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Neutrophil extracellular
traps in fungal infections:
A seesaw battle in hosts

Hua Zhong, Ren-Yi Lu and Yan Wang*

School of Pharmacy, Second Military Medical University, Shanghai, China
Fungal infections are a growing health care challenge. Neutrophils play a key

role in defense against fungal infections. There are many effective ways for

neutrophils to eliminate fungal invaders, such as phagocytosis, oxidative bursts,

and the formation of extracellular traps. This process has received considerable

attention and has made rapid progress since neutrophil extracellular traps

(NETs) formation was described. Here, we describe the formation, induction,

and function of NETs, as well as fungal strategies against NETs hunting. We

highlight the effects of NETs on common fungal pathogens and how these

pathogens survive.
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Introduction

Fungal infections have long been a public health challenge. It mainly affects

immunocompromised populations, such as solid organ transplant recipients and AIDS

patients (1). Fungal co-infection has also been reported in COVID-19 patients during

these years of pandemics (2). Among COVID-19 patients on mechanical ventilation in

the ICU, fungal co-infection rates have been reported as high as 26.7% (3). Innate

immune system plays an important role in defense against fungal infections. Mucosal

barriers and chemicals work with natural killer cells and phagocytes. It is reviewed that

Aspergillus species can interact with the innate immune system including macrophages,

neutrophils, dendritic cells, and the complement system (4). These cells and proteins

recognize and kill fungal pathogens, protecting our bodies from infection. Neutrophil

(polymorphonuclear leukocyte), which is one kind of the phagocytes, plays a decisive role

in this process (5). Invasive fungal diseases occur in up to 24% of patients with leukemia

(6). Neutrophils can kill fungal pathogens by phagocytosis, production of reactive oxygen

species (ROS) and formation of extracellular traps. Neutrophil extracellular traps (NETs)

were first described as an antibacterial mechanism of innate immunity in 2004 when

Volker Brinkmann et al. discovered that NETs could kill bacteria (7). In recent years,
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much progress has been made in the study of NETs, and the

fungicidal effects of NETs have been described, such as the

fungicidal effects of NETs on Candida spp. and Aspergillus spp.

(8, 9). Rather than waiting to be killed, fungi have their own ways

of fighting back. For example, Aspergillus spp. can invade the

innate immune system by interfering with complement system

and phagocytes [reviewed in (4)]. In this article, we focus on the

interactions between NETs and several common fungal

pathogens. The killing process of NETs against fungal

pathogens and the strategies of pathogen resistance

were reviewed.
Formation of NETs

NETs are fibrous three-dimensional network structures

composed of nucleic acids and various granular proteins that

neutrophils can release out of the cell in response to various

stimuli. This structure traps pathogens such as bacteria and

fungi, limits their spread through the body and kills them with

high concentrations of toxic proteins. Other immune cells, such

as eosinophils and mast cells, can also form similar structures,

killing a variety of microorganisms and enhancing inflammatory

immune responses (10, 11). NETs help eliminate pathogens, but

excess NETs can cause damage to surrounding tissues either by

themselves or by increasing the pro-inflammatory response. The

generation of NETs is closely related to the occurrence and

development of various diseases (12–14).

Since 2004, two major ways of releasing NETs have been

identified, a) NETosis and b) rapid release of live neutrophils.

NETosis is a classic way of releasing NETs, usually neutrophils

release NETs by decondensation of chromatin resulting in cell

death (15). Later, a novel way was discovered to form NETs by

releasing mitochondrial DNA. This novel way of NETs

formation does not require neutrophil death and therefore

does not limit the lifespan of these cells (16).
NETosis

NETosis begins with oxidative burst and activation of peptidyl

arginine deiminase 4 (PAD4), which catalyzes the citrullination of

arginine residues. The process leads to disassembly of nuclear

envelope and chromatin decondensation (17). Chromatin then

combine with neutrophil elastase (NE) and other cytoplasmic

enzymes to form NETs. And NETs release upon plasma

membrane rupture. The whole process takes about 4 hours and

results in neutrophil death (15, 18–20). A recent study showed

that intact F-actin dynamics and myosin II function are essential

for the formation of NETs in response to different stimuli

including Candida albicans. Neutrophils in patients with actin

polymerization defects also failed to exhibit NETs, confirming this

conclusion (21).
Frontiers in Immunology 02
Rapid release of live neutrophils

Live neutrophils can generate NETs under some stimuli.

Interestingly, these NETs contain mitochondrial DNA instead of

nuclear DNA (16). The process can be very quick since

neutrophils expel mitochondrial DNA and assemble NETs

outside the cell. Both this approach and the NETosis approach

rely on ROS (22). There is also a ROS-independent fast-release

mechanism without neutrophil death. In some Gram-positive

bacterial infections, the nuclear membranes of neutrophils are

separated and nuclear DNA is extruded out of the cell through

vesicles. The anuclear neutrophils are still capable of migration

and phagocytosis (23, 24).
Induction of NETs in
fungal infections

The induction of NETs is affected by a variety of inducing

factors and the number of NETs produced is different. ROS (25),

IL-8 (7), lipopolysaccharide (LPS) (7), complementary 5a (C5a)

(16), phorbol-12-myristate-13-acetate (PMA) (7, 18), and

glucose oxidase (GO) (25) are all inducers that can trigger the

formation of NETs. And among them, ROS is one of the key

factors that trigger the formation of NETs.

Fungal pathogens can also trigger the release of NETs. C.

albicans is the most widely discussed fungal pathogen in the

NETs release field (26). In addition, other Candida spp. (27, 28),

Aspergillus fumigatus (8), Histoplasma capsulatum (29),

Phialophora verrucose (30), Paracoccidioides brasiliensis (31),

and Scedosporium apiospermum (32), have all been described as

NETs release inducers. The common dermatophyte

Trichophyton rubrum is also found to be a NETs inducer.

Both conidia and hyphae of T. rubrum can induce NETs

formation in a dose-dependent manner (33). Cryptococcus

neoformans itself is not an inducing factor, but the capsular

polysaccharide glucuronoxylomannogalactan (GXMGal) can

induce the formation of NETs (34). Unfortunately, Candida

auris, a recent emerging global public health threat, cannot

induce the formation of NETs and is not effectively killed by

neutrophils (35). Fungi come in a variety of forms, from small

yeast to large hyphae and biofilms, which require neutrophils to

respond in different ways to eliminate them. Both yeast and

hyphal forms of C. albicans can activate NETs formation (26).

However, the extracellular matrix of C. albicans biofilms does

not trigger NETs, but instead impairs the NETs formation (36).

Interestingly, recent studies have shown that the nucleic acids in

the extracellular matrix of C. albicans biofilms can stimulate the

release of NETs (37). A number of components in C. albicans

have also been shown to stimulate NETs release, including

dectin-2 (38), aspartic proteases, mannans, b-glucans (39), and
farnesol (40).
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Function of NETs in
fungal infections

NETs are mixtures of nucleic acids, histones, granular proteins,

and cytoplasmic proteins, including NE, myelperoxidase (MPO),

lysozymeC,andgelatinase (20).Thesecomponents lead to therelease

of chemokines, the production of cytokines, the promotion of

inflammatory disease and, of course, the killing of microorganisms

(20). Themixture can trap fungi inside its 3D network structure and

cause damage to fungi through the components it releases. In recent

years, studies on the effects of NETs on C. albicans, Aspergillus spp.,

and C. neoformans have made progress (Table 1).
C. albicans

Opportunistic fungal pathogen C. albicans is a component of

intestinal commensalmicrobiota that colonizes the intestines, skin,

and oralmucosa of healthy humans (44). In immunocompromised

populations, such as neutropenia patients, it can shift from

colonization to invasion and spread in the body, causing systemic

infection (45). Candida spp. are the most common pathogens of

invasive fungal diseases (44, 46), in which C. albicans is the major

cause for candidiasis (47). As a model organism, C. albicans is the

first fungus to be shown to induce NETs in vitro (26).

On the one hand, the sensitivity of different morphologies of

C. albicans to NETs immunoclearance is different. NETs have

been shown to kill both yeast and hyphal forms of C. albicans

(26). However, NETs cannot be produced upon C. albicans

biofilms. Time-lapse imaging showed that neutrophils adhered

only to hyphae and migrated on the biofilms (36). Another study

showed that sub-inhibitory concentrations of echinocandins, an

effective antibiofilm drug, promote the formation of NETs in C.
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albicans biofilms, including structures of DNA, histones, and

antimicrobial proteins with antifungal activity (48). On the other

hand, different isolates of C. albicans also modulate the function

of NETs. By using a panel of clinical C. albicans strains, Madhu

Shankar et al. found that the prototype strain SC5314 induced

the most potent accumulation of ROS and NETs by neutrophils

from all the isolates tested (49).

In response to microbial infections, neutrophils initiate

NETosis via protein kinase C (PKC) and activate the

nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase signaling cascade, leading to the accumulation of

ROS (39, 50). Studies have shown that C. albicans-induced

NETs production requires PKC, and PKC inhibitor Gö6976

can block this process (51). Another important component of

NETs that kills fungi is calprotectin. Lack of calprotectin in

NETs resulted in a complete loss of antifungal activity in

vitro (52).

NETs also unmask C. albicans and make it expose

immunogenic epitopes to the host. NETs trigger fungal cell

wall remodeling and enhance immune recognition by Dectin-1

b-glucan receptors. This process involves fungal MAPK

pathways, which dynamically relocalize cell wall remodeling

machinery including Chs3, Phr1 and Sur7 (53).
Aspergillus spp.

Aspergillus spp. are common spore-releasing environmental

fungi. However, for immunocompromised individuals who are

unable to adequately clear the spores from their lungs, they may

develop invasive pulmonary aspergillosis (IPA), which is life-

threatening (54). Two high-risk groups were patients with

neutropenia or hematologic malignancy and patients with

chronic granulomatosis (CGD) (55, 56).

Unlike C. albicans, Aspergillus spp. may be less susceptible to

NETs. NETs did not kill either A. fumigatus or A. nidulans

conidia (41, 57). They are more inclined to be engulfed by living

neutrophils (8). Another study proves that adding DNase to

neutrophils do not affect the killing efficiency of Aspergillus

hyphae, which indicates that NETs formation does not

contribute to this fungal killing process (42). NETs are more

robust towards A. fumigatus hyphae than conidia, which is

confirmed by both in vitro and in vivo experiments (8, 41).

PatientswithCGDsusually exhibit deficient phagocyteNADPH

oxidase function, which is essential in the formation ofNETs (15). In

a case report, CGD patients reconstructed the generation of NETs

through gene therapy and restored neutrophil clearance of A.

nidulans conidia and hyphae, which is associated with rapid cure

of IPA (58). The authors soon verified this connection

experimentally. Restoring NADPH function through gene

complementation can restore the production of NETs in vitro (43).

Further studies have shown that calprotectin plays a key role in

human innate immunity against Aspergillus infection (43).
TABLE 1 Role of NETs in different fungal infections.

Species Morphology Antifungal activity
of NETs

Reference

C. albicans yeast +++ (26)

hyphae +++ (26)

A. fumigatus conidia + (41)

hyphae + (41, 42)

A. nidulans conidia + (43)

hyphae + (43)

C. neoformans yeast +++ (34)

T. rubrum conidia ++ (33)

hyphae +++ (33)

C. auris yeast – (35)
+++, strong fungicidal activity; ++, moderate antifungal activity; +, weak inhibition
activity; -, no antifungal activity.
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Some studies came to somewhat an opposite conclusion. On

one hand, it is proved by confocal imaging that neutrophils from

CGD patients can still form NETs under the stimulation of

Aspergillus hyphae, although these cells with genetic

immunodeficiencies have antifungal deficiency (42). The

researchers also find that neutrophils from CGD patients

cannot initiate NETs formation in response to PMA, which

suggests different mechanisms between PMA and Aspergillus

hyphae in inducing NETs formation (42). A relevant study

shows that Aspergillus and b-glucan-induced NETs formation

is regulated by PAD4 and CR3. The hyphae killing process,

however, is only dependent on CR3 (59). On the other hand, it

suggested that inhibition of NETs release might contribute to the

treatment of patients with IPA (60). They found that in the IPA

model, mice lacking PAD4 had a lower fungal burden in their

lungs and less acute lung injury. This indicates that NETs release

causes tissue damage and impairs fungal clearance in IPA mouse

models (60).
C. neoformans

C. neoformans is also an opportunistic fungal pathogen with a

small-size yeast form and a unique polysaccharide capsule. It is one

of the most common pathogens for meningitis (61). Polysaccharide

capsules are considered to be a key virulence factor (62). It

comprises approximately 88% glucuronoxylomannan (GXM),10%

GXMGal, and 2% mannoproteins (63, 64). Although wild-type C.

neoformans and its GXM do not induce NETs, NET-enriched

supernatants induced by a mutant acapsular strain exhibit

fungicidal activity against wild-type strains. (34) (Figure 1)
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Fungal strategies against NETs

Hosts can kill fungi by producing NETs, but the fungi won’t

stand still. Fungal defense strategies against NETs are varied and

can be generally divided into two categories: modulation of

NETs formation and escape from NETs. On the one hand, fungi

can modulate the formation of NETs through their own

components, thus resisting or even inhibiting the fungicidal

effects of NETs. This phenomenon is common in Aspergillus

spp., C. albicans, and C. neoformans. On the other hand, fungi

can release active proteins, usually enzymes that target nuclear

acids, to help themselves escape NETs.
Modulation of NETs formation

Aspergillus spp. can use galactosaminogalactan (GAG) to

enhance resistance to NETs. GAG is an exopolysaccharide

produced by A. fumigatus and is associated with adherence

and complete virulence. Enhancing GAG in less pathogenic A.

nidulans at the genetic level can increase its virulence and

resistance to NADPH oxidase-dependent NETs in vitro. It

indicates that cell wall-bound GAG enhances virulence

through mediating resistance to NETs (65). CcpA is another

important protein to reduce recognition by the innate immune

system. Lacking of CcpA causes higher activation of neutrophils

and speeds up the oxidative burst progress, and A. fumigatus

DccpA conidia shows highly attenuated virulence even in

immunosuppressed mice (66).

C. albicans also has its unique ways to resist NETs. C.

albicans biofilms of clinical isolates uniformly impair NETs

release at different depths and architectures (67). Another way
FIGURE 1

The formation of NETs and the fungal strategies against NETs. NETs can be produced though NETosis or rapid release from live cells. The
NETosis process includes disassembly of nuclear envelope, chromatin decondensation, plasma membrane rupture and NETs release; whereas
rapid release from live cells require cell degranulation and ejection of mitochondrial DNA, then the NETs will be assembled outside the cell. For
fungi, they can resist NETs by cell wall components and secrete enzymes to help them escape the NETs.
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for C. albicans to modulate NETs formation is by arresting

proteinous components of NETs, including elastase,

myeloperoxidase, lactotransferrin, and histones. These NETs

components are involved in cell surface contact with C.

albicans. Adhesins on the surface of C. albicans, such as the

agglutinin-like sequence protein family Als3, can adsorb NETs

proteins and increase the pathogen’s potency in host cell

destruction, suggesting that the efficiency of fungal entrapment

might be altered (68).

C. neoformans appears to be quite “invisible” to NETs. The

fungus itself and its major capsular polysaccharide

glucuronoxylomannan (GXM) do not trigger NETs formation.

Moreover, both inhibit the production of PMA-induced NETs.

In addition, both GXM and GXMGal block the production of

ROS through PMA-activated neutrophils (34).
Escape from NETs

C. albicans and C. glabrata can escape from being trapped in

NETs through their 3’-nucleotidase/nuclease (3’NT/NU)

activity. 3’NT/NU is an ectonucleotidase that hydrolyze AMP

and nucleic acids. When NETs trap Candida cells, the cells

promote NETs disruption and this process can be blocked by

3’NT/NU inhibitor ammonium tetrathiomolybdate (69).

Besides, C. albicans can escape NETs by secreting DNase.

Strains that secrete more DNase showed greater resistance to

neutrophil killing. And the antifungal activity of neutrophils

decreases significantly after NETs being degraded by exogenous

DNase I or catalase (70).
Outlook

It is like a seesaw battle between NETs and pathogenic fungi.

NETs are activated when fungi invade the host, trapping the

fungi and killing them. The fungi, in turn, find their ways to

resist NETs’ fungicidal effect or escape traps.

Research on NETs has been a hotspot in recent years. NETs

protect the host from infections by killing pathogens including

bacteria, fungi, viruses, and parasites. However, in addition to

antimicrobial effects, excess NETs increase pro-inflammatory

responses and cause damage to surrounding tissues, which has

negative effects in many infectious and non-infectious diseases.

For example, dysfunction of NETs can damage host tissues,

promote the development of autoimmunity and thrombosis

(71). NETs are also involved in nearly all the inflammation-

related diseases, including systemic lupus erythematosus (72),

rheumatoid arthritis (72), atherosclerosis (73), diabetes (74),

asthma (75), tumors (75), and wound healing (76). Since its

discovery, people have been enthusiastic about this field, and

there are still many unknowns to explore. Taking the antifungal

activity as an example, the role of NETs in fungal infections is
Frontiers in Immunology 05
still unclear. What are the molecular mechanisms underlying the

induction, formation, and antifungal processes of NETs? Why

do different fungi, or even different strains of the same species

induce NETs differently?

As our understanding of NETs’ underlying mechanisms

increases, it may provide a useful tool for diagnosis and

treatment of related diseases. On the one hand, we can

identify new targets and design drugs that enhance the

antifungal ability of NETs without causing tissue damage. On

the other hand, ideal NETs release blockers may be discovered

and used to avoid tissue damage without compromising

antimicrobial effects. We can also use synergists to reduce

immune escape or resistance of fungi to NETs. Another

interesting idea is that, according to a recent study (77),

extracellular traps can be trained as a memory response. There

may one day be a vaccine to help increase the antimicrobial

function of NETs in high-risk populations.
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32. Luna-Rodrıǵuez CE, González GM, Montoya AM, Treviño-Rangel RJ,
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