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+e emergence of parasite resistance to antimalarial drugs has contributed significantly to global human mortality and morbidity
due to malaria infection. +e impacts of multiple-strain malarial parasite infection have further generated a lot of scientific
interest. In this paper, we demonstrate, using the epidemiological model, the effects of parasite resistance and competition
between the strains on the dynamics and control of Plasmodium falciparummalaria. +e analysed model has a trivial equilibrium
point which is locally asymptotically stable when the parasite’s effective reproduction number is less than unity. Using contour
plots, we observed that the efficacy of antimalarial drugs used, the rate of development of resistance, and the rate of infection by
merozoites are the most important parameters in the multiple-strain P. falciparum infection and control model. Although the
drug-resistant strain is shown to be less fit, the presence of both strains in the human host has a huge impact on the cost and
success of antimalarial treatment. To reduce the emergence of resistant strains, it is vital that only effective antimalarial drugs are
administered to patients in hospitals, especially in malaria-endemic regions. Our results emphasize the call for regular and strict
surveillance on the use and distribution of antimalarial drugs in health facilities in malaria-endemic countries.

1. Introduction

+e emergence of parasite resistance [1–4] to antimalarial
drugs has contributed significantly to human mortality and
morbidity due to malaria infection, worldwide [5–7]. A
global malaria control strategy of 1992 [8] that advocated for
early diagnosis and prompt treatment has been heavily
compromised by the emergence of parasite resistance to
antimalarial drugs. +e evolution of parasite resistance has
been described in [9] as an example of a Darwinian evo-
lution. Parasites undergo mutations in their genome in
response to the drug-treated human host. +ese mutations
reduce the rate of parasite elimination from the host and
increase their survival chances [9]. +e most extensively
used antimalarial drugs against the deadly Plasmodium
falciparum malaria are chloroquine (CQ) and sulfadoxine-
pyrimethamine (SP) [10, 11]. +ese drugs are cheap, easily
available, and slowly eliminated from the human body [11].
However, the extensive use of CQ and SP has resulted in

P. falciparum resistance. +is has led to global increase in
malaria cases and mortality [12]. In response, the World
Health Organization (WHO) in 2006 recommended the use
of artemisinin-based combination therapies (ACTs) as
a first-line treatment for uncomplicated P. falciparum
malaria [13]. Resistance to ACTs which are currently the
standard treatment for P. falciparum is likely to cause global
health crisis especially in African regions where P. falcipa-
rum malaria is endemic [11].

+e emergence of parasite resistance to malaria therapy
dates back to the 19th century. Quinine (1963) was the first-
line antimalarial drug against P. falciparum [14]. High
mortality cases coupled with high parasite resistance led to
the introduction of a second drug, chloroquine (CQ), in
1934 [15]. A decade later, CQ was considered the first-line
antimalarial drug by several countries until 1957, when the
first focus of P. falciparum resistance was detected along the
+ai-Cambodia border [16]. In Africa, P. falciparum re-
sistance to CQ was first discovered among travelers from
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Kenya to Tanzania [17]. By 1983, CQ resistance had spread
to Sudan, Uganda [18], Zambia [19], and Malawi [20].
Unlike Africa, CQ was replaced for the first time with
sulfadoxine-pyrimethamine (SP) as a first-line antimalarial
drug in+ailand in 1967. Several other countries in Asia and
South America followed thereafter [10]. Resistance to SP
was, however, reported the same year [21] in the region. In
1988, CQ was replaced for the first time in Africa. KwaZulu-
Natal Province of South Africa replaced CQ with SP [22]. In
1993, the Malawian government changed the treatment
policy from CQ to SP. Other African countries followed
thereafter: Kenya, South Africa, and Botswana (in 1998);
Cameroon and Tanzania (in 2001); and Zimbabwe (in 2000)
[23]. +e effectiveness of SP was equally undermined by
resistance. Unlike CQ, P. falciparum resistance to SP was
mainly attributed to the long half-life of the drug [24].
Confirmed resistance to the artemisinin derivatives was first
reported in Cambodia and Mekong regions in 2008 [25].

To leverage on parasite resistance, cost of treatment,
and burden of malaria infection to communities and
governments, the WHO recommends the use of artemi-
sinin-based combination therapies (ACTs) as the first- and
second-line treatment drugs for uncomplicated P. falci-
parum malaria [25]. ACT is a combination of artemisinin
derivatives and a partner monotherapy drug. Artemisinin
derivatives include artemether, artesunate, and dihy-
droartemisinin. +ese derivatives reduce the parasite
biomass within the first three days of therapy, while the
partner drug, with longer half-life, eliminates the
remaining parasites [26]. +eWHO currently recommends
five different ACTs: (1) artesunate-amodiaquine (AS +AQ),
(2) artesunate-mefloquine (AS +MQ), (3) artesuna-
te + sulfadoxine-pyrimethamine (AS + SP), (4) artemether-
lumefantrine (AM-LM), and (5) dihydroartemisinin-
piperaquine (DHA+PPQ). Additionally, artesunate-
pyronaridine may be used in regions where ACT treatment
response is low [26]. Access to ACT has been tremendous
in the last 8 years, with a recorded increase of 122 million
procured treatment courses for the period 2010–2016.
However, resistance to currently used ACTs has important
public health consequences, especially in the African re-
gion, where resistant P. falciparum is predominant.

Numerous cross-sectional studies [27, 28] have revealed
the possible impacts of multiple strains of P. falciparum on
the development of resistance to ACTs. In [29] and citations
therein, drug-sensitive parasites are shown to strongly
suppress the growth and transmission of drug-resistant P.
falciparum parasites. Although high-transmission settings
such as sub-Saharan Africa account for about 90% of all
global malaria deaths, resistance to antimalarial drugs has
been shown to emerge from low-transmission settings, such
as Southeast Asia and South America [29]. Causes of parasite
resistance to ACTs are diverse. Historical studies [30, 31]
indicate that antimalarial-resistant parasites could emerge
from a handful of lineages. It is argued elsewhere [32, 33]
that recombination during sexual reproduction in the
mosquito vector could be responsible for the delayed ap-
pearance of multilocus resistance in high-transmission re-
gions. Moreover, owing to repeated exposure for many

years, individuals in high-transmission settings are likely to
develop clinical immunity to malaria, leading to stronger
selection for resistance [34]. Studies in [29] also support the
hypothesis that in-host competition between drug-sensitive
and drug-resistant parasites could inhibit the spread of
resistance in high-transmission settings. Owing to their
integral role in the recent success of global malaria control,
the protection of efficacy of ACTs should be a global health
priority [35].

Mathematical models of in-host malaria epidemiology
and control constitute important tools in guiding strategies
for malaria control [36, 37] and the associated financial
planning [38]. While some researchers have focussed on
probabilistic models [39, 40], others have investigated the
effects of drug treatment and resistance development using
dynamic models [41, 42]. A deterministic model by Esteva
et al. [43] monitored the impact of drug resistance on the
transmission dynamics of malaria in a human population. In
[29], the impacts of within-host parasite competition are
shown to inhibit the spread of resistance [44, 45]. On the
contrary, some models [39, 46] have suggested that within-
host competition is likely to speed up the spread of resistance
in high-transmission settings due to a phenomenon called
“competitive release.” In this paper, we provide theoretical
insights using mathematical modelling of the impacts of
multiple-strain infections on resistance, dynamics, and
antimalarial control of P. falciparum malaria.

+e rest of the paper is organized as follows: In Section 2,
we formulate the within-humanmalaria model that has both
the drug-sensitive and drug-resistant P. falciparum parasite
strains subject to antimalarial therapy. In Section 3, we
analyze the model based on epidemiological theorems.
Within-host competition between parasite strains and the
effects of antimalarial drug efficacy on parasite clearance are
discussed in Section 4. Sensitivity analysis and multiple-
strain infection and its effects on resistance and malaria
dynamics are demonstrated in Section 5. We conclude the
paper in Section 6 by emphasizing the need for antimalarial
therapy with the potential to eradicate multiple-strain in-
fection due to P. falciparum.

2. Model Formulation

We present in this paper a deterministic model that de-
scribes the within-human-host competition and trans-
mission dynamics of two strains of P. falciparum parasites
during malaria infection. +e compartmental model con-
siders the coinfection and competition between the drug-
sensitive (dss) and the drug-resistant (drs) P. falciparum
strains in the presence of antimalarial therapy. +e drs arise
presumably from the dss. +e rare mechanism here could
possibly be due to single point mutation [47]. Both drs and
dss initiate immune responses that follow density-dependent
kinetics.

Our model is composed of eight compartments: sus-
ceptible/healthy/unparasitized erythrocytes (red blood cells)
X(t), parasitized/infected erythrocytes (Yr(t) and Ys(t)),
merozoites (Ms(t) and Mr(t)), gametocytes (Gs(t) and
Gr(t)), and immune cells W(t). +e healthy erythrocytes
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(RBCs) make up the resource for competition between the
drug-resistant and drug-sensitive parasite strains. +e in-
fected red blood cells (IRBCs) and different erythrocytic
parasite life cycles are categorized based on the strain of the
infecting parasite. +e merozoites are therefore categorized
into drug-sensitive and drug-resistant strains, denoted by
Ms(t) and Mr(t), respectively. +e merozoites invade the
healthy erythrocytes during the erythrocytic stage, leading to
formation of infected erythrocytes. +e variable Ys(t) de-
notes the red blood cells (RBCs) infected with drug-sensitive
merozoites, whereas Yr(t) refers to the RBCs infected with
drug-resistant merozoites. Similarly, the variables Gs(t) and
Gr(t) represent drug-sensitive and drug-resistant gameto-
cytes, respectively. Owing to saturation in cell and parasite
growth, we consider the nonlinear Michaelis–Mented–
Monod function described in [48, 49] and used in [50–53] to
model the reductive effects of the immune cells on the
parasite and infected-cell populations.

+e density of the healthy RBCs is increased at the rate λx

per healthy RBC per unit time from the host’s bone marrow,
and healthy RBCs die naturally at a rate μx. Following parasite
invasion by free floating merozoites, the healthy erythrocytes
get infected by both drug-sensitive and drug-resistant mero-
zoite strains at the rates β and δrβ, respectively. +e parameter
δr (with 0< δr < 1) accounts for the reduced fitness (in-
fectiousness) of the resistant parasite strains in relation to the
drug-sensitive strains.+e destruction of the healthy red blood
cells is however limited by the adaptive immune cellsW.+is is
represented by the term 1/(1 + cW), where c is a measure of
the efficacy of the immune cells. +e equation that governs the
evolution of the healthy RBCs is hence given by

dX

dt
� λx − μxX−

βX

1 + cW
Ms + δrMr( 􏼁. (1)

+e parasitized erythrocytes are generated through mass
action contact (invasion) between the susceptible healthy
erythrocytes X and the blood floating merozoites (Mr and Ms).
+e merozoites subdivide mitotically, within the infected
erythrocytes, into thousands of other merozoites, leading to cell
burst and emergence of characteristic symptoms of malaria.
Additionally, a single infected erythrocyte undergoes hemolysis
at the rate μys to produceP secondarymerozoites, sustaining the
erythrocytic cycle.+e drug-sensitive IRBCs (Ys) burst open to
generate more drug-sensitive merozoites or drug-sensitive
gametocytes at the rate σs. Similar dynamics are observed with
the drug-resistant IRBCs, where the drug-resistant gametocytes
are generated at the rate σr from IRBCs. Treatment with ACTis
assumed to disfranchise the development of the merozoite
within the infected erythrocyte. +e drug-infested erythrocytes
are hence likely to die faster. +is is represented by the term
(1−ωs)

−1, where 0<ωs < 1 represents the antimalarial-specific
treatment efficacy. In this paper and for purposes of illustration
and simulations, ωs corresponds to the efficacy of artemether-
lumefantrine (AL), which is the recommended first-line anti-
malarial ACT drug for P. falciparum infection in Kenya. We
assume that no treatment is available for erythrocytes infected
with the resistant parasite strains.+e time rate of change forYs
and Yr takes the following form:

dYs

dt
�

βXMs

1 + cW
−

kyYsW

1 + aYs
−

1
1−ωs

μysYs − σsYs,

dYr

dt
�
δrβXMr

1 + cW
−

kyYrW

1 + aYr
− μyrYr − σrYr.

(2)

+e drug-resistant merozoites Mr and the drug-resistant
gametocytes Gr die naturally at the rates μmr and μgr, re-
spectively. It is further assumed that drug-sensitive mero-
zoites Ms and gametocytes Gs may develop into drug-
resistant merozoites Mr and gametocytes Gr at the rates Ψ1
and Ψ2, respectively. +e cost of resistance associated with
AL is represented by the parameter αs. Parasite resistance to
antimalarial drugs exacerbates the erythrocytic cycle and
increases the cost of treatment [54, 55]. +e higher the
resistance to antimalarial therapy, the higher the density of
malarial parasites in blood. We therefore model this decline
in drug effectiveness by rescaling the density of merozoites
produced per bursting parasitized erythrocyte P by the factor
(1− αs), where αs � 1 implies no resistance; that is, the ACT
is highly effective in eradicating the parasites. If αs � 0
corresponds to maximum resistance, the used ACT drug is
least effective in treating the infection. +e converse of these
descriptions applies to the drug-resistant P. falciparum
parasite strains.+e equations that govern the rate of change
of the infected red blood cells and the merozoites take the
following form:
dMs

dt
� 1− αs( 􏼁PμysYs −

βMsX

1 + cW
−

kmMsW

1 + aMs
− Ψ1 + μms + ζ( 􏼁Ms,

dMr

dt
� 1− αr( 􏼁PμyrYr + Ψ1Ms −

δrβMrX

1 + cW
−

kmMrW

1 + aMr
− μmrMr,

dGs

dt
� σsYs −

kgWGs

1 + aGs
− Ψ2 + μgs + η􏼐 􏼑Gs,

dGr

dt
� σrYr + Ψ2Gs −

kgWGr

1 + aGr
− μgrGr.

(3)

Antimalarial therapy increases the rate of elimination of
drug-sensitive merozoites and gametocytes. +is is repre-
sented by the nonnegative enhancement parameters ζ and η,
respectively.

Although the innate immunity is faster, it is often limited
by the on and off rates in its response to invading pathogens
[56, 57]. +e adaptive immunity, on the contrary, is very
slower at the beginning but lasts long enough to ensure no
parasite growth in subsequent infections [27]. We assume an
immune system that is independent of the invading parasite
strain. For purposes of simplicity, we only consider the
adaptive immune system, which is mainly composed of the
CD8 + T cells [58]. We adopt the assumption that the
background recruitment of immune cells is constant (at the
rate λw). Additionally, the production of the immune cells is
assumed to be boosted by the infective and infected cells
(Gr, Gs), (Mr, Ms), and (Yr, Ys) at constant rates hg, hm, and
hy, respectively. Circulating gametocytes, infective
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merozoites, and infected erythrocytes are removed phag-
ocytotically by the immune cells at the rates kgW, kmW, and
kyW, respectively. +e immune cells also get depleted
through natural death at the rate μw. +e equation for the
immune cells takes the following form:

dW

dt
� λw +

hg Gs + Gr( 􏼁

Gs + Gr + eg
+

hy Ys + Yr( 􏼁

Ys + Yr + ey
+

hm Ms + Mr( 􏼁

Ms + Mr + em
􏼨 􏼩W

− μwW.

(4)

Following invasion by the merozoites, the IRBCs either
produce merozoites or differentiate into gametocytes upon
bursting. +e total erythrocyte population at any time t,
denoted by C(t), is therefore given by

C(t) � X(t) + Ys(t) + Yr(t). (5)

Similarly, the sum total of P. falciparum parasites,
denoted by P(t), within the host at any time t is described by
the following equation:

P(t) � Ms(t) + Mr(t) + Gs(t) + Gr(t). (6)

+e above dynamics can be represented by the schematic
diagram in Figure 1. +e list of model variables and model
parameters is provided in Tables 1 and 2, respectively.

2.1. Model Equations. Based on the above model de-
scriptions and schematic diagram shown in Figure 1, the
model in this paper consists of the following nonlinear
system of ordinary differential equations:

dX

dt
� λx − μxX−

βX

1 + cW
Ms + δrMr( 􏼁, (7)

dYs

dt
�

βXMs

1 + cW
−

kyYsW

1 + aYs
−

1
1−ωs

μysYs − σsYs, (8)

dYr

dt
�
δrβXMr

1 + cW
−

kyYrW

1 + aYr
− μyrYr − σrYr, (9)

dMs

dt
� 1− αs( 􏼁PμysYs −

βMsX

1 + cW
−

kmMsW

1 + aMs

− Ψ1 + μms + ζ( 􏼁Ms,

(10)

dMr

dt
� 1− αr( 􏼁PμyrYr + Ψ1Ms −

δrβMrX

1 + cW

−
kmMrW

1 + aMr
− μmrMr,

(11)

dGs

dt
� σsYs −

kgWGs

1 + aGs
− Ψ2 + μgs + η􏼐 􏼑Gs, (12)

dGr

dt
� σrYr + Ψ2Gs −

kgWGr

1 + aGr
− μgrGr, (13)

dW

dt
� λw +

hg Gs + Gr( 􏼁

Gs + Gr + eg
+

hy Ys + Yr( 􏼁

Ys + Yr + ey
+

hm Ms + Mr( 􏼁

Ms + Mr + em
􏼨 􏼩W

− μwW,

(14)

subject to the following initial conditions:

X(0)> 0,

Yi(0)≥ 0,

Mi(0)≥ 0,

Gi(0)≥ 0,

W(0)> 0, for i � s, r.

(15)

3. Model Analysis

3.1. Positivity and Uniqueness of Solutions. +e consonance
between a formulated epidemiological model and its bi-
ological reality is key to its usefulness. Given that all the
model parameters and variables are nonnegative, it is only
sound that the model solutions be nonnegative at any future
time t≥ 0 within a given biological space.

Theorem 1. 8e regionR8
+ with solutions of system (7)–(14) is

positively invariant under the flow induced by system (7)–(14).

Proof. We need to show that every trajectory from the re-
gion R8

+ will always remain within it. By contradiction,
assume ∃t∗ (where t∗ refers to time) in the interval [0,∞),
such that X(t∗) � 0, X′(t∗)< 0 but for 0< t< t∗, X(t)> 0,
and Yi(t)> 0, Mi(t)> 0, Gi(t)> 0, and Wi(t)> 0 for
i � r, s{ }. Notice that, at t � t∗, X(t) is declining from the
original zero value. If such an X exists, then it should satisfy
the differential equation (7). +at is,

dX

dt
� λx − μxX t

∗
( 􏼁−

βX t∗( )

1 + cW t∗( )
Ms t
∗

( 􏼁 + δrMr t
∗

( 􏼁( 􏼁

� λx > 0.

(16)

We arrive at a contradiction, i.e., X′(t∗)> 0. +is shows
the nonexistence of such t∗. +is argument can be extended
to all the remaining seven variables (Ys, Yr, Ms, Mr,

Gs, Gr, W). +e process of verification is however simpler.
We can follow the steps as presented in [59, 60]. Let the total
erythrocyte population C(t) evolve according to the fol-
lowing formulation:

dC

dt
≤ λx − μcC, (17)

where μc � min μx, μys, μyr􏽮 􏽯. Similarly, the total density of
malarial parasites P(t) is described by
dP

dt
≤P 1− αs( 􏼁μysYs + 1− αr( 􏼁μyrYr􏽮 􏽯 + σsYs + σrYr − μpP,

(18)
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where μp � min μms, μmr, μgs, μgr􏽮 􏽯.
+e solutions of equations (14), (17), and (18) are, re-

spectively, given as

W(t)≤
λw
μw

+ W(0)−
λw
μw

􏼠 􏼡e
−μwt

,

C(t)≤
λx

μc
+ C(0)−

λx

μc
􏼠 􏼡e

−μct,

P(t)≤
σs 􏽒

t

0 Ys(t)ΔIFdt + σr 􏽒
t

0 Yr(t)ΔIFdt

ΔIF

+ P(0)−
σs + σr( 􏼁μp

1− αs( 􏼁μys + 1− αr( 􏼁μyr
􏼠 􏼡

1
ΔIF

,

(19)

where

ΔIF � exp
⎧⎨

⎩− 1− αs( 􏼁μys 􏽚
t

0
Ys(t)dt + 1− αr( 􏼁μyr 􏽚

t

0
Yr(t)dt􏼠 􏼡

− 􏽚
t

0
μpdt

⎫⎬

⎭.

(20)
Here,C(0) � X(0) + Ys(0) + Yr(0) and P(0) � Ms(0) +

Mr(0) + Gs(0) + Gr(0) represent the initial total pop-
ulations of erythrocytes and malarial parasites, respectively.
We observe that all the solutions of equations (14), (17), and
(18) remain nonnegative for all future time, t≥ 0. Moreover,
the total populations are bounded: 0≤C(t)≤max C(0),{

(λx/μc)}, 0≤W(t)≤max W(0), λw/μw􏼈 􏼉 and P(t)≤max
(P(0), ((σs + σr)μp)/((1− αs)μys + (1− αr)μyr)). +us, all the
state variables of model system (7)–(14) and all their cor-
responding solutions are nonnegative and bounded in the
phase space φ, where

φ � ⎡⎣ X, Ys, Yr, Ms, Mr, Gs, Gr, W( 􏼁 ∈ R8
+ :

C(t)≤max C(0),
λx

μc
􏼨 􏼩,

W(t)≤max W(0),
λw
μw

􏼨 􏼩,

P(t)≤max P(0),
σs + σr( 􏼁μp

1− αs( 􏼁μys + 1− αr( 􏼁μyr
􏼠 􏼡⎤⎦.

(21)

X

W

μmsMs μmrMr

μyrYr

μgrGr

μxX

μwW

kmMsW/(1 + aMs)

(1 – αs)PμysYs (1 – αr)PμyrYr
Ms

Ys

Gs

Mr

Yr

Gr

kyYsW/(1 + aYs)

kgGsW/(1 + aGs)

kgGrW/(1 + aGr)

(1/(1 – ωs))μysYs

kmMrW/(1 + aMr)

kyYrW/(1 + aYr)

βsXMs βrXMr

λx

λw

σsYs σrYr

(η + μgs)Gs

Figure 1: A model flow diagram. Drug-sensitive variables are shown in green colours while the drug-resistant variables are indicated in
orange colours. Non-strain-specific variables like susceptible RBCs and immune cells are shown in blue colour. Solid lines indicate the
movement of populations from one compartment to another. Dotted lines show possible interactions between the different populations.

Table 1: Description of the state variables of model system
(11)–(18).

Variable Description

X Population of uninfected/unparasitized red blood
cells (erythrocytes)

Ys
Population of red blood cells infected by drug-

sensitive merozoites

Yr
Population of red blood cells infected by drug-

resistant merozoites
Ms Population of drug-sensitive merozoites
Mr Population of drug-resistant merozoites
Gs Population of drug-sensitive gametocytes
Gr Population of drug-resistant gametocytes
W Population of strain-independent immune cells
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It is obvious that φ is twice continuously differentiable
function. +at is, φi ∈ C

2. +is is because its components
φi, i � 1, 2, . . . , 8, are rational functions of state variables
that are also continuously differentiable functions. We
conclude that the domain φ is positively invariant. It is
therefore feasible and biological meaningful to study model
system (7)–(14).

Theorem 2. 8e model system (7)–(14) has a unique
solution.

Proof. Let x � (X, Ys, Yr, Ms, Mr, Gs, Gr, W)T ∈ R8
+ so that

x1 � X and x2 � Ys as presented in system (7)–(14). Simi-
larly, let g(x) � (gi(x), i � 1, . . . , 8)T be a vector defined in
R8

+. +e model system (7)–(14) can hence be written as
dx

dt
� g(x), x(0) � x0, (22)

where x: [0,∞)⟶ R8
+ denotes a column vector of state

variables and g : R8
+⟶ R8

+ represents the right-hand side
(RHS) of system (7)–(14). +e result is as follows.

Lemma 1. 8e function g is continuously differentiable in x.

Proof. All the terms in g are either linear polynomials or
rational functions of nonvanishing polynomials. Since the
state variables (X, Ys, Yr, Ms, Mr, Gs, Gr, W) are all contin-
uously differentiable functions of t, all the elements of
vector g are continuously differentiable. Moreover, let L(x,

n, θ) � x + θ(n− x) : 0≤ θ≤ 1{ }. By the mean value theorem,

‖g(n)− g(x)‖∞ � g′(m;n− x)
����

����∞, (23)

where m ∈ L(x,n, θ) denotes the mean value point and g′
the directional derivative of the function g at m. However,

g′(m,n− x)
����

����∞ � 􏽘
8

i�1
▽gi(m) · (n− x)( 􏼁ei

���������

���������∞

≤ 􏽘
8

i�1
▽gi(m)(

���������

���������∞

‖n− x‖∞,

(24)

where ei is the ith coordinate unit in R8
+. We can clearly see

that all the partial derivatives of g are bounded and that there
exists a nonnegative U such that

􏽘

8

i�1
▽gi(m)(

���������

���������∞
≤U, for all m ∈ L. (25)

+erefore, there exists U> 0 such that

‖g(n)− g(x)‖∞ ≤U‖n− x‖∞. (26)

+is shows that the function g is Lipschitz continuous.
Since g is Lipschitz continuous, model system (7)–(14) has
a unique solution by the uniqueness theorem of Picard
[61].

3.2. Stability Analysis of the Parasite-Free Equilibrium Point
(PFE). +e in-host malaria dynamics are investigated by
studying the behaviour of the model at different model
equilibrium points. Knowledge on model equilibrium points
is useful in deriving parameters that drive the infection to
different stability points. +e model system (7)–(14) has
a parasite-free equilibrium point E0 given by

E0 � X∗, Ys∗, Yr∗, Ms∗, Mr∗, Gs∗, Gr∗, W∗( 􏼁

�
λx

μx

, 0, 0, 0, 0, 0, 0,
λw
μw

􏼠 􏼡.

(27)

Using the next-generation operator method by van den
Driessche andWatmough [62] andmatrix notations therein,
we obtain a nonsingular matrix Q showing the terms of
transitions from one compartment to the other and a non-
negative matrix F of new infection terms as follows:

Table 2: Description of model parameters.

Parameter Description
λx +e rate of recruitment of red blood cells
ωs Antimalarial treatment efficacy
αs, αr Parasite strain-specific fitness cost
λw Background recruitment rate of immune cells
eg, em, ey Hill parameters in Gi, Mi, and Yi dynamics (i � s, r)

μx

Per capita natural mortality rate of unparasitized
erythrocytes

μys Natural mortality rate of drug-sensitive IRBCs
μyr Natural death rate of drug-resistant IRBCs

ζ, η Rate of antimalarial eradication of merozoites and
gametocytes, respectively

μms Death rate of drug-sensitive merozoites
μmr Mortality rate of drug-resistant merozoites

μgs
Per capita mortality rate of drug-sensitive

gametocytes
μgr Mortality rate of drug-resistant gametocytes
μw Natural mortality rate of immune cells (CD8+Tcells)

β +e rate of infection of susceptible RBCs by blood
floating merozoites

σr, σs
Rate of formation of gametocytes from the infected

RBCs

P Number of merozoites produced per dying infected
RBC

hy Immune cell proliferation rate due to IRBCs

hm
Immune cell proliferation rate due to asexual

merozoites
hg Immune cell proliferation rate due to gametocytes
ky Phagocytosis rate of IRBCs by immune cell
km Phagocytosis rate of merozoites by immune cell
kg Phagocytosis rate of gametocytes by immune cell

Ψ1
Rate of development of resistance by drug-sensitive

merozoites

Ψ2
Rate of development of resistance by drug-sensitive

gametocytes

δr
Accounts for the reduced fitness of the resistant

parasite strains

c
Efficiency of immune effector to inhibit merozoite

infection
1/a Half-saturation constant for Y(t), M(t), and G(t)
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F �

0 0
βλxμw

cλw + μw( 􏼁μx

0 0 0

0 0 0
δrβλxμw

cλw + μw( 􏼁μx

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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, (28)

Q �

v1 0 0 0 0 0
0 v2 0 0 0 0

−P 1− αs( 􏼁μys 0 v3 0 0 0

0 −P 1− αr( 􏼁μyr −Ψ1 v4 0 0
−σs 0 0 0 v5 0
0 −σr 0 0 −Ψ2 v6
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,

(29)

where v1 � ((kyλw/μw) + σs + (μys/1−ωs)), v2 � ((kyλw/
μw) + σr + μyr), v4 � (μmr + (kmλw/μw) + (δrβλxμw/(cλw +

μw)μx)), v3 � (ζ + μms + Ψ1 + (kmλw/μw) + (βλxμw/(cλw +

μw)μx)), and v5 � (η + μgs + (kgλw/μw) + Ψ2), v6 � (μgr +

(kgλw/μw)).

+e effective reproduction number RE of model system
(7)–(14) associated with the parasite-free equilibrium is
the spectral radius of the next-generation matrix FQ−1,
where

Q
−1

�

1
v1

0 0 0 0 0

0
1
v2

0 0 0 0

P 1− αs( 􏼁μys
v1v3

0
1
v3

0 0 0

P 1− αs( 􏼁μysΨ1
v1v3v4

P 1− αr( 􏼁μyr
v2v4

0
1
v4

0 0

σs/v1v5 0 0 0
1
v5

0

σsΨ2/v1v5v6
σr

v2v6
0 0 Ψ2/v5v6

1
v6
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.

(30)

It follows that

RE � ρ FQ−1􏼐 􏼑 � max Rs, Rr􏼈 􏼉, (31)

where

Rs �
P 1− αs( 􏼁μysβλxμw

kyλw/μw􏼐 􏼑 + σs + μys/1−ωs􏼐 􏼑􏼐 􏼑 ζ + μms + kmλw/μw( 􏼁 + Ψ1 + βλxμx/ cλw + μw( 􏼁μx( 􏼁( 􏼁 cλw + μw( 􏼁μx

,

Rr �
P 1− αr( 􏼁μyrδrβλxμw

kyλw/μw􏼐 􏼑 + σr + μyr􏼐 􏼑 μmr + kmλw/μw( 􏼁 + δrβλxμw/ cλw + μw( 􏼁μx( 􏼁( 􏼁 cλw + μw( 􏼁μx

.

(32)

From equation (31), it is evident that, in a multiple-strain
P. falciparummalaria infection, the progression of the disease
depends on the reproduction number of different parasite
strains. If the threshold quantity Rs >Rr, the drug-sensitive
parasite strains will dominate the drug-resistant strains and
hence the driver of the infection. To manage the infection in
this case, the patient should be given antimalarials that can
eradicate the drug-sensitive parasites. Conversely, if Rr >Rs,
the infection is mainly driven by the drug-resistant parasite
strains. In this scenario, the used antimalarial drugs should be
highly efficacious and effective enough to kill both the drug-
resistant and drug-sensitive parasite strains in the blood of the
human host. +is result is quite instrumental in improving

antimalarial therapy for P. falciparum infections. +e best
antimalarials should be sufficient enough to eradicate both
parasite strains within the human host.

Based on +eorem 2 in [63], we have the following
lemma.

Lemma 2. 8e parasite-free equilibrium point E0 is locally
asymptotically stable if RE < 1 (Rs < 1 andRr < 1) and un-
stable otherwise.

+e Jacobian matrix associated with the in-host model
system (7)–(14) at E0 is given by
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JE0
�

−μx 0 0
−βλxμw

cλw + μw( 􏼁μx

−δrβλxμw
cλw + μw( 􏼁μx

0 0 0

0 −v1 0
βλxμw

cλw + μw( 􏼁μx

0 0 0 0

0 0 −v2 0
βλxμw

cλw + μw( 􏼁μx

0 0 0

0 P 1− αs( 􏼁μys 0 −v3 0 0 0 0

0 0 P 1− αr( 􏼁μyr Ψ1 −v4 0 0 0

0 σs 0 0 0 −v5 0 0

0 0 σr 0 0 Ψ2 −v6 0

0
hyλw
eyμw

hyλw
eyμw

hmλw
emμw

hmλw
emμw

hgλw
egμw

hgλw
egμw
−μw
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, (33)

where the terms v1, . . . , v6 are as defined in (30). It is clear from
matrix (33) that the first four eigenvalues are−μx (from column
1), −μw (from column 8), −(μgr + (kgλw/μw)) � −v6 (from
column 7), and −(η + μgs +(kgλw/μw)) � −v5 (from column
6). +ey are all negative. +e remaining four eigenvalues are
obtained from the roots of the following quartic equation:

P(λ) � λ4 + p1λ
3

+ p2λ
2

+ p3λ + p4, (34)

where

p1 � v1 + v2 + v3 + v4( 􏼁> 0, (35)

p2 � v3v4 + v2 v3 + v4( 􏼁 + v1 v2 + v3 + v4( 􏼁

−
Pβλxμw

cλw + μw( 􏼁μx

1− αs( 􏼁μys − 1− αr( 􏼁μyrδr􏼐 􏼑,
(36)

p3 �
1
K

v3 v2v4K−P 1− αr( 􏼁μyrδrβλxμw􏼐 􏼑􏽨 􏽩

−
1
K

⎡⎣P 1− αs( 􏼁μysβλxμw v2 + v4( 􏼁

+
v1

K
v3v4( 􏼁 + v2 v3 + v4( 􏼁􏼂 􏼃K−P 1− αr( 􏼁μyrδrβλxμw⎤⎦,

(37)

p4 �
v2v4K−P 1− αr( 􏼁μyrδrβλxμw􏼐 􏼑 v1v3K−P 1− αs( 􏼁μysβλxμw􏼐 􏼑

K
.

(38)

Due to complexity in the coefficients of the polynomial
(34), we shall rely on the Routh–Hurwitz stability criterion
[64], which provides sufficient condition for the existence of
the roots of the given polynomial on the left half of the plane.

Definition 1. +e solutions of the quartic equation (34)
are negative or have negative real parts provided that
the determinants of all Hurwitz matrices are positive [64].

Based on the Routh–Hurwitz criterion, the system of
inequalities that describe the stability region E0 is presented
as follows:

(i) p1 > 0
(ii) p3 > 0
(iii) p4 > 0
(iv) p1p2p3 >p2

3 + p2
1p4

From (35), it is clear that p1 > 0. Upon simplifying p2 in
(36), we obtain

p2 � v3v4 + v2v3 + v1v2 + v1v4 + v1v3 +
λxμwβB1

K
􏼠 􏼡

+ v2v4 +
λxμwδrβB2

K
􏼠 􏼡,

(39)

where B1 � −P(1− αs)μys andB2 � −P(1− αr)μyr.
+us,

p2 � v3v4 + v2v3 + v1v2 + v1v4 + v1v3 1−
B1βλxμw

v1v3K
􏼢 􏼣

+ v2v4 1−
B2δrβλxμw

v2v4K
􏼢 􏼣

� v1 + v3( 􏼁 v2 + v4( 􏼁 + v1v3 1−Rs􏼂 􏼃

+ v2v4 1−Rr􏼂 􏼃> 0, if and only if Rs, Rr < 1.

(40)
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Similarly, the expression for p4 can be rewritten as
follows:

p4 � v1v3 +
B1βλxμx

K
􏼢 􏼣 v2v4 +

B2δrβλxμw
K

􏼢 􏼣

� v1v3 1 +
B1βλxμw

v1v3K
􏼢 􏼣v2v4 1 +

B2δrβλxμw
v2v4K

􏼢 􏼣

� v1v3 1−Rs􏼂 􏼃v2v4 1−Rr􏼂 􏼃> 0, if and only if Rs, Rr < 1.

(41)

Lastly, upon simplifying equation (37), we obtain

p3 � v2v3v4 + v1v3v4 + v1v2 v3 + v4( 􏼁

+
βB1λxμw v2 + v4( 􏼁

K

+
δrβB2λxμw v1 + v3( 􏼁

K

� v1v2v3v4⎡
⎣ 1

v4
1 +

βB1λxμw
v1v3K

􏼠 􏼡 +
1
v2

1 +
βB1λxμw

v1v3K
􏼠 􏼡

+
1
v1

1 +
δrβB2λxμw

v2v4K
􏼠 􏼡 +

1
v3

1 +
δrβB2λxμw

v2v4K
􏼠 􏼡⎤⎦

� v1v2v3v4
v2 + v4

v2v4
1−Rs( 􏼁 +

v1 + v3

v1v3
1−Rr( 􏼁􏼢 􏼣

� v1v3 v2 + v4( 􏼁 1−Rs􏼂 􏼃 + v2v4 v1 + v3( 􏼁 1−Rr􏼂 􏼃> 0,

if and only if Rs, Rr < 1.

(42)

Since all the coefficients of the quartic equation (34) are
nonnegative, all its roots are therefore negative or have
negative real parts. Hence, the Jacobian matrix (33) has
negative eigenvalues or eigenvalues with negative real parts if
and only if the effective reproduction number RE is less than
unity. Equilibrium point E0 is therefore locally asymptoti-
cally stable when RE < 1 (when both Rs < 1 and Rr < 1). +is
implies that an effective antimalarial drug would cure the
costrain infected human host, provided that the drug re-
duces the effective reproduction number to less than 1.

Lemma 2 shows that P. falciparum malaria can
be eradicated/controlled within the human host if the

initial parasite and cell populations are within the
basin of attraction of the trivial equilibrium point E0.
To be certain to eradicate/control the infection irre-
spective of the initial parasite and cell populations, we
need to prove the global stability of the parasite-free
equilibrium point. +is is presented in the following
section.

3.3. Global Asymptotic Stability Analysis of the Parasite-Free
Equilibrium Point. Following the work by Kamgong and
Sallet [65], we begin by rewriting system (7)–(14) in
a pseudotriangular form:

_X1 � D1(X) X−X∗1( 􏼁 + D2(X)X2,

_X2 � D3(X)X2,

⎫⎪⎬

⎪⎭
, (43)

where X1 is a vector representing the densities of non-
infective population groups (unparasitized erythrocytes
and immune cells) and X2 represents the densities of
infected/infective groups (infective P. falciparum para-
sites and/or infected host cells) that are responsible for
disease transmissions. For purposes of clarity and sim-
plicity to the reader, we shall represent (X1, 0) with X1
and (0, X2) with X2 in R8

+ × R8
+. We assume the exis-

tence of a parasite-free equilibrium in φ: X∗ � (X∗1 , 0).
+us,

X � X1, X2( 􏼁,

X1 � (X, W),

X2 � Ys, Yr, Ms, Mr, Gs, Gr( 􏼁,

X
∗
1 �

λx

μx

,
λw
μw

􏼠 􏼡.

(44)

We analyze system (43) based on the assumption that
it is positively invariant and dissipative in φ. Moreover,
the subsystem X1 is globally asymptotically stable at X∗1 on
the projection of φ on R8

+. +is implies that whenever
there are no infective malarial parasites, all cell pop-
ulations will settle at the parasite-free equilibrium point
E0. Finally, D2 in (43) is a Metzler matrix that is irre-
ducible for any X ∈ φ. We assume adequate interactions
between and among different parasites and cell com-
partments in the model.

+e matrices D1(X) and D2(X) are easily computed
from subsystem _X1 in (43) so that we have
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D1(X) �
−μx 0

0 −μw
⎛⎝ ⎞⎠,

D2(X) �

0 0
−βλxμw

cλw + μw( 􏼁μx

−δrβλxμw
cλw + μw( 􏼁μx

0 0

hyλw
eyμw

hyλw
eyμw

hmλw
emμw

hmλw
emμw

hgλw
egμw

hgλw
egμw

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(45)

We can easily see that the eigenvalues of matrix D1 are
both real and negative (−μx < 0, −μw < 0).+is shows that the
subsystem _X1 � D1(X)(X−X∗1 ) + D2(X)X2 is globally

asymptotically stable at the trivial equilibrium X∗1 . Addi-
tionally, from subsystem _X2 � D3(X)X2, we obtain the
following matrix:

D3(X) �

−v1 0
βλxμw

cλw + μw( 􏼁μx

0 0 0

0 −v2 0
βλxμw

cλw + μw( 􏼁μx

0 0

P 1− αs( 􏼁μys 0 −v3 0 0 0

0 P 1− αr( 􏼁μyr Ψ1 −v4 0 0

σs 0 0 0 −v5 0

0 σr 0 0 Ψ2 −v6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

Notice that all the off-diagonal entries of D3(X) are
nonnegative (equal to or greater than zero), showing that
D3(X) is a Metzler matrix. To show the global stability of the
parasite-free equilibrium E0, we need to show that the square
matrix D3(X) in (46) is Metzler stable. We therefore need to
prove the following lemma.

Lemma 3. Let K be a square Metzler matrix that is block
decomposed:

K �

K11 K12

K21 K22

⎛⎜⎝ ⎞⎟⎠, (47)

where K11 and K22 are square matrices. 8e matrix K is
Metzler stable if and only if K11 and K22 −K21K

−1
11K12 are

Metzler stable.

Proof. +ematrixK in Lemma 3 refers to D3(X) in our case.
We therefore let

K11 �

−v1 0
βλxμw

cλw + μw( 􏼁μx

0 −v2 0

P 1− αs( 􏼁μys 0 −v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K12 �

0 0 0

βλxμw
cλw + μw( 􏼁μx

0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K21 �

0 P 1− αr( 􏼁μyr Ψ1
σs 0 0

0 σr 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

K22 �

−v4 0 0

0 −v5 0

0 Ψ2 −v6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(48)
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Results from analytical computations based on Maple
software give

K
−1
11 �

−
v3

v1v3 + Pβ αs − 1( 􏼁λxμwμys􏼐 􏼑/ cλw + μw( 􏼁μx( 􏼁
0 −

βλxμw
v1v3 cλw + μw( 􏼁μx + Pβ αs − 1( 􏼁λxμwμys

0 −
1
v2

0

P αs − 1( 􏼁 cλw + μw( 􏼁μxμys
v1v3 cλw + μw( 􏼁μx + Pβ αs − 1( 􏼁λxμwμys

0 −
v1

v1v3 + Pβ αs − 1( 􏼁λxμwμys􏼐 􏼑/ cλw + μw( 􏼁μx( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (49)

K22 −K21K
−1
11K12 �

−v4 0 0
0 −v5 0
0 Ψ2 −v6

⎛⎜⎝ ⎞⎟⎠, (50)

where v4 � (μmr + (kmλw/μw) +(δrβλxμw/(cλw + μw)μx)),
v5 � (η + μgs + (kgλw/μw) +Ψ2), and v6�(μgr + (kgλw/μw)).

From equation (50), it is evident that all the diagonal
elements of matrix K22 −K21K

−1
11K12 are negative and the

rest of the elements in the matrix are nonnegative. +is
shows that matrix K22 −K21K

−1
11K12 is Metzler stable, and

the parasite-free equilibrium point E0 is globally asymp-
totically stable in the biologically feasible region φ of model
system (7)–(14). Epidemiologically, the above result implies
that when there is no malaria infection, different cell pop-
ulations under consideration will stabilize at the parasite-
free equilibrium. However, if there exists a P. falciparum
infection, then an appropriate control in forms of effective
antimalarial drugs would be necessary to clear the parasites
from the human blood and restore the system to the stable
parasite-free equilibrium state.

3.4. Coexistence of Parasite-Persistent Equilibrium Point.
+e existence of a nontrivial equilibrium point represents
a scenario in which the P. falciparum parasites are present
within the host and the following conditions hold:
X∗ > 0, Y∗s ≥ 0, Y∗r ≥ 0, M∗s ≥ 0, M∗r ≥ 0, G∗s ≥ 0, G∗r ≥ 0, and
W∗ > 0. Upon equating the right-hand side of system (7)–
(14) to zero and solving for the state variables, we obtain
the parasite-persistent equilibrium point E1 � (X∗, Y∗s , Y∗r ,

M∗s , M∗r , G∗s , G∗r , W∗), where

X
∗

�
1 + cW∗( 􏼁λx

β M∗s + δrM∗r( 􏼁 + 1 + cW∗( 􏼁μx

,

Y
∗
s �

b +

�������

b
2 − 4ac

􏽱

−2a
,

Y
∗
r �

b +

��������

b2 − 4 a c

􏽱

−2 a
,

(51)

a � −a 1−ωs( 􏼁σs + μys􏼐 􏼑 βM
∗
s + βM

∗
r δr + cW

∗
+ 1( 􏼁μx( 􏼁< 0,

(52)

b � −βM
∗
s −a 1−ωs( 􏼁λx −ωsσs + σs + μys􏼐 􏼑

−W
∗ 1−ωs( 􏼁ky(βM

∗
s + βM

∗
r δr

+ cW
∗μx + μx),

(53)

c � βM
∗
s 1−ωs( 􏼁λx > 0, (54)

a � −a σ2 + μyr􏼐 􏼑 βM
∗
s + βM

∗
r δr + cW

∗
+ 1( 􏼁μx( 􏼁< 0,

(55)

b � βM
∗
r δr aλx − σ2 − μyr􏼐 􏼑−W

∗
ky(βM

∗
s

+ βM
∗
r δr + cW

∗μx + μx)− σ2 + μyr􏼐 􏼑

· βM
∗
s + cW

∗μx + μx( 􏼁,

(56)

c � βM
∗
r δrλx > 0, (57)

G
∗
s �

b1 +

��������

b21 − 4a1c1

􏽱

−2a1
,

G
∗
r �

b2 +

��������

b22 − 4a2c2

􏽱

−2a2
,

(58)

a1 � −a η + μg1 + Ψ2􏼐 􏼑< 0,

b1 � aσ1Y
∗
s −W

∗
kg − η− μg1 −Ψ2,

c1 � σ1Y
∗
s > 0,

(59)

a2 � −aμg2 < 0,

b2 � aG1Ψ2 + aσ2Y
∗
r −W

∗
kg − μg2,

c2 � G1Ψ2 + σ2Y
∗
r > 0,

(60)

M
∗
s �

b3 +
��������

b23 − 4a3c3

􏽱

−2a3
,

M
∗
r �

b4 +
��������

b24 − 4a4c4

􏽱

−2a4
,

(61)
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a3 � −( aβM
∗
r δr ζ + μms + Ψ1( 􏼁 + acW

∗μmsμx + aμmsμx

+ aβP 1− αs( 􏼁μysY
∗
s + Ψ1 a cW

∗
+ 1( 􏼁μx + β( 􏼁

+ acζW
∗μx + aβλx + aζμx + βζ + βW

∗
km + βμms),

(62)

b3 � −βM
∗
r δr a αs − 1( 􏼁PY

∗
s μys + ζ + W

∗
km + μms + Ψ1􏼐 􏼑

− αs − 1( 􏼁βPY
∗
s μys − βλx − cW

∗
+ 1( 􏼁μx(a αs − 1( 􏼁PY

∗
s μys

+ ζ + W
∗
km + μms + Ψ1),

(63)

c3 � P 1− αs( 􏼁Y
∗
s μys βM

∗
r δr + cW

∗
+ 1( 􏼁μx( 􏼁> 0, (64)

a4 �−(aβM
∗
s Ψ1δr + μmr( 􏼁 + μmr a cW

∗
+ 1( 􏼁μx + βδr( 􏼁

+ a 1− αr( 􏼁βPY2δrμy2 + βW
∗
kmδr),

(65)

b4 � aβM
∗2
s Ψ1 + M

∗
s (−β aδrλx + μmr( 􏼁 + a 1− αr( 􏼁βPY2μy2

+ Ψ1 a cW
∗

+ 1( 􏼁μx + βδr( 􏼁) + 1− αr( 􏼁PY2μy2
· a cW

∗
+ 1( 􏼁μx + βδr( 􏼁−W

∗
km βM

∗
s + cW

∗
+ 1( 􏼁μx( 􏼁

− μmr cW
∗

+ 1( 􏼁μx,

(66)

c4 � βM
∗2
s Ψ1 + M

∗
s ( 1− αr( 􏼁βPY2μy2 + βδrλx

+ Ψ1 cW
∗

+ 1( 􏼁μx) + 1− αr( 􏼁PY2 cW
∗

+ 1( 􏼁μxμy2 > 0,

(67)

W
∗

�
Δ

μwΔ− hg G∗s + G∗r( 􏼁 + hm M∗s + M∗r( 􏼁 + hy Y∗s + Y∗r( 􏼁􏼐 􏼑
,

(68)

where Δ � (eg + G∗s + G∗r )(em + M∗s + M∗r )(ey + Y∗s + Y∗r ).
Using Descartes’ “Rule of Signs” [66], it is evident that

irrespective of the sign of b in (53), b in (56), b1 in (59), b2 in
(60), b3 in (63), and b4 in (66), the state variables
Y∗s , Y∗r , M∗s , M∗r , G∗s , andG∗r can only have one real positive
solution. +is shows that the model system (7)–(14) has
a unique parasite-persistent equilibrium point E1.

3.5. Stability of the Coexistence of Parasite-Persistent Equi-
librium Point. Here, we shall prove that the coexistence of
parasite-persistent equilibrium E1 is locally asymptotically
stable when RE > 1 (orwhen Rs > 1 andRr > 1). We shall
follow the methodology by Esteva and Vargus presented in
[67], which is based on the Krasnoselskii technique [68].+is
methodology requires that we prove that the linearization of
system (7)–(14) about the coexistence of parasite-persistent
equilibrium does not have a solution of the form

S(t) � S0e
ξt

, (69)

where S0 � (S1, S2, . . . , S7), (Si, ξ) ∈ C, and the real part of ξ
is nonnegative (Re(ξ)≥ 0). Note that C is a set of complex
numbers.

Next, we substitute a solution of the form (69) into the
linearized system (7)–(14) about the coexistence of parasite-
persistent equilibrium. We obtain

ξS1 � −
βMs

1 + cW
+

kyW

1 + cW
+

μys
1−ωs

+ σs􏼠 􏼡 S1

−
βMs

1 + cW
S2 +

β C∗ −Ys −Yr( 􏼁

1 + cW
S3,

ξS2 � −
δrβMr

1 + cW
S1 −

δrβMr

1 + cW
+

kyW

1 + aYr
+ μyr + σr􏼠 􏼡S2

+
δrβ C∗ −Ys −Yr( 􏼁

1 + cW
S4,

ξS3 � −
βMs

1 + cW
+ P 1− αs( 􏼁μys􏼠 􏼡S1 +

βMs

1 + cW
S2

−
kmW

1 + aMs
+
β C∗ −Ys −Yr( 􏼁

1 + cW
+ k1􏼠 􏼡S3,

ξS4 � Ψ1S3 +
δrβMr

1 + cW
+ P 1− αr( 􏼁μyr􏼠 􏼡S2

−
δrβ C∗ −Ys −Yr( 􏼁

1 + cW
+

kmW

1 + aMr
+ μmr􏼠 􏼡S4 +

δrβMr

1 + cW
S1,

ξS5 � σsS1 −
kgW

1 + aGs
+ k2􏼠 􏼡S5,

ξS6 � σrS2 + Ψ2S4 −
kgW

1 + aGr
+ μgr􏼠 􏼡S5,

ξS7 � λ +
hg Gs + Gr( 􏼁

Gs + Gr + eg
+

hy Ys + Yr( 􏼁

Ys + Yr + ey
+

hm Ms + Mr( 􏼁

Ms + Mr + em
􏼠 􏼡S7

− μwS7,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(70)

12 Computational and Mathematical Methods in Medicine



where (C∗ −Ys −Yr) � X, k1 � (Ψ1 + μms + ζ), and
k2 � (Ψ2 + μgs + η).

Upon simplifying the equations in (70), we obtain

1 +
(1 + cW) 1 + aYs( 􏼁 1−ωs( 􏼁

Δ1
ξ􏼢 􏼣S1 �

(1 + cW) 1 + aYs( 􏼁 1−ωs( 􏼁

Δ1
−

βMs

1 + cW
S2 +

β C∗ −Ys −Yr( 􏼁

1 + cW
S3􏼠 􏼡,

1 +
ξ(1 + cW) 1 + aYr( 􏼁

Δ2
􏼢 􏼣S2 �

(1 + cW) 1 + aYr( 􏼁

Δ2
−
δrβMr

1 + cW
S1 +

δrβ C∗ −Ys −Yr( 􏼁

1 + cW
S4􏼠 􏼡,

1 +
(1 + cW) 1 + aMs( 􏼁

Δ3
ξ􏼢 􏼣S3 �

(1 + cW) 1 + aMs( 􏼁

Δ3
βMs

1 + cW
+ P 1− αs( 􏼁μysS1 +

βMs

1 + cW
S2􏼠 􏼡,

1 +
ξ(1 + cW) 1 + aMr( 􏼁

Δ4
􏼢 􏼣S4 �

(1 + cW) 1 + aMr( 􏼁

Δ4
Ψ1S3 +

δrβMr

1 + cW
+ P 1− αr( 􏼁μyr􏼠 􏼡S2 +

δrβMr

1 + cW
S4􏼠 􏼡,

1 +
1 + aGs( 􏼁

kgW + k2
ξ􏼢 􏼣S5 �

σs 1 + aGs( 􏼁

kgW + k2
S1,

1 +
1 + aGr( 􏼁

kgW + μgr
ξ⎡⎣ ⎤⎦S6 �

1 + aGr( 􏼁

kgW + μgr
σrS2 + Ψ2S4􏼈 􏼉,

1 +
1
μw

ξ􏼢 􏼣S7 �
λw
μw

+
W

μw

hg S5 + S6( 􏼁

Gs + Gr + eg
+

hy S1 + S2( 􏼁

Ys + Yr + ey
+

hm S3 + S4( 􏼁

Ms + Mr + em
􏼠 􏼡,

(71)

where
Δ1 � βMs 1 + aYs( 􏼁 1−ωs( 􏼁 + kyW 1−ωs( 􏼁(1 + cW)

+ μys 1 + aYs( 􏼁(1 + cW) + σs 1 + aYs( 􏼁

1−ωs( 􏼁(1 + cW),

Δ2 � δrβMr 1 + aYr( 􏼁 + kyW(1 + cW)

+ μyr + σr􏼐 􏼑 1 + aYr( 􏼁(1 + cW),

Δ3 � 1 + aMs( 􏼁 β C
∗ −Ys −Yr( 􏼁( 􏼁 + kmW(1 + cW)

+ k1 1 + aMs( 􏼁(1 + cW),

Δ4 � 1 + aMr( 􏼁 δrβ C
∗ −Ys −Yr( 􏼁( 􏼁

+ kmW(1 + cW) + μmr 1 + aMr( 􏼁(1 + cW).

(72)

Separating the negative terms, we obtain the following
system:

1 + Fj(ξ)􏽨 􏽩Sj � (HS)j, for j � 1, 2, . . . , 7, (73)

where

F1(ξ) �
(1 + cW) 1 + aYs( 􏼁 1−ωs( 􏼁

Δ1
ξ,

F2(ξ) �
ξ(1 + cW) 1 + aYr( 􏼁

Δ2
,

F3(ξ) �
(1 + cW) 1 + aMs( 􏼁

Δ3
ξ,

F4(ξ) �
ξ(1 + cW) 1 + aMr( 􏼁

Δ4
,

F5(ξ) �
1 + aGs( 􏼁

kgW + k2
ξ,

F6(ξ) �
1 + aGr( 􏼁

kgW + μgr
ξ,

F7(ξ) �
1
μw

ξ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(74)
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with

H �

0 0
βC∗

1 + cw
0 0 0 0

0 0 0
δrβC∗

1 + cW
0 0 0

P 1− αs( 􏼁μys 0
βC∗

1 + cW
+ k1 0 0 0 0

0 P 1− αr( 􏼁μyr Ψ1 0 0 0 0

σs 0 0 0 0 0 0

0 σr 0 0 0 0 0

0 0 λw 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (75)

Note that X∗ � C∗ −Y∗s −Y∗r and all the elements in the
square matrixH are nonnegative. +e coordinates of E1 are all
positive, and the jth coordinate of the vector H(S) is described
by the notation H(S)j for j � 1, . . . , 7. Additionally, the
equilibrium E1 � (Y∗s , Y∗r , M∗s , M∗r , G∗s , G∗r , W∗) satisfies
E1 � HE1. If we assume, for example, that system (73) has

a solution of the form S, then there exists a small positive real
number ϵ, such that |S|≤ ϵE1, where |S| � (|S1|, |S2|, . . . , |S7|).
Note also that |.| is a norm in the field of complex numbers.

Next, we show that Re(ξ)< 0. To do so, we apply proof
by contradiction. We let ξ � 0 and ξ ≠ 0. For the case when
ξ � 0, the determinant (∇) of (70) is given by

∇ �
v5v6μw v2v4 cλx + μw( 􏼁μx + Pβ 1− αr( 􏼁λxμwμyr􏽮 􏽯 v1v3 cλx + μw( 􏼁μx + Pβ 1− αs( 􏼁λxμwμys􏽮 􏽯

cλx + μw( 􏼁
2μ2x

, (76)

where the positive terms v1, . . . , v6 are as defined in matrix
(29).

It is clear that the above determinant is nonnegative
(∇> 0). Consequently, the system (70) can only have the trivial
solution S � (0, 0, 0, 0, 0, 0, λw/μw). On the contrary, for ξ ≠ 0,
we assume Re(ξ)≥ 0 and define F(ξ) � min|1 + Fj(ξ)|,

j � 1, 2, . . . , 7. +is implies that F(ξ)> 1 and ϵ/F(ξ)< ϵ. +e
minimality of ϵ means that |S|> ϵ/F(ξ)E1. While considering
the nonnegativity property ofH, if we assume the norms on the
two sides of (73), we shall have

F(ξ)|S|≤H|S|≤ εHE1 � εE1. (77)

+is implies that |S|≤ ϵ/F(ξ)E1 ≤ ϵE1, which is a con-
tradiction. +erefore, Re(ξ)< 0 and E1 is locally asymp-
totically stable when RE > 1.

4. Numerical Simulations

4.1. Boundary Equilibrium Points. In this section, we show
by means of numerical simulation the existence and stability
of a positive parasite-persistent equilibrium point that in-
volves only one of the parasite strains under study.

4.1.1. Drug-Sensitive-Only Persistent Equilibrium Point Es.
+is is an equilibrium point where only the drug-sensitive
parasite strains are present in the infected human host. +at

is, the populations Yr � Mr � Gr � 0. +is steady state is
only feasible if no resistant parasites emerge from infected
red blood cells and the use of antimalarial treatment does not
lead to resistance development; that is, Ψ1 � Ψ2 � 0. +e
original model (7)–(14) is thus reduced to

dX

dt
� λx − μxX−

βXMs

1 + cW
,

dYs

dt
�

βXMs

1 + cW
−

kyYsW

1 + aYs
−

1
1−ωs

μysYs − σsYs,

dMs

dt
� 1− αs( 􏼁PμysYs −

βMsX

1 + cW
−

kmMsW

1 + aMs
− μms + ζ( 􏼁Ms,

dGs

dt
� σsYs −

kgWGs

1 + aGs
− μgs + η􏼐 􏼑Gs,

dW

dt
� λw +

hg Gs( 􏼁

Gs + eg
+

hy Ys( 􏼁

Ys + ey
+

hm Ms( 􏼁

Ms + em
􏼨 􏼩W− μwW.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(78)

Numerically, this equilibrium point is illustrated, as
shown in Figure 2.
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4.1.2. Drug-Resistant-Only Persistent Equilibrium Point Er.
In this case, the population of the drug-sensitive parasite
strains declines to zero as the density of the resistant strains
grows and stabilizes at an optimal population size. +is is
also illustrated numerically, as shown in Figure 3.

4.2. Within-Host Competition between Parasite Strains.
We investigate the competitive exclusion principle by sim-
ulating the model system (7)–(14) under different values of
the threshold quantities Rs and Rr in (31). Model (7)–(14) is
simulated so that Rs � 4.022 and Rr � 0.3131, and we achieve
a convergence to the drug-sensitive-only endemic equilib-
rium point Es, as shown in Figure 4(a). Again, using the
parameter values in Table 3 with Ψ1 � 0.9 and (Rs � 0.022,
Rr � 3.0098), the solutions of Ys and Yr converge to the drug-
resistant-only endemic equilibrium point Er (Figure 4(b)).

Provided that both Rs and Rr are greater than 1 (as shown
in Figure 4(c)), the parasite-infected red blood cells remain
persistent in the host. +is implies that the merozoites (both
drug-sensitive and drug-resistant) continue to multiply in the
absence of antimalarial therapy, ωs � 0, or in the presence of
ineffective antimalarial drugs. Similar results are observed in
the dynamics of merozoites (Ms and Mr), as shown in
Figure 5. It should be noted that the dominant merozoite
strains are likely to drive the infection under these conditions.
As the density of one strain increases, the population of the
other strain is likely to decrease due to a phenomenon known
as competitive exclusion principle.+emost fit parasite strain
survives as the weaker competitor dies out, as shown in

Figure 5(a). Both drug-sensitive and drug-resistant mero-
zoites would remain persistent if poor-quality antimalarial
drugs are administered to P. falciparum malaria patients.
+us, in the absence of efficacious antimalarial drugs like
ACTs with the potential to eradicate resistant merozoites, we
are likely to experience an exponential growth in the density
of drug-resistant merozoites, as displayed in Figure 5(b). +is
may lead to severe malaria and eventual death of the patient.

+e bifurcation analysis of both scenarios is presented in
Figure 6 (with and without competition between the parasite
strains). When there is competition between the parasite
strains, as shown in Figure 6(a), we observe that the strain
with a higher threshold quantity R0 would exclude the other
strain. A decrease in the population of the drug-sensitive
strain would pave way for a surge in the population of the
drug-resistant strains, and vice versa. +is is despite the fact
that some drug-resistant strains emerge from the drug-
sensitive strains as a result of mutation [77]. In Figure 6(b),
we observe coexistence of the strains that do not compete
with each other. Like the resistance strains, the sensitive
strains are only present when their threshold quantity, Rs, is
greater than unity. Both strains are however present when
Rr > 1 and Rs > 1. Additionally, when Rr < 1 and Rs < 1, we
arrive at the parasite-free equilibrium (PFE) point, as shown
in Figures 6(a) and 6(b).

4.3. Antimalarial Drug Effects and Parasite Clearance.
+e effects of antimalarial drug treatment are monitored by
establishing first and foremost that

zRs

zωs

� −
βμ1μ2P 1− αs( 􏼁μwλx

1−ωs( 􏼁
2μx cλw + μw( 􏼁 kyλw/μw􏼐 􏼑 + μ2/ 1−ω1( 􏼁( 􏼁 + σs􏼐 􏼑

2
ζ + kmλw/μw( 􏼁 + μms + βλxμ2x/ cλw + μw( 􏼁( 􏼁 + Ψ1( 􏼁

< 0.

(79)
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Figure 2: Simulations of model system (11)–(18) showing the existence of drug-sensitive-only equilibrium point. All parameter values are as
presented in Table 3.
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+us, Rs is a decreasing function of ωs (the efficacy of the
antimalarial drug used). +erefore, using a highly efficient
antimalarial drug could lead to a scenario where Rs < 1 and
Rr < 1 (disease-free state shown in Figure 7(c)). In
Figure 7(a), model system (7)–(14) is simulated by varying
the efficacy of the antimalarial drug ωs and other model
parameters chosen such that Rr � 3.221 and Rs � 2.221. +e
higher the efficacy of the used antimalarial, the lower the
density of infected erythrocytes. +us, governments and
ministry of health officers should only roll out or permit the

administration of antimalarials or ACTs that can eradicate
(totally) both the drug-resistant and the drug-sensitive
strains of P. falciparum parasites.

+e rate of development of resistance by the drug-
sensitive merozoites, Ψ1, is shown to have very minimal
impact on the dynamics of infected red blood cells Yr as long
as Rs > 1 and Rr > 1 (Figure 7(b)). Nevertheless, analytical
results indicate that the higher the rate of development of
resistance, the lower the severity of future malaria infections.
+is is presented as

zRs

zΨ1
� −

βμ1P 1− αs( 􏼁μwλx

μx cλw + μw( 􏼁 kyλw/μw􏼐 􏼑 + μ2/ 1−ω1( 􏼁( 􏼁 + σs􏼐 􏼑 ζ + kmλw/μw( 􏼁 + μms + βλxμ2x/ cλw + μw( 􏼁( 􏼁 + Ψ1( 􏼁
2 < 0. (80)

Other parameters that have direct negative impacts on
the progression of malaria infection are the efficacy of the

immune effectors, c, and the rate of therapeutic elimination
of drug-sensitive merozoites, ζ:

zRs

zζ
� −

βμ1P 1− αs( 􏼁μwλx

μx cλw + μw( 􏼁 kyλw/μw􏼐 􏼑 + μ2/ 1−ω1( 􏼁( 􏼁 + σs􏼐 􏼑 ζ + kmλw/μw( 􏼁 + μms + βλxμ2x/ cλw + μw( 􏼁( 􏼁 + Ψ1( 􏼁
2 < 0, (81)

zRr

zc
� −

βμ2P 1− αr( 􏼁δrλwμ3wλx kmλw + μmrμw( 􏼁

μx kyλw + μw μ2 + σr( 􏼁􏼐 􏼑 cλw + μw( 􏼁 kmλw + μmrμw( 􏼁 + βδrμwλxμ2x( 􏼁
2 < 0. (82)

Further simulations based on contour plots (see [78] for
theory on contour plots) are used to ascertain the relational
effects of selected pairs of model parameters on the disease
threshold quantities Rs and Rr. In Figure 8(a), both β and μw
increase the reproduction number due to drug-sensitive P.
falciparum parasite strains. A direct relationship exists between
the two parameters: the higher the decay rate of the immune
cells, the higher the rate of infection of healthy erythrocytes.

In Figure 8(b), we observe the least increase in Rs with
respect to an increase in ωs relative to μys. Antimalarial
therapy is shown to be very effective in reducing the severity
of P. falciparum infection. Conversely, the number of
merozoites produced per dying blood schizont, P, is shown
in Figure 8(c) to have a very high positive impact on Rs and
hence on the severity of malaria infection due to drug-
sensitive parasite strains. Clinical control should target and
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Figure 3: Simulations of model system (11)–(18) showing the existence of drug-resistant-only equilibrium point. All parameter values are as
presented in Table 3.
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eradicate infected red blood cells to diminish the erythro-
cytic cycles of infections.

We observe in Figure 9(b) that the rate at which mer-
ozoites develop resistance due to treatment failure has no
resultant effects on the rate of formation of gametocytes that
undergo sexual reproduction within the mosquito vector.
+e higher the value of Rr, the higher the cost of resistance,
as shown in Figure 9(a). +e higher the density of drug-
resistant parasite strains, the higher the level of resistance
and hence the cost of disease control. Unfortunately, highly
effective antimalarial drugs (such as ACTs) that can eradicate
both parasite strains are slightly expensive in several
P. falciparum malaria-endemic regions [79]. Like the pa-
rameter P, the parasite infection rate β is shown to have

a direct positive effect on the threshold quantityRr (Figure 9(c))
due to drug-resistant parasite strains. Effective antimalarials
should hence target new cell infections and eliminate re-
crudescence (by killing already infected erythrocytes).

5. Effects of Multiple-Strain Infection and
Fitness Cost on Parasite Clearance

Numerous studies [27, 80] have suggested the negative im-
pacts of drug resistance on the fitness and ability of the
parasite to dominate the P. falciparum infection. Resistance to
antimalarial drugs imposes fitness cost on the drug-resistant
parasite. +e drug-resistant parasite strains are thought to
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Figure 4: Simulations of model system (11)–(18).+e figures show the dynamics of drug-sensitive and drug-resistant infected red blood cells
under different conditions of the threshold values Rs and Rr. In Figure 4a, Rs >Rr. In Figure 4b, Rr >Rs, Ψ1 � 0 and all other parameter
values are as presented in Table 3.
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experience impaired growth within the human host [29]. +e
cost of resistance is further exacerbated due to the compe-
tition between parasite strains within an infected human host.
In Figure 10(a), the area under the curve for the drug-resistant
strain or the number of infected erythrocytes is lower than
that of the drug-sensitive strains. However, in a multiple-
strain infection (Figure 10(b)), the area difference is much
bigger. +is implies that competition between the parasite
strains within the human host could result in elimination of
one of the parasite strains provided that both Rs and Rr are
less than unity.

+e presence of multiple strains of P. falciparum para-
sites is likely to complicate and worsen the severity of
malaria disease infection in humans. Figures 11 and 12 show
the simulated model (7)–(14) for single- and multiple-strain
infections, in the absence of preexisting immunity and
antimalarial drugs. +e persistence of gametocytes in
Figures 11(b) and 12(b) is consistent with the actual ob-
servations of human malaria infection in the absence of
antimalarial therapy [81]. Acquired immunity is shown in
Figure 11(c) to increase and eventually level-off at higher
levels to contain future infections.
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Figure 5: Simulations of model system (11)–(18). +e figures show the dynamics of the merozoites under different conditions of the
threshold values Rs and Rr. Competitive exclusion among the parasite strains is shown in (a). In (b), both parasite strains coexists and
Rr >Rs, Ψ1 � 0. Other parameter values are available in Table 3.

Table 3: Baseline values and range for parameters of model (11)–(18).

Parameter Value Range Units Source
λx 3 × 103 (3 × 103 − 3 × 108) Cells/μl−1/day [69]
λw 30 (10–40) Cells/μl/day [70]
ωs 0.5 (0-1) Unitless Assumed
αs 0.4 (0.1–1) Unitless Assumed
αr 0.2 (0.01–1) Unitless Assumed
eg, em, ey 104 (103−105) Unitless [71]
μx 1/120 (0.05–0.1) day−1 [72]
μys 0.5 (0.3–0.8) day−1 [73]
μyr 0.3 (0.3–0.8) day−1 Assumed
μms, μmr 48 (46–50) day−1 [69]
μgs, μgr 0.0625 (0.05–0.1) day−1 [74]
μw 0.05 (0.02–0.08) day−1 [74]
δr 0.7 (0.01–0.99) Unitless Assumed
ζ, η 0.5 (0-1) day−1 [73]
P 16 (15–20) Erythrocytes/day [34]
β 6.5 × 10−7 4.8 × 10−7–6.8 × 10−7 Merozoites/day [75]
σr, σs 0.02 (0.01–0.03) day−1 [75]
hy, hm, hg 0.05 (0.01–0.08) mm−3/day [70]
ky, km, kg 0.000001 (0.001–0.9) day−1 [51]
Ψ1 0.2 (0.01–2.2) day−1 Assumed
Ψ2 0.01 (0.001–0.1) day−1 Assumed
δr 0.3 (0-1) Unitless Assumed
c 0.5 (0-1) Immune cell/μl Assumed
1/a 0.2 (0-1) Unitless [76]
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Figure 7: +e effect of varying the efficacy of antimalarial drug used ωs and the rate of development of resistance by the drug-sensitive
merozoitesΨ1, on the density of infected erythrocytes (Ys, Yr).+e value of ωs ranges from 0 to 1.+e rest of the parameter values are available
in Table 3. Figure (c) shows that in the absence of highly effective ACTs, drug-resistant parasite would take a longer time to eradicate.
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Although the aspect of timing is key in these multiple-
strain infections, we assumed here that the two strains are
introduced at the same time. In the long run, it is evident in
Figures 10 and 12 that the sensitive strain overtakes the
resistant strain. We argue that this could be as a result of
strain-specific adaptive responses that symmetrically affect
the sensitive parasites.

Unlike single-strain P. falciparum parasite infections, data
on multiple-strain infections are not readily available. Nev-
ertheless, amultiple-strain infection (drug-sensitive and drug-
resistant) as presented in this paper is biologically reasonable
and consistent with that of P. Chabaudi described in [82].

5.1. Sensitivity Analysis. In this paper, the primary model
output of interest for the sensitivity analysis is the infected
erythrocytes (Ys, Yr). However, the effective reproduction
number RE is a threshold quantity which represents on
overage the number of secondary infected erythrocytes due
to merozoite invasions. We can therefore measure the
sensitivity indices of the effective reproduction number of

model system (7)–(14) relative to model parameters. For
example, the sensitivity of RE relative to the parameter Ψ1 is
given by the following formulation:

ΥΨ1 �
zRE

zΨ1
×
Ψ1
RE

. (83)

Using the parameter values in Table 3, the expressions for
sensitivity for all the parameters in RE are evaluated and
presented in Table 4. +e higher the numerical value of the
sensitivity index (S.I), the greater the variational impact of the
parameter on the disease progression. A parameter with
a negative index decreases the model RE when they are in-
creased. On the other hand, a parameter with a positive index
would generate a proportional increase in RE when they are
magnified. Results shown in Table 4 indicate that the rate of
infection of healthy erythrocytes by the merozoites β, the
density of merozoites generated from each of the bursting
schizonts P, the efficacy of antimalarial drug used ωs, and the
rate at which drug-sensitive merozoites develop resistance Ψ1
are the four most influential parameters, in determining the
disease dynamics as presented in model system (7)–(14).
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Figure 8: Contour plot of Rs as a function of (a) β and μw, (b) ωs and μys, (c) P and c.
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Results from sensitivity analysis emphasize the use of
highly efficacious antimalarial drugs such as ACTs in
malaria-endemic regions. +is would mitigate the many
cases of malaria in the region and further help to reduce
emerging cases of parasite resistance to existing therapies.
Drugs with a higher parasite clearance rate would greatly
reduce resistance, which is associated with longer parasite
exposure to antimalarial drugs. It is imperative, therefore,
that governments and ministry of health personnel in
malaria-endemic countries enforce the use of efficient an-
timalarial drugs that not only cure infected malaria patients
but also eliminate the chance of P. falciparum parasites to
develop resistance to existing therapy.

6. Conclusion

In this paper, a deterministic model of multiple-strain P.
falciparum malaria infection has been formulated and
analysed. +e parasite strains are categorized as either drug-

sensitive or drug-resistant. +e infected erythrocytes and the
malaria gametocytes are similarly grouped according to the
strain of the parasite responsible for their existence. +e
immune cells are incorporated to reduce the invasive
characteristic of the malaria merozoites. Antimalarial
therapy is applied to the model but only targets red blood
cells infected with drug-sensitive merozoites. Based on the
next-generation matrix method, we computed the effective
reproduction number RE of the formulated model. Based on
RE, it is evident that the success of P. falciparum infection in
the presence of multiple-parasite strains is directly de-
pendent on the ability of the individual parasite strains to
drive the infection. +e parasite strain with a higher
threshold value, R0, is likely to dominate the infection.
Prescribed antimalarial drugs should therefore be effective
enough to eradicate both drug-sensitive and drug-resistant
parasite strains in vivo. Linearization of the model at the
parasite-free equilibrium reveals the local asymptotic sta-
bility of the trivial equilibrium point.
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Figure 9: Contour plot of Rr as a function of (a) αr and μyr, (b) Ψ1 and σr, (c) P and β.
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Figure 10: Dynamics of drug-sensitive (blue) and drug-resistant (orange) strains in a single infection (a) and in a multiple infection (b) in
a naive human-host with no malaria therapy (ωs � 0). +e density of the resistant strain is lower than that of drug-sensitive strain for
Rs � 2.123> 1 and Rr � 1.912> 1 in a multiple-strain P. falciparum infection. +e rest of the parameter values are as displayed in Table 3.
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Figure 11: Dynamics of infected erythrocytes, gametocytes, and the immune cells with a single-strain P. falciparum infection. Here, we do
not have preexisting immunity. +e rest of the parameter values are as displayed in Table 3.
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By rewriting the model in the pseudotriangular form, the
parasite-free equilibrium is also shown to be globally as-
ymptotically stable. Although the parasite-persistent equi-
librium exists, its expression based on a single-model
variable proved to be mathematically intractable. +e use of
antimalarial treatment may eradicate one parasite strain so
that we arrive at either a drug-sensitive-only persistent
equilibrium point or a drug-resistant-only persistent equi-
librium point.

To assess the impacts of the different parasite strains to
disease dynamics, the model is simulated for different values
of the threshold quantities Rs andRr.We observed that when
Rr > 1 and Rs > 1, then both parasite strains are persistent
and the infection becomes severe. If Rr > 1 and Rs < 1, then
the drug-sensitive parasites would decline to zero as the
drug-resistant strains continue to multiply and remain
persistent, increasing the severity of infections. On the other
hand, if Rs > 1 and Rr < 1, then the drug-resistant parasite

strains would be eradicated. Moreover, provided that the
threshold quantities Rs and Rr are less than unity, the use
of an efficacious antimalarial drug would help eradicate
P. falciparum infection.

+e efficacy of antimalarial drug is shown to have direct
negative impact on the density of infected red blood cells.
+e higher the efficacy of administered antimalarial drug,
the lower the population of infective merozoites and the
smaller the density of infected erythrocytes. +is ensures
prompt recovery from malaria infections. +is result is
consistent with that in [72, 83]. +e efficacy of antimalarial
drug is however shown to have least effect on the population
of drug-resistant infected erythrocytes. +e rate of devel-
opment of resistance by drug-sensitive parasites is also
shown to drive the infection due to resistant parasite strains.
Using contour plots and results from sensitivity analysis, we
observe that the efficacy of antimalarial drug used ωs, the
density of blood floating merozoites produced per infected
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Figure 12: Within-human dynamics of single- and multiple-strain dynamics of infected erythrocytes, gametocytes, and the immune cells in
the absence preexisting immunity and with no antimalarial treatment (ωs � 0). +e rest of the model parameter values are in Table 3.
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erythrocyte P, the rate of development of resistance Ψ1, and
the rate of infection by merozoites β are the most important
parameters in the disease dynamics and control.

Finally, although the drug-resistant strain is shown to be
less fit, the presence of both strains in the human host has
a huge impact on the cost and success of antimalarial
treatment. To reduce the emergence of resistant strains, it is
vital that only effective antimalarial drugs are administered
to patients in hospitals, especially in malaria-endemic re-
gions. To improve malaria therapy and reduce cases of
parasite resistance to existing therapy, our results call for
regular and strict surveillance on antimalarial drugs in
clinics and hospitals in malaria-endemic countries.
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S. Bonhoeffer, “Population biological principles of drug-re-
sistance evolution in infectious diseases,” 8e Lancet In-
fectious Diseases, vol. 11, no. 3, pp. 236–247, 2011.

[48] Z. Agur, D. Abiri, and L. H. Van der Ploeg, “Ordered ap-
pearance of antigenic variants of african trypanosomes
explained in a mathematical model based on a stochastic
switch process and immune-selection against putative switch
intermediates,” Proceedings of the National Academy of Sci-
ences, vol. 86, no. 23, pp. 9626–9630, 1989.

[49] R. Antia, B. R. Levin, and R. M.May, “Within-host population
dynamics and the evolution and maintenance of micro-
parasite virulence,” American Naturalist, vol. 144, no. 3,
pp. 457–472, 1994.

[50] L. Cai, N. Tuncer, and M. Martcheva, “How does within-host
dynamics affect population-level dynamics? insights from an
immuno-epidemiological model of malaria,” Mathematical
Methods in the Applied Sciences, vol. 40, no. 18, pp. 6424–6450,
2017.

[51] C. Chiyaka, W. Garira, and S. Dube, “Modelling immune
response and drug therapy in human malaria infection,”
Computational andMathematical Methods inMedicine, vol. 9,
no. 2, pp. 143–163, 2008.

Computational and Mathematical Methods in Medicine 25



[52] S. Pilyugin and R. Antia, “Modeling immune responses with
handling time,” Bulletin of Mathematical Biology, vol. 62,
no. 5, pp. 869–890, 2000.

[53] M. A. Selemani, L. S. Luboobi, and Y. Nkansah-Gyekye, “+e
in-human host and in-mosquito dynamics of malaria para-
sites with immune responses,” New Trends in Mathematical
Sciences, vol. 5, no. 3, pp. 182–207, 2017.

[54] J. C. de Roode, R. Culleton, A. S. Bell, and A. F. Read,
“Competitive release of drug resistance following drug
treatment of mixed plasmodium chabaudi infections,”
Malaria Journal, vol. 3, no. 1, 2004.

[55] R. Hayward, K. J. Saliba, and K. Kirk, “pfmdr1 mutations
associated with chloroquine resistance incur a fitness cost in
plasmodium falciparum,” Molecular Microbiology, vol. 55,
no. 4, pp. 1285–1295, 2005.

[56] D. L. Doolan, C. Dobano, and J. K. Baird, “Acquired im-
munity to malaria,” Clinical Microbiology Reviews, vol. 22,
no. 1, pp. 13–36, 2009.

[57] P. Liehl, P. Meireles, I. S. Albuquerque et al., “Innate im-
munity induced by plasmodium liver infection inhibits
malaria reinfections,” Infection and Immunity, vol. 83, no. 3,
pp. 1172–1180, 2015.

[58] N. Villarino and N. W. Schmidt, “CD8+ T cell responses to
plasmodium and intracellular parasites,” Current Immunology
Reviews, vol. 9, no. 3, pp. 169–178, 2013.

[59] T. O. Orwa, R. W. Mbogo, and L. S. Luboobi, “Mathematical
model for hepatocytic-erythrocytic dynamics of malaria,”
International Journal of Mathematics and Mathematical
Sciences, vol. 2018, Article ID 7019868, 18 pages, 2018.

[60] T. O. Orwa, R. W. Mbogo, and L. S. Luboobi, “Mathematical
model for the in-host malaria dynamics subject to malaria
vaccines,” Letters in Biomathematics, vol. 5, no. 1, pp. 222–251,
2018.

[61] J. K. Hale, Ordinary Differential Equations, John Wiley &
Sons, New York, NY, USA, 1969.

[62] P. van den Driessche and J. Watmough, “Reproduction
numbers and sub-threshold endemic equilibria for com-
partmental models of disease transmission,” Mathematical
Biosciences, vol. 180, no. 1-2, pp. 29–48, 2002.

[63] K. S. Vannice, G. V. Brown, B. D. Akanmori, and
V. S. Moorthy, “MALVAC 2012 scientific forum: accelerating
development of second-generationmalaria vaccines,”Malaria
Journal, vol. 11, no. 1, p. 372, 2012.

[64] L. J. Allen, Introduction to Mathematical Biology, Pearson/
Prentice Hall, Upper Saddle River, NJ, USA, 2007.

[65] J. C. Kamgang and G. Sallet, “Global asymptotic stability for
the disease free equilibrium for epidemiological models,”
Comptes Rendus Mathematique, vol. 341, no. 7, pp. 433–438,
2005.

[66] X. Wang, “A simple proof of Descartes’s rule of signs,” 8e
American Mathematical Monthly, vol. 111, no. 6, pp. 525-526,
2004.

[67] L. Esteva and C. Vargas, “Influence of vertical and mechanical
transmission on the dynamics of dengue disease,” Mathe-
matical Biosciences, vol. 167, no. 1, pp. 51–64, 2000.

[68] M. Krasnoselskii, Positive Solutions of Operator Equations,
Noordhoff, Groningen, Netherlands, 1964.

[69] Y. Li, S. Ruan, and D. Xiao, “+e within-host dynamics of
malaria infection with immune response,” Mathematical
Biosciences and Engineering, vol. 8, no. 4, pp. 999–1018, 2011.

[70] C. Chiyaka, “Using mathematics to understand malaria in-
fection during erythrocytic stages,” Zimbabwe Journal of
Science and Technology, vol. 5, pp. 1–11, 2010.

[71] C. Colijn and T. Cohen, “How competition governs whether
moderate or aggressive treatment minimizes antibiotic re-
sistance,” Elife, vol. 4, 2015.

[72] R. M. Anderson, C. A. Facer, and D. Rollinson, “Research
developments in the study of parasitic infections,” Parasi-
tology, vol. 99, no. S1, p. S1, 1989.

[73] A. Mohammed, A. Ndaro, A. Kalinga et al., “Trends in
chloroquine resistance marker, Pfcrt-K76Tmutation ten years
after chloroquine withdrawal in Tanzania,” Malaria Journal,
vol. 12, no. 1, p. 415, 2013.

[74] A. Ofosu-Okyere, M. J. Mackinnon, M. P. K. Sowa et al.,
“Novel plasmodium falciparum clones and rising clone
multiplicities are associated with the increase in malaria
morbidity in ghanaian children during the transition into the
high transmission season,” Parasitology, vol. 123, no. 2,
pp. 113–123, 2001.

[75] B. Hellriegel, “Modelling the immune response to malaria
with ecological concepts: short-term behaviour against long-
term equilibrium,” Proceedings of the Royal Society of London
Series B, vol. 250, no. 1329, pp. 249–256, 1992.

[76] A. M. Niger and A. B. Gumel, “Immune response and im-
perfect vaccine in malaria dynamics,” Mathematical Pop-
ulation Studies, vol. 18, no. 2, pp. 55–86, 2011.

[77] E. A. Ashley, M. Dhorda, R. M. Fairhurst et al., “Spread of
artemisinin resistance in plasmodium falciparum malaria,”
New England Journal of Medicine, vol. 371, no. 5, pp. 411–423,
2014.

[78] D. Lane, “Online statistics education: a multimedia course of
study,” in Proceedings of the EdMedia: World Conference on
Educational Media and Technology, pp. 1317–1320, Associa-
tion for the Advancement of Computing in Education
(AACE), Rice Univesity, Houston, TX, USA, 2003.

[79] H. Gelband, C. B. Panosian, K. J. Arrow et al., Saving Lives,
Buying Time: Economics of Malaria Drugs in An Age of Re-
sistance, National Academies Press, Washington, DC, USA,
2004.

[80] H. A. Babiker, I. M. Hastings, and G. Swedberg, “Impaired
fitness of drug-resistant malaria parasites: evidence and im-
plication on drug-deployment policies,” Expert Review of
Anti-Infective 8erapy, vol. 7, no. 5, pp. 581–593, 2009.

[81] B. Teun, O. Lucy, S. Seif et al., “Revisiting the circulation time
of plasmodium falciparum gametocytes: molecular detection
methods to estimate the duration of gametocyte carriage and
the effect of gametocytocidal drugs,” Malaria Journal, vol. 2,
no. 9, p. 136, 2010.

[82] J. C. de Roode, M. E. H. Helinski, M. A. Anwar, and
A. F. Read, “Dynamics of multiple infection and within—host
competition in genetically diverse malaria infections,”
American Naturalist, vol. 166, no. 5, pp. 531–542, 2005.

[83] J. A. N. Filipe, E. M. Riley, C. J. Drakeley, C. J. Sutherland, and
A. C. Ghani, “Determination of the processes driving the
acquisition of immunity to malaria using a mathematical
transmission model,” PLoS Computational Biology, vol. 3,
no. 12, p. e255, 2007.

26 Computational and Mathematical Methods in Medicine


