 0.898 0.824
UMPred-FRL 0.921 0.814 0.847 0.955 0.938 0.901 0.888 0.735 0.786 0.934 0.919 0.860

a Best performance values are in bold and are underlined.

3.6. Feature Analysis Using Feature Projection and Decision Function

To visually explain the excellent performance of iUP-BERT, principal components
analysis (PCA) and uniform manifold approximation and projection (UMAP) dimension
reduction were used. First, the feature space vector optimized by feature selection, namely
BERT features of 139D, was reduced to a 2-dimensional plane using PCA and UAMP
algorithms, respectively. As displayed in Figure 5, red dots represented umami peptides
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and blue dots represented non-umami peptides. Then, a decision function boundary was
drawn, which could distinguish between positive and negative samples. As shown in
Figure 5, the distribution of positive and negative samples is relatively concentrated in
two areas; the positive samples are most in yellow areas, while the negative samples in the
purple area. Additionally, we can see from Figure 5, that SVM can distinguish most positive
and negative samples, yet there are still some misclassified samples. Therefore, better
feature extraction methods or more suitable machine learning methods were needed for
modeling, to better identify umami peptide sequences from non-umami peptide sequences
in the future.
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uniform manifold approximation and projection (UMAP) respectively for reducing 139 dimensional
selected BERT features to 2 dimensions for visual analysis. Additionally, the decision function
boundary lines of support vector machine (SVM) are drawn in both. The yellow section represents
the positive sample area and the purple section represents the negative sample area.

3.7. Construction of the Web Server of iUP-BERT

To facilitate rapid and high-throughput screening of umami peptides and maximize
the use of the iUP-BERT predictor, an open-access web server was established at https:
//www.aibiochem.net/servers/iUP-BERT/ (accessed on 23 September 2022) We hope the
iUP-BERT would be a powerful tool that can be used to explore new umami peptides and
to promote the food seasoning industry.

4. Conclusions

In this study, a novel machine learning prediction model, namely iUP-BERT, was
developed for the accurate prediction of umami peptides based on the peptide sequence
alone. A single deep representation learning feature encoding method (BERT) was adopted
to generate predicted probabilistic scores of potential umami peptides. First, SMOTE
was applied to balance the data. Then, feature extraction approaches (SSA, BERT, or
fused feature) were combined with five different algorithms (KNN, LR, SVM, RF, and
LGBM) to build different models. After extensive testing and optimization, the BERT-SVM-
SMOTE model with 139 dimensions was the best feature set. Further feature selection
produced a robust model. To our knowledge, this is the first report on the utilization of
the deep representing learning feature BERT in the computational identification of umami
peptides. Subsequent 10-fold cross-validation and independent test results indicated the
efficacy and robustness of iUP-BERT in predicting umami peptides. By comparison with
the existing methods (iUmami-SCM and UMPred-FRL) based on the independent test,
the iUP-BERT with BERT feature extraction method alone significantly outperformed
the existing predictors with several manual feature extraction combinations; for ACC by
1.23–3.93%, for MCC by 5.31–13.99%, for Sn by 13.6–25.07%, for auROC by 1.52–3.90%, and

https://www.aibiochem.net/servers/iUP-BERT/
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for BACC higher by 4.30–8.86%. Finally, to maximize the use of the predictor, an open-
access iUP-BERT web server was built at https://www.aibiochem.net/servers/iUP-BERT/
(accessed on 23 September 2022) For deep learning-based models, larger training sample
size improves the prediction performance. As the number of the training datasheet used
here were relatively low (112 positive and 241 negative samples), future efforts could
be exerted on constructing an optimized larger size datasheet with higher amounts of
identified umami and non-umami peptides for better model performance. Additionally, it
would be to achieve a more accuracy model by fine-tuning the BERT for feature extraction.
Finally, we hope the iUP-BERT would be a powerful tool for exploring new umami peptides
to promote the umami seasoning industry.
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Abbreviation

The following abbreviations are used in this manuscript:

ML machine learning
BERT bidirectional encoder representations from transformer
SSA soft symmetric alignment
SMOTE synthetic minority over-sampling technique
KNN k-nearest neighbor
RF random forest
SVM support vector machine
LGBM light gradient boosting machine
LR logistic regression
SCM scoring card method
ACC accuracy
BACC deduced balanced accuracy
Sn sensitivity
Sp specificity
MCC Matthew’s coefficient correlation
ROC receiver operating characteristic curve
auROC area under the receiver operating characteristic curve
PCA principal components analysis
UMAP uniform manifold approximation and projection
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