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Abstract

Language and reading acquisitions are strongly associated with a child’s socioeconomic status (SES). There are a number of
potential explanations for this relationship. We explore one potential explanation—a child’s SES is associated with how
children discriminate word-like sounds (i.e., phonological processing), a foundational skill for reading acquisition.
Magnetoencephalography data from a sample of 71 children (aged 6 years and 11 months–12 years and 3 months), during a
passive auditory oddball task containing word and nonword deviants, were used to test “where” (which sensors) and “when”
(at what time) any association may occur. We also investigated associations between cognition, education, and this
neurophysiological response. We report differences in the neural processing of word and nonword deviant tones at an early
N200 component (likely representing early sensory processing) and a later P300 component (likely representing attentional
and/or semantic processing). More interestingly we found “parental subjective” SES (the parents rating of their own relative
affluence) was convincingly associated with later responses, but there were no significant associations with equivalized
income. This suggests that the SES as rated by their parents is associated with underlying phonological detection skills.
Furthermore, this correlation likely occurs at a later time point in information processing, associated with semantic and
attentional processes. In contrast, household income is not significantly associated with these skills. One possibility is that
the subjective assessment of SES is more impactful on neural mechanisms of phonological processing than the less complex
and more objective measure of household income.
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Introduction

The ability to decode sound structures within language—
sometimes called phonological processing—is a key building
block for language acquisition (Wagner and Torgesen 1987;
Torgesen et al. 1994; Vihman 1996) and becoming a skilled reader
(Wagner et al. 1997). Behavioral measures of language proficiency,

reading ability, and phonological processing are all highly related
to each other (Nation and Snowling 2004). This broad category
of phonological processing can be subdivided into lower-level
abilities: phonological awareness, phonological/verbal working
memory, and phonological retrieval (Wagner and Torgesen 1987).
Here, we focus on the lowest level, “phonological awareness,”
which describes the degree to which an individual can perceive,
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judge, and utilize constituent sounds of language (Hulme et al.
2005). We specifically look at how the processing underlying
phonological awareness is associated with socioeconomic status
(SES) and behavioral measurements.

SES is Associated with Phonological Processing, Reading
and Language

SES is a factor that captures family or individual income, edu-
cation, welfare, and cultural capital (McLoyd 1998; Kolenikov
and Angeles 2009). In children, SES directly relates to attitudes,
cognition, educational outcomes, and mental health (Dalmaijer
et al. 2019). However, in terms of effect size, one of the strongest
relationships is between SES and language development (Bus
et al. 1995; Pungello et al. 2009). Children who grow up in low-
income households are more likely to have poorer language
skills as an adult (Schoon et al. 2010), show poor reading ability
(Buckingham et al. 2014; Noble et al. 2006), and perform poorly
on tasks that require phonological awareness (Whitehurst 1997;
Noble et al. 2005, 2006, 2007). A recent study by Dolean et al.
(2019) drew on a sample of 322 children facing severe poverty
in the Roma community and contrasted it with 178 non-Roma
children. This study illustrated the core problem: low SES directly
negatively impacts reading development, as well as all variables
that contribute to it, such as school absence, rapid atomized
naming, phonological awareness, letter knowledge, and nonver-
bal intelligence quotient (IQ).

One influential model proposes that SES also impacts brain
development through two parallel paths (Noble et al. 2012;
Ursache and Noble 2016). One of these paths posits that SES
impacts a child’s language skill through the linguistic environ-
ment at home, which in turn leads to structural differences in
the brain, specifically in the left inferior frontal and left superior
temporal gyri. Another path shows low SES increasing stress,
which influences multiple brain areas, and in turn degrades
social–emotional processing, memory, and self-regulation. In
line with this model, research has shown that SES does indeed
moderate the relationship between task-measured phonological
performance and left fusiform gyrus activation. Noble et al.
(2006) selected children matched in phonological skill, but from a
range of SES backgrounds and had them perform a pseudo-word
reading task during functional magnetic resonance imaging
(MRI). Lower SES children’s brain activity appeared to moderate
task performance, whereas higher SES children showed an
attenuated relationship. This was apparent in the left fusiform
and perisylvian regions. These brain regions were selected a
priori for the regression analysis, so there may have been a wider
pattern across brain regions—and the relationship in Noble’s
model may extend beyond the fusiform gyri.

In more recent work, Younger et al. (2019) reveal that greater
maternal education (ME) (an element of SES) is associated with
different patterns of brain lateralization in 5-year olds. Increased
ME was related to higher brain lateralization toward the left infe-
rior frontal gyrus. Furthermore, this interacted with phonological
awareness performance, such that performance was related to a
leftward bias in the superior temporal gyrus in low ME children,
but with a rightwards bias in high ME children. These results sug-
gest that an SES factor (ME), impacts actual neural recruitment
during language processing—supporting the concept of an SES-
moderated language developmental path in the brain.

Based on this prior work, it is therefore uncontroversial that
phonological skill, and related processes, is influenced by a
child’s SES (Hoff-Ginsberg 1998; Pungello et al. 2009). As alluded
to above, there are many possible mechanisms by which a child’s

environment could influence this set of processes. One possi-
bility is that SES is associated with the ability to discriminate
word-like sounds. We test this in the current study, by measuring
the neurophysiological response to passively perceived sound
structures using magnetoencephalography (MEG). Specifically,
we looked at the response to irregular word sound structures
against frequent nonword sounds—representing sensitivity to
the words. We investigated at which “time points”and “locations”
in the information processing stream this neurophysiological
process is influenced by a child’s SES. Our whole brain/sensor
analysis approach allows us to build on the a priori area selection
findings from work such as Noble et al. (2006) and Younger
et al (2019), by potentially revealing new areas that relate to SES.
Furthermore, as SES captures such a variety of factors, we also
split our measures into two aspects: one reflecting the absolute
financial means available to the child’s family, and another using
a subjective rating of the families means. Previous work has
shown that subjective and objective measures of SES make inde-
pendent contributions to children’s executive functions, stress,
and cortisol (Ursache et al. 2015).

Auditory Oddballs and Phonological Processing

It is helpful to characterize the utility of the oddball paradigm
for this type of research. An oddball tasks consist of sequences
of repetitions of a “standard” stimulus, interspersed with infre-
quent deviant stimuli. Comparing the neural response of the
subject’s brain to frequent and infrequent stimuli provides a
measure of whether and when those stimuli are detected as
different by the brain (Dehaene-Lambertz and Gliga 2004), inde-
pendent of whether they were attended or consciously perceived
(Schröger 1997). The observed difference in response between
standard and deviant stimuli (“mismatch signal”) relies on net-
works of neurons adapting to a repetition of input by suppressing
their activation and then releasing from this adaptation when a
change is detected (Naccache and Dehaene 2001). In MEG and
electroencephalography, this signal leads to a negative peak at
roughly 200 ms, termed mismatch negativity (MMN), and later
components such as the P300, which is associated with further
semantic (Meador et al. 1987) and attentional processing (Ben-
nington and Polich 1999).

Oddball experiments have been deployed by researchers to
investigate the underlying mechanisms of phonological aware-
ness in both children (Cheour et al. 2001; Korpilahti et al. 2001;
Linnavalli et al. 2017) and adults (Näätänen 1990). Additionally,
a large literature investigates specific conditions, for example,
autism (Oram Cardy et al. 2005), dyslexia (Wehner et al. 2007),
specific language impairment (Shafer et al. 2005), or community
samples, such as poor readers (Bernal et al. 2000). In contrast,
there is little research on the impact of SES on oddball-evoked
responses, especially in typically developing children. One study
utilized a visual oddball (i.e., a novel picture in a stream of stan-
dard shapes) in a group design, with 26 subjects aged 7–12 years,
split between low-SES and high-SES groups. It found attenuated
early mismatch responses, but no SES-related P300 differences
(Kishiyama et al. 2009). The inclusion of only 13 children in each
group of this study potentially obscures any subtler relationships
between the mismatch effect and SES. In fact, developmental
auditory oddball studies often have smaller sample sizes and/or
group designs that potentially limit sensitivity, for example, Kor-
pilahti et al. (2001) N = 10, Lovio et al. (2009) N = 17, Cao et al.
(2008) N = 12 per group, Bakos et al. (2016) N = 14 and N = 15 in
each group, and Orinstein and Stevens (2014) N = 18 and N = 20
in each group.



Subjective SES and Neurophysiological Response to Auditory Oddballs Anwyl-Irvine et al. 3

The Current Study

In the current study, we tested whether the neurophysiolog-
ical mechanisms, by which simple word-like sounds are dis-
tinguished, vary according to a child’s SES. We used a passive
oddball task to test this. Children sat in the MEG scanner while
watching cartoons. During their viewing, they listened to trains
of sounds containing carefully matched oddball words and non-
words alongside fillers. The children also took part in a structural
MRI scan, allowing us to try and localize the MEG activity to a
brain model created from their scan.

We recruited children and their families to take part in a MEG
and MRI scan, from a wide variety of household incomes (range
£5700–£66 000 annual household income). The age range was
from just under 7 years old to just over 13 years—a wider range
than previous studies such as Kishiyama et al. (2009). This may
allow us to capture more developmental changes. Additionally,
it expands on the phonological electrophysiology literature that
focuses on earlier ages (<5 years) when these systems are just
developing.

We used a general linear model (GLM) that included behav-
ioral and demographic variables to predict evoked neural activity
in three dimensions (time and 2D space) during the phonological
oddball task. This tests how variance across the whole group
predicts the underlying neural activity, as opposed to the limited
single contrasts in group designs. This GLM allowed us to take
a data-driven approach, asking whether a child’s SES is associ-
ated with their neurophysiological response to carefully matched
words, and crucially, if so, “when” this influence occurs. One pos-
sibility is that SES will covary with the earliest neurophysiological
response to an oddball (Korpilahti et al. 2001). Alternatively, it
may covary with a later processing stage more likely to reflect
order, semantics, or attentional processing (Meador et al. 1987;
Bennington and Polich 1999; Hill et al. 2004). Our GLM will enable
us to detect either, or both of these effects, if they exist.

SES was characterized using equivalized household income
as an objective measure, and parent’s self-reported SES as a
subjective measure. Parental education level is another potential
metric used within the literature, but it has relatively few levels
(high school, university degree, higher education) by comparison
with the other SES metrics. We also collected behavioral data
from these children: measures of educational attainment in
reading and maths, and cognitive measures of working memory,
verbal skills, and general IQ. These were incorporated within
the GLM to test whether these individual differences were also
associated with the phonological processing of word oddballs,
independent of SES.

Materials and Methods
Participants

A total of 82 participants took part in the study, conducted at
the MRC Cognition and Brain Sciences Unit. Due to technical
problems with the scanner (4 children), attrition between ses-
sions (2 children), and children opting out of either MRI or MEG (5
children) scan only 71 full datasets remain. There were two visits
for each child; on the first, behavioral measures were collected,
and then a MEG scan took place. On the second (which was
optional) the participants had a structural MRI. There was no
more than a month between visits.

The mean age of the children was 9 years and 11 months
(range: 6 years and 11.6 months–12 years and 9.3 months), 44 of
the children were boys. We computed the average net household
equivalized income, which is income after tax deductions and

benefit additions, weighted by number of children and adults
using Organisation for Economic Co-operation and Development
(OECD) equivalence scale (Anyaegbu 2010). This was £24 313 on
average, with a standard deviation of £12 261, ranging from £5747
to £66 666. Our sample was thus socioeconomically diverse, but
of lower means than the UK median at time of testing (£31 876),
2017/18. In fact, 26.8% (22 children) were living under the UK
poverty line–classified as 60% of the median income or less
(“households below average income” 2018). All our families live
in the Cambridges and East Anglia area, where the cost of living
is high by UK standards, so it is likely that this statistic under-
estimates the proportion living below the poverty line. We did
not record the ethnicity of our participants; however, the vast
majority of Cambridge (82.51%) and east of UK (85.1%) (Office
for National Statistics 2018) are White, and we were unlikely to
have recruited enough of other groups for meaningful statistical
inference.

A questionnaire was given to parents to ascertain subjective
SES, obtained by having caregivers place a cross on a ladder of
10 rungs, with the top representing those who were better off
in the United Kingdom, and the bottom representing those the
worse off. This is a frequently used measure of subjective SES
(e.g., Ostrove et al. 2000; Singh-Manoux et al. 2005).

Procedure

Volunteers and their families took part in all research sessions
at the Medical Research Council Cognition and Brain Sciences
Unit, University of Cambridge. Parents provided written informed
consent, and children provided verbal assent. The study was
approved by the Psychology Research Ethics Committee at the
University of Cambridge (Reference: 2015.11).

Behavioral Measures

Children and their families visited the Unit for a battery of
educational attainment and cognitive assessments. These
included mathematics and reading fluency scales from the
Woodcock–Johnson III Form B tests of achievement (Woodcock
et al. 2001), the matrix reasoning and vocabulary subtests of the
Wechsler abbreviated scale of intelligence (WASI-II) (McCrimmon
and Smith 2013), the automated working memory assessment
(AWMA) (Alloway et al. 2008), and the phonological assessment
battery (PhAB) (Gallagher and Frederickson 1995).

Phonological Oddball

MEG Scan

During the first visit, neuroimaging data were acquired on a high-
density VectorView MEG System (Elekta Neuromag) with 102
magnetometers and 102 orthogonal pairs of planar gradiometers
(306 sensors in total). Head position indicator (HPI) coils were
attached to the child’s head (one on each mastoid bone, two on
the child’s forehead, and one on the top of their head). A 3D
digitizer was used to record the positions of each HPI coil, and
a number of scalp points (50+) in order to assist in coregistration
of MRI scans. To capture eye-movements and blinks, vertical and
horizontal electrooculogram (EOG) were measured with a pair
of electrodes to the side of each child’s eyes, and another pair
placed above and below the left eye. To record heart rate, an
electrocardiogram (ECG) was taken with electrodes attached to
each wrist. Audio was presented to the participants using in-ear
earpieces attached to a long plastic tube that went outside the
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MEG’s shielded room, where they were attached to the speaker
and amplifier. This minimized the impact of any electrical signal
from audio amplification and production.

MRI Scan

During a separate visit, participants took part in an MRI scan,
which yielded T1-weighted images from a Siemens 3T Tim Trio
system. For these images, a magnetization prepared rapid acqui-
sition gradient echo sequence with 1 mm isometric image reso-
lution 2.98 ms echo time and 2250 ms was used.

Task

Three auditory stimuli were used: a novel pseudo-word frequent
(“boak”), a known word oddball (“boat”), and a novel pseudo-word
oddball (“boap”). The ratio between these stimuli was 6:1:1, that
is, one of each oddball for every six frequent stimuli. The task
started with a train of 10 standard stimuli, so that participants
could habituate to the frequent nonword. There were 1200 trials
in total (900 nonword standard, 150 word oddball, 150 nonword
oddball). In a pseudo-random manner, there were either 2, 3, 4, or
5 standard nonword stimuli between deviants. The interstimulus
interval was 800 ms from the offset of one stimulus to the onset
of the next.

The stimuli themselves were taken from (Hawkins et al. 2014).
All words had identical first consonant-vowel, /bo

�

/(“boa”),
which was spliced from natural spoken word taken from
speaking the word /bo

�

t/ (“boat”). For each stimuli this sound
was then cross-spliced with a voiceless-top consonant, that was
either: /k/ to make standard nonword /bo

�

k/ (“boak”), /t/ to make
oddball word /bo

�

t/ (“boat”), or /p/ to make oddball nonword
/bo

�

p/ (“boap”). The first consonant-vowel was acoustically and
coarticulatory identical until the final stop vowel, and peak
sound energy was equated across all stimuli. This meant that
the ability to perceive the sounds as different only happened at
the last phoneme, which should target as exclusively as possible
the systems underlying phonological awareness.

During the oddball task, all children watched a cartoon (Tom
and Jerry: The Classic Selection Volume 1) (Takeda and Kimura
2014), without any audio. This particular cartoon had the benefit
of not having any moving mouths for speech—so visual speech
cues would not confound or convolute signal from the auditory
cortex (Sams et al. 1991). It also kept the children relatively
entertained during the scanning session.

Analysis

Data were analyzed primarily with the MNE-Python toolbox v0.19
(Gramfort et al. 2013) on CentOS Linux.

Preprocessing

Raw data underwent signal source separation, temporal exten-
sion, and movement compensation using Maxfilter 2.2. These
data were loaded into MNE-Python, and then high-pass filtered
at 1 Hz and low-pass filtered at 50 Hz. In order to remove noise
associated with heart beats and blinks, a two-stage independent
component analysis (ICA) denoising procedure was used. An ICA
was done using “fastica” with 25 components specified. Stage 1
involved automatic rejection of components that correlated with
ECG or EOG electrodes more than 0.3. Stage 2 involved manual
checking of excluded component topography and selection of
components to exclude for participants with insufficient ECG or
EOG electrode signal. Data for each child were visually checked
before and after to ensure the components were not present still.

Raw data were then epoched between 200 ms before and
1000 ms after the presentation of auditory stimuli. As participant
data were split up into two runs, these were processed separately
until epoching, where epochs were concatenated and treated as
one after this.

Source Localization

FreeSurfer (Fischl 2012) was used to construct whole brain sur-
face from MRI scans, using the recon-all command. A single
layer boundary element model (BEM) of the inner skull was con-
structed using the MNE watershed method. A source space was
made using the cortical surface from the FreeSurfer output. Our
inverse model consisted of this one-layer BEM, and the method
used to invert the evoked signals was the MNE toolbox’s imple-
mentation of dynamic statistical parametrical maps (DSPM), with
empirical whitening done using a noise-covariance matrix taken
from the baseline period, which we found to produce the most
consistent results. Participants who lacked an MRI or moved too
much during the MRI scan had models created using FreeSurfer’s
FSAVERAGE model.

Behavioral Statistical Analysis

We had a large number (12) of likely highly corelated behavioral
measures. This multicollinearity makes using these predictors in
our later GLM inappropriate. Consequently, these were reduced
to separate components using principal component analysis
with orthogonalization through varimax rotation. Behavioral
variables (Woodcock–Johnson III subtests, AWMA, and WASI-II)
were reduced to 3 factors, which we labeled working memory and
executive, classic IQ, and verbal short term memory (STM) and
working memory (WM)—these were chosen as plausible factors
based on previous work (Alloway et al. 2005) and explained 45.5%
of total variance. Education (the Woodcock–Johnson III measures)
was subject to a separate factor reduction. Parallel analysis
revealed that in the best solution Woodcock-Johnson (WJ)
reading and mathematics was a single factor solution, explaining
47.8% of variance in those scores. The factor weightings can be
seen in Table 1. Even though the WJ were used to derive a single
factor, we show correlations between all the components/factors
and the scores. You can see that the WJ scores correlated with
some of the other three factors; however, they did not contribute
to those factor scores.

We did not include scores from the PhAB alliteration measure;
this task was too easy for children of this age, without phono-
logical awareness difficulties. Fifty-one out of 71 (70.4%) of the
children answered all items correctly, so showed little variance.
We used age standardized (WASI t scores, AWMA, and Woodcock–
Johnson standard scores) scores in all or our analyses, with age
in years then added as a covariate in the later GLM, such that age
would be independent against all measures.

MEG Statistical Analysis

Comparison of Word and Nonword Contrasts

In order to investigate whether there was a significant difference
between the word and nonword MMN, a nonparametric, cluster
corrected, two-tailed repeated measures permutation t-test was
calculated using the difference field between the two. A connec-
tivity matrix was computed over time and space, and a cluster
forming threshold of t = 4 was also used to calculate the clusters.
This was much higher than the critical t of 2 calculated from an
effect size (0.28) reported in a meta-analysis of oddball tasks in
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Table 1. The factor weightings for each of the component scores extracted

Working memory and executive Classic IQ Verbal STM and WM Attainment

AWMA digit recall −0.05 0.23 0.71 0.24
AWMA dot matrix 0.62 0.02 0.00 0.00
AWMA Mr X 0.60 0.36 −0.03 0.02
AWMA backward digit 0.17 0.28 0.50 0.12
WASI vocabulary 0.02 0.74 0.26 0.36
WASI matrix reasoning 0.42 0.59 0.19 0.28
WJ reading 0.10 0.48 0.36 0.50
WJ mathematics 0.24 0.33 0.34 0.45

Note: This is shown as each component variables Pearson correlation with the factors. The WJ subtests were used to derive the “Attainment” component, but excluded
from the other components—correlations across all components and scores are still included for completeness.

children (Cheng et al. 2016) with an error probability of 0.05 and a
sample size of 71. The threshold is statistically arbitrary, since it
is repeated in each permutation (Friston et al. 1994), but having a
narrower definition of clusters makes them far easier to interpret
in terms of their spatial extent. The permutation test produces
null-distributions of cluster t statistics based on shuffling data,
which is then compared with the actual observed cluster t values.
This is more computationally demanding than false descovery
rate (FDR) methods; however, it is also more conservative and
has the benefit of directly controlling the family-wise error rate,
rather than the FDR statistic (Nichols and Hayasaka 2003; Lage–
Castellanos et al. 2010). We used a Monte Carlo P value of 0.05
to identify significant clusters over 5000 permutations—in other
words, clusters identified were in the 95th percentile or higher.

General Linear Model

A mass multivariate GLM was constructed to analyze the three
dimensional (2D sensor-space x time) average evoked responses
for each individual in relation to the behavioral factor scores (in
Table 1), along with age (in days), equivalized income and subjec-
tive SES. This allows us to test how individual’s spatio-temporal
responses predict their cognitive, attainment, and demographic
attributes. For the neurophysiological data, we used only the
word contrast (i.e., word vs. nonword fillers), as this represents
the sensitivity to word phonological forms, rather than the non-
word contrast, which is concerned only with sensitivity to sounds
unrelated to real words.

A design matrix was constructed with each row containing
a continuous regressor of value 1, representing a single partici-
pant’s word contrast (102 magnetometers in 2D space × 1200 ms
time samples), and a single value regressor for each of working
memory and executive factor, classic IQ factor, verbal STM and
WM factor, attainment factor, age in years, equivalized income,
and subjective SES. All regressors were z-transformed (so they
were normalized and centered around zero). The final design
matrix was thus 71 × 8.

In order to find our best estimates of the model’s betas, we
used ordinary least squares to minimize the models error terms.
This resulted in beta weights for each predictor at each point in
time and space. These beta values (and statistics inferred from
them) represent the relationship between regressor and evoked
response for each time point. Larger values reflect a stronger
relationship at that spatio-temporal measurement.

We then took a cluster permutation approach to establish
inference from our model. The t values were calculated for each
beta value, and spatio-temporal clusters (2-tailed) were extracted
from this (as in the previous analysis), and the mean t value
taken. We found that the cluster forming threshold of 4 yielded
large numbers of small clusters, so reduced the value to create

larger more interpretable clusters before permuting. This was a
statistically arbitrary cluster forming threshold of 2.8. As before,
2.8 was higher than the critical t value for an expected effect size
of 0.28, based on an oddball meta-analysis of children (Cheng
et al. 2016), with a sample size of 71 and an alpha of 0.05.

We then permuted each of the 9 regressors in the model
5000 times (45 000 total permutations), where the rows of that
regressor were randomly shuffled while holding covariates con-
stant (so they no longer matched the participant’s data), spatio-
temporal clusters were recalculated, and the average t value
taken. This gave us a Monte Carlo distribution for each regressor
that was centered at zero, which was compared with the original
clusters. Any original (unshuffled) cluster with a value in the
95th percentile of the Monte Carlo distribution was kept as a
significant cluster.

Results
Group Level MMN Evoked Response

@Evoked responses for the nonword frequents, nonword
deviants, and word deviants can be seen for all magnetometers
in Figure 1. This figure is purely illustrative; it shows the evoked
signal for each trial type before subtractions on a handful
of representative electrodes. For reference, we identify the
beginning of the sound, and the differentiation point (the final
phoneme) on all points. Based on the topography of these
responses, we selected right and left parietal sensors that
showed the clearest apparent auditory evoked topography (the
mean of these sensors is also illustrated in Figure 1).

There is a clear auditory evoked component at around 150 ms
after the onset of the sound, the direction in power compared
with baseline is positive on the right sensors and negative on
the left sensors. There appears to be a difference in the evoked
responses to the oddballs and the frequent stimuli that begin
appearing around 200 ms after the onset of the final phoneme,
with more pronounced differences by 400 ms. In order to test this
statistically, we compared deviant minus frequent subtractions
for the words and nonwords. All sensors and time points were
entered into a cluster-permuted t-test and detailed in the meth-
ods section.

There were clear differences between the two different mis-
match contrasts: words (i.e., word deviants, relative to nonword
frequents) and nonword (i.e., nonword deviants relative to non-
word frequents). In sensor space, the evoked topography for these
word and nonword contrasts is plotted in Figure 2. There is a clear
pattern of left and right parietal activation at the 400 and 500 ms
bins, where results are (qualitatively) similar between contrasts.
At the 200 ms bin, we see a unilateral decrease for the word
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Figure 1. Illustrative topography and time course of the evoked responses for the frequent nonword and the word/nonword deviants. A subsection of left and right

sensors was selected and averaged to produce the time courses above and below the helmet illustration.

contrast in the right parietal area, and this pattern is reversed
in the nonword contrast.

The binned topography is a very coarse metric. Greater gran-
ularity is provided by looking at the spatio-temporal clusters

from the cluster-permuted t-test. Four spatio-temporal (i.e., sen-
sor time point) clusters survived permutation testing; these are
illustrated in Figure 3: A shows a right-temporal topology with
a higher response to word deviants versus nonword deviants at
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Figure 2. Field strength topography of evoked contrasts for words and nonwords. Final phoneme is marked with a blue line.

Table 2. Statistics for the evoked cluster

A B C D

Mean t value 0.1480 0.0776 0.0373 −0.1101
Monte Carlo P 0.0004 0.0002 0.0002 0.0002
Number of sensors 5 13 8 8
Epoch start time (ms) 177 317 170 335
Temporal extent (ms) 66 81 59 66

Note: Mean T value is calculated by averaging the observed T output from the test
statistic at each time point and each sensor in the cluster.

177–243 ms, B shows a left-parietal response in the same direc-
tion (word deviants higher than nonword deviants) higher later
at 317–398 ms, C shows a right-temporal topology with nonword
deviants responding higher in the same temporal pattern as 2.a
at 170–229 ms, and D shows a very similar topology and relation-
ship to Figure 3C but later on at 335–401 ms. As mentioned above,
these locations and times are a coarse indication of the “true”
effect as we have not permuted these dimensions. More detailed
statistics on the clusters are available in Table 2.

Although not critical for our core research questions, we were
interested in where these responses originated from. Quality
source-reconstruction was possible for 47 of our participants—
this was not high enough to go through with source analysis.
However, we are able to show the average topology for these par-
ticipants. Figure 4 illustrates the likely origins of the mismatch
response. This replicated not only the sensor-level data, but also
shows the word contrast more prominently localized to the left
anterior temporal lobe at approximately 400 ms compared with
the nonword contrast.

Group Level Behavioral GLM

The attainment factor, age in years, and subjective SES regressors
all yielded clusters that were robust to our permutation testing
(Table 3). The predictors working memory and executive factor,

classic IQ factor, verbal STM and WM factor, and equivalized
income did not survive this testing, and we found no evidence for
a relationship between these variables and the MMN response.

The topography of three of the clusters (Fig. 5A,B,D) showed
clear overlap with the evoked response shown in the results
above, whereas the third cluster (Fig. 5C) did not overlap with
this temporally or spatially. The education cluster (Fig. 5A) had
a right-parietal topography, started around 460 ms after the dif-
ferentiation point, and predicted an increased response to word
oddballs against nonword frequents. The age cluster (Fig. 5B)
showed a right-temporal topography, started around 500 ms, and
predicted a decreased response to word oddballs versus nonword
frequents. The first subjective SES cluster (Fig. 5C) had a fronto-
central topography, an unexpected time course that started at
the differentiation point (with an onset just after differentiation)
and predicted a more negative response to oddball words relative
to frequent nonwords. The second subjective SES cluster showed
a more plausible time course and topology, with a left-parietal
topology starting around 350 ms after the differentiation point,
and predicted a more negative response to oddball words versus
frequent nonwords. We report the temporal and spatial elements
of these clusters roughly, as these dimensions of the clusters are
estimates (Sassenhagen and Draschkow 2019).

Discussion
We used an auditory oddball paradigm to explore the relation-
ship between children’s sensitivity to phonological deviations
and their SES. Measures of cognition and educational attainment
were also included in the model. Children showed a robust and
differential response to the final phoneme of word deviants
versus nonword deviants. The significant clusters of difference
were at ∼ 200 ms, with two clusters showing opposing responses
to words versus nonwords—both on the right hemisphere, and
then at ∼ 350 ms showing the same polar differences, but with
a contralateral topography. Importantly, a child’s subjective
SES is associated with their neurophysiological response to
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Figure 3. Evoked field cluster topography and time courses for word and nonword mismatch subtractions. Mean T statistic maps are shown projected onto MEG helmet,

significant sensors are marked in white. Time course showing mean (line) and bootstrapped 95% confidence intervals (shaded area) field strength for each evoked

contrast, stimuli start and final phoneme onset marked in blue, and cluster onset/offset shaded in yellow. (A) shows MMN for nonword deviants, and (C) shows MMN

for word deviants; (B) and (D) show later difference in response.

Table 3. Summary of statistics for GLM clusters surviving permutation testing

Attainment Age in years Subjective SES #1 Subjective SES #2

Mean beta 2.2929E-14 −1.5227E-14 −1.0352E-14 −1.9247E-14
Mean t value 3.0505 −3.3638 −3.1600 −3.1044
Monte Carlo P 0.0222 0.0462 0.0460 0.0474
Number of sensors 15 12 20 20
Epoch start time (ms) 463 516 3 340
Temporal extent (ms) 185 106 72 77

Note: T values and Beta values are the average from each cluster over sensors and time points. Beta values are in the scale of magnetometers field strength.
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Figure 4. Average source-localized evoked contrasts for words and nonwords. Final phoneme is marked with a blue line. DSPM used to invert sensor-level data. For

visualization the estimates are binned into 100 ms segments, so each image is a mean average across a bin.

deviant words, and one cluster showed overlap with a later P300
response. Attainment and age also show statistically significant
associations with the evoked response to word deviants, and
these clusters occurred later, also consistent with a late P300
component. There was no evidence that these factors are
associated with the earlier N200 response, and there was no
evidence for cognitive measures or household income to be
associated with the evoked response.

Differences in Word and Nonword Contrasts

We report components that show a difference between the word
and nonword contrasts, a N200 and P300 component. The N200,
or MMN, component implies that there is an early sensory
detection between the processing of unexpected word and
nonword phonemes—this was expected and replicates previous
observations (Korpilahti et al. 2001; Maurer et al. 2003; Junge
et al. 2012). The P300 component is commonly associated with
conscious processing and attentional orienting (Sommer and
Matt 1990; Bennington and Polich 1999; Polich 2007). Despite
the explicit instructions to ignore the stimuli and focus on
the simultaneous cartoon playback, it is likely the irregular
stimuli led to an involuntary orienting of attention (Lyytinen
et al. 1992). The differences between word and nonword
contrasts are therefore likely to reflect some degree of differing
involuntary attentional shifting, or at least an increased demand
on attention (Bennington and Polich 1999), and the neural
processing associated with this. Another strong possibility is that
this component is associated with semantic processing (Meador

et al. 1987) and phonological categorization (Hill et al. 2004),
perhaps indicating that this later difference could also reflect
differing processing of semantics and categorization—which is
likely given that our contrast of interest is between words and
nonwords.

Subjective SES is Associated with the Oddball Response

A child’s oddball response was not significantly associated with
equivalized family income, but it was significantly associated
with parental rating of subjective SES. We conclude from this that
the economic situation per se is not the ingredient that drives
SES-phonology associations, but instead that it is the wider
environmental impact of SES, which the parent is uniquely
placed to assess. Greater relative deprivation, which cannot be
completely captured by standard measures like income, likely
negatively impacts the development of phonological processes—
the subjective SES effect may well reflect this. An alternative
explanation is that lower subjective SES is associated with
poorer parental mental health, which in turn leads to less
support for language development and therefore phonological
processing. Supporting this second explanation, lower subjective
SES in adults is indeed associated with poorer mental health
(Scott et al. 2014; Odgers and Adler 2018), and poor parental
mental health is negatively associated with early (1–2 years)
language development (Lung et al. 2009; Paulson et al. 2009).
We did not measure parental mental health, but this may be a
potential mediating factor and would provide a future direction
for research.
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Figure 5. General linear model clusters for attainment (A), age in years (B), and Subjective SES (C & D). Topography of beta-weights with cluster sensors plotted shown

on the left. Time course of beta weights, with stimuli and final phoneme marked in blue, and cluster temporal extent shaded in yellow. It should be noted that spatial

and temporal cluster extent are not cluster permuted, just the statistic, so this should be interpreted as an estimate of these dimensions. Beta values are in the scale of

magnetometers field strength.

Irrespective of the explanation, the results speak to the com-
plex nature of SES, which is often characterized as purely with
income or occupation (Rubin et al. 2014). As income was included
as a predictor in the GLM, it is likely that the subjective SES
clusters represent variance independent of income. Indeed, this
observation partly parallels research into children’s executive
functions where objective SES and subjective SES were shown
to make independent contributions (Ursache et al. 2015). Across
the literature, the way we conceptualize SES seems to be crucial.
When ME is used to group children, differences in selective

attention (Stevens et al. 2009) and auditory refractory periods
(Stevens et al. 2015) are observed. In contrast, grouping by income
alone does not always produce significant differences (Garci-
a-Sierra et al. 2011). Taken in concert with our results, this could
also support one path of the theoretical model put forward by
Noble et al. (2012) and Ursache and Noble (2016)—that language
and phonological development are moderated by “some ele-
ments” of SES and impact later out comes in children. In our
case, it seems to be the subjective experience of SES, rather than
income per se.
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We found two SES-predictive clusters that survived permu-
tation testing. One frontal-central cluster that starts very early
(almost at the differentiation point), and a second more left-
dorsal cluster that has an onset consistent with a P300 compo-
nent. We are dubious about the first of these. Only the cluster
statistics are permuted, not their spatial or temporal extent—
meaning we cannot make statistical inferences about the pre-
cise time and space (Sassenhagen and Draschkow 2019). The
shape and location of clusters are liable to display spreading.
This limitation can explain the first SES cluster (Fig. 5C), which
appears implausibly early. It is possible that the true effect has
occurred later, and by chance, the original cluster had been
formed in its current location. If this is the case, this may indi-
cate an association with earlier sensory processing in reaction
to the word oddballs, perhaps in relation to observations of
auditory ventral stream processing reported in oddball tasks
(Kim 2014). However, due to its dubious time course, this is
unclear.

The second cluster (Fig. 5D) is more easily interpretable as
the topology and timescale overlap highly with the left late P300
component shown in Figure 3B. A reasonable interpretation is
that subjective SES associated with the process of attentional ori-
enting and/or semantic processing referred to above. In contrast
with this finding, altered development of language systems—
either through low SES or in children with neurodevelopmental
conditions—has often been ascribed to early sensory differences.
For instance, Stevens et al. (2009) reported that low SES children
showed reduced evoked activity from selective attention to spo-
ken stories at around 100 ms post cue. Our results do not replicate
this type of early sensory finding. However, our subjects are
relatively old, and it could be that we would see this kind of early
effect in younger children, but that its timing is developmentally
specific. The later effects that we observe are, however, consis-
tent with some findings in the dyslexia literature. Dyslexia preva-
lence increases with lower SES, and dyslexic children and adults
show altered P3 responses and long latency evoked response
potential (ERP) during reading and rhyming tasks (see Taylor
and Baldeweg 2002). However, there may be many factors that
explain this relationship between the later neurophysiological
response and subjective SES, including important mediating fac-
tors that we did not measure. Identifying these factors could
provide necessary information as to the mechanistic origins of
this association.

Educational Attainment but not Cognition is Associated
with Oddball Responses

From our behavioral measures, only the attainment factor
(weighting primarily on the mathematics and reading WJ
scores) was associated with MEG signal, rather than any of
the factors that encompassed STM/working memory and IQ
assessments. We think this is likely because we do not have
good phonological awareness measures in our cognitive battery.
We included the alliteration measure from the PhAB); however,
we discovered this contained many ceiling effects. These ceiling
effects have also been reported in previous studies (Wheldall
and Pogorzelski 2003). This is likely because of the age of our
participants, as the PhAB measures are typically sensitive to
individual differences earlier in development (Cronin and Carver
1998; Anthony et al. 2007; Furnes and Samuelsson 2011). One
possibility is that the educational attainment measures are
strongly associated because they in part reflect the longer-
term outcome of these earlier differences. This is somewhat
compatible with research showing that younger children’s

phonological abilities predicted their numerical competency and
literacy (Krajewski and Schneider 2009).

Study Limitations

There are several limitations in our study. Firstly, as outlined
above, cluster permutation testing permutes the test-statistic,
but not the spatiotemporal aspects of the clusters themselves—
thus the time course and sensors in the cluster should be used as
a general indication rather than a formal test of these attributes.
A second limitation is the age of our participants. They are mid-
primary school age to early secondary school, and arguably there
could be strong relationships between phonological sensitivity
and our factors earlier in development.

Lastly, our analysis approach—using a GLM—identifies how
evoked brain data are associated with regressors. Although we
select a wide range of regressors, our reported relationships
could be explained by any number of unseen covariates, such as
parental mental health as we mentioned earlier. However, this is
broadly true for any model on these types of data—the regressors
included are not exhaustive. Nonetheless, we believe our results
are still important. The next step is to understand more precisely
which elements of subjective SES may be the active ingredients
in shaping the relationship with phonological detection skills.

Conclusion
Children have a differential neurophysiological response to word
versus. nonword deviants in a phonological oddball task. These
differences arise at both the N200 and P300 components, likely
reflecting differences in early perceptual sensitivity, and later
semantic processing and attentional orienting systems. The P300
components of the word condition were predicted by measures
of age, attainment, and the families’ ratings of their SES, but
not by cognitive measures or household income. This shows
that complex demographic measures like SES are predictive of
the underlying mechanisms involved in phonological processing,
and specifically effecting (for the most part) the later stages
associated with semantic processing and involuntary attentional
orienting.
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