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The dorsolateral prefrontal cortex (dlPFC) generates the mental representations that

are the foundation of abstract thought, and provides top-down regulation of emotion

through projections to the medial PFC and cingulate cortices. Physiological recordings

from dlPFC Delay cells have shown that the generation of mental representations during

working memory relies on NMDAR neurotransmission, with surprisingly little contribution

from AMPAR. Systemic administration of low “antidepressant” doses of the NMDAR

antagonist, ketamine, erodes these representations and reduces dlPFC Delay cell firing.

In contrast to the dlPFC, V1 neuronal firing to visual stimuli depends on AMPAR, with

much less contribution from NMDAR. Similarly, neurons in the dlPFC that respond

to sensory events (cue cells, response feedback cells) rely on AMPAR, and systemic

ketamine increases their firing. Insults to NMDAR transmission, and the impaired ability

for dlPFC to generate mental representations, may contribute to cognitive deficits in

schizophrenia, e.g., from genetic insults that weaken NMDAR transmission, or from

blockade of NMDAR by kynurenic acid. Elevated levels of kynurenic acid in dlPFC may

also contribute to cognitive deficits in other disorders with pronounced neuroinflammation

(e.g., Alzheimer’s disease), or peripheral infections where kynurenine can enter brain

(e.g., delirium from sepsis, “brain fog” in COVID19). Much less is known about NMDAR

actions in the primate cingulate cortices. However, NMDAR neurotransmission appears

to process the affective and visceral responses to pain and other aversive experiences

mediated by the cingulate cortices, which may contribute to sustained alterations in

mood state. We hypothesize that the very rapid, antidepressant effects of intranasal

ketamine may involve the disruption of NMDAR-generated aversive mood states by the

anterior and subgenual cingulate cortices, providing a “foot in the door” to allow the

subsequent return of top-down regulation by higher PFC areas. Thus, the detrimental

vs. therapeutic effects of NMDAR blockade may be circuit dependent.
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INTRODUCTION

The recent discovery that the NMDA receptor (NMDAR)
antagonist, ketamine, can produce rapid, antidepressant actions
has stirred interest in the possible mechanisms underlying these
therapeutic effects, and why blockade of NMDAR can produce
such a swift change in mood. The current review discusses how
NMDAR-calcium mechanisms are needed for sustained neural
representations, e.g., such as the persistent representation of
visual space in working memory by circuits in the dorsolateral
prefrontal cortex (dlPFC), and suggests that parallel mechanisms
in the cingulate circuits mediating mood and emotion may be
overactivated in depression, and aided by NMDAR blockade
(1, 2).

NMDAR are heterotetramers composed of GluN1 and GluN2
(A-D) or GluN3 (A-B) subunits- usually with two GluN1 and
two GluN2 subunits (3). The GluN2B subunit, also known as
the NR2B subunit, has been of particular interest, as it closes
more slowly than the common, GluN2A subunit, and fluxes
high levels of calcium into the neuron (4). Although previous
research in rodent classic circuits had found that NMDA-GluN2B
were mostly at extra-synaptic locations (5), or played a role
only in immature neurons (6), more recent research has shown
that GluN2B play a critical, synaptic role in the primate cortical
circuits mediating higher cognition, providing the synaptic
events that generate sustained representations of visual space in
working memory in the dlPFC (7, 8). The high levels of calcium
influx into spines may be especially important for maintaining
a depolarized post-synaptic membrane, permitting continued
neural firing needed to sustain representations over long time
periods (9). Recent research has also shown that expression
of NMDAR with GluN2B subunits encoded by the GRIN2B
gene expands across primate cortical evolution (10), and across
the cortical hierarchy in humans, with especially high levels in
association and limbic cortices such as the anterior cingulate
cortex (11). The following paper explores the hypothesis that the
critical role of GluN2B in generating sustained representations in
dlPFC may extend to the generation of aversive mood state by
the anterior and subgenual cingulate cortices, and that NMDAR
blockade by ketamine may be helpful by relieving this self-
perpetuating, aversive network activity.

Abbreviations: ACC, anterior cingulate cortex; AMPAR, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor, an ionotropic glutamate receptor;
BA24, Brodmann’s area 24, part of the anterior cingulate cortex; BA25, Brodmann’s
area 25, also known as the subgenual cingulate cortex; BA32, Brodmann’s
area 32, part of the ventromedial cortex; BA46, Brodmann’s area 46, part of
the dorsolateral prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; GABA,
Gamma-AminoButyric Acid, an inhibitory neurotransmitter; GluN2B, a subunit
of the NMDAR, which closes slowly and fluxes high levels of calcium; HPA
axis, Hypothalamus Pituitary Adrenal gland axis for control of cortisol release
from the adrenal cortex (corticosterone in rodents); immunoEM, Immunoelectron
microscopy; PFC, prefrontal cortex; LIP, lateral intraparietal cortex specialized
for analyzing visual space; M1R, cholinergic muscarinic M1 receptor; mPFC,
medial prefrontal cortex; MT, middle temporal visual cortical area specialized for
analyzing visual motion; Nic, α7R, cholinergic nicotinic α7 receptor; NMDAR, N-
methyl-D-aspartate receptor, an ionotropic glutamate receptor; PFC, prefrontal
cortex; PSD, postsynaptic density; V1, primary visual cortex.

The paper will briefly review PFC circuits in primates and
their regulation of the cingulate cortices, and then discuss the
critical role of NMDAR for generating mental representations in
dlPFC, the expansion in NMDAR-GluN2B transmission across
the cortical hierarchy and across cortical evolution, and the role
of NMDAR-GluN2B in the cingulate cortices mediating affective
pain responses and depression. It will briefly discuss how stress
exposure impairs higher PFC regulation, and will close with
an exploration of the idea that ketamine’s rapid antidepressant
actions may involve blocking mental representations of aversive
mood state in the cingulate cortices.

PRIMATE PREFRONTAL CORTICAL
CIRCUITS

The PFC greatly expands and differentiates over brain evolution,
allowing representations of information in the absence of sensory
stimulation. The primate PFC is topographically organized
across multiple dimensions, e.g., with “simpler” representative
functions found more caudally and more complex (e.g.,
metacognition) more rostrally in the frontal pole (12, 13).
There are also topographic differences across the dorsolateral
to ventromedial dimensions (14), where the dlPFC represents
the outer world (e.g., with inputs from parietal areas that
process visual space, Figure 1A), while the ventral and medial
PFC regions represent the inner world, including taste and
olfaction combining to represent flavor in orbital (ventral)
PFC, and projections from the medial thalamus to the medial
anterior cingulate cortex (ACC, BA24) mediating the emotional
aspects of pain (Figure 1A). Neurons in the dorsomedial
PFC also can represent persistent signatures of loss during a
competitive game (15), and anterior cingulate neurons respond
to errors (16), suggesting these regions are also activated by
aversive psychological events. This information is relayed to
the subgenual cingulate (BA25) that has extensive visceromotor
connections to induce the physical aspects of the emotional
response to pain [Figure 1A; (14)]. For example, BA25 projects
to the amygdala, and the hypothalamus and brainstem to effect
the autonomic nervous system and facial expression, and to
the periaqueductal gray and medial subthalamic nucleus to alter
behavioral response (14, 17–19), e.g., “freezing” behavior in
response to a threat.

The more newly evolved, rostral and lateral areas of PFC
provide top-down regulation of the more primitive medial and
caudal areas. For example, the dlPFC can regulates emotion via
direct projections to BA24 (20, 21), and indirect projections to
BA25 via BA10m or BA32 to BA25 (22, 23) (Figure 1A). The
pathways from dlPFC to BA32 and then to BA25 are now known
in great detail at the ultrastructural level (23–25), showing how
dlPFC and BA32 are positioned to either inhibit or activate
emotional responses by BA25.

An important note about species differences: rodents do
not have rostral PFC areas (e.g., frontal pole) or a dlPFC,
and even the medial and orbital PFC areas they do have are
much less developed and differentiated than those in primates
(26). Indeed, the dorsal to ventral topography of medial PFC

Frontiers in Psychiatry | www.frontiersin.org 2 April 2021 | Volume 12 | Article 654322

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yang et al. NMDAR Persistent Firing in Mentation

FIGURE 1 | Primate cortical circuits. (A) Schematic diagram of circuits in the rhesus monkey cortex, where the lateral surface represents the outer world, and the

medial and orbital surface represents inner state. The dorsal stream is shown on the lateral surface, where dlPFC represents visual space in working memory, and

generates the goals for top-down regulation of emotion. The medial surface shows the pathways mediating the emotional response to pain, arising from medial

thalamic projections to the insular cortex (not shown) and the anterior cingulate cortex BA24, which both project to BA25 (subgenual cingulate). BA25 is a major

center for visceromotor outputs, e.g., to the amygdala, brainstem, and hypothalamus to alter heart rate. These cingulate cortices are often overactive in depression,

and a target of DBS treatments. The dlPFC provides top-down regulation of emotion through indirect projections to BA25 via areas BA10m and BA32, and direct

projections to BA24 (not shown). (B) The increasing timescales across the primate cortical hierarchy, and their relationship to GRIN2B expression. Based on (11) and

(9). LIP, lateral intraparietal cortex; MT, middle temporal visual cortex.

subregions appears to be reversed from rodent to monkey,
with the most ventral BA25 activating the stress response in
monkeys, but inhibiting it in rodents (27). This may be due
to the medial PFC being less differentiated in rodents, with

a dorsal-ventral gradient in many medial PFC connections
(28). Thus, the actual circuit connections, e.g., with excitatory
vs. inhibitory neurons in amygdala, need to be identified for
proper interpretation.
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THE CRITICAL ROLE OF NMDAR-Glun2B
IN THE GENERATION OF MENTAL
REPRESENTATIONS BY THE dlPFC

The primate dlPFC has the remarkable ability to generate and
sustain mental representations without sensory stimulation, the
foundation of abstract thought (29). dlPFC “Delay cells” are
able to maintain persistent firing across the delay period in
a working memory task, sustaining representations over many
seconds e.g., remembering a position in visual space (30).
“Delay cells” appear to reside in pyramidal cell microcircuits
in deep layer III of the dlPFC that have extensive recurrent
excitatory connections [Figure 2A; (29, 31)], as well as lateral
inhibition from parvalbumin-containing interneurons to refine
spatial tuning (29, 32). The persistent firing of Delay cells across

the delay period depends on NMDAR stimulation (7), a finding
predicted by computational models (33). Thus, iontophoresis
(local electrical application) of low doses of NMDAR antagonists,
including antagonists that selectively block those with GluN2A
or GluN2B subunits, markedly reduces Delay cell firing (7). An
example is shown in Figure 2B, where under control conditions a
Delay cell can sustain the representation of the cue that had been
flashed at 270◦ over many seconds in workingmemory. However,
the Delay cell is no longer able to represent spatial information in
working memory following the local iontophoretic blockade of
NMDAR GluN2B with the antagonist, TCN237.

Immunoelectron microscopy (immunoEM) showed that
NMDAR-GluN2B are expressed exclusively within the post-
synaptic density (PSD) in layer III dlPFC spines, and are
not extra-synaptic, consistent with their direct mediation of

FIGURE 2 | The persistent firing of dlPFC Delay cells depends on NMDAR with GluN2B subunits. (A) Schematic illustration of the recurrent excitatory microcircuits in

deep layer III of dlPFC that generate persistent firing. (B) A dlPFC Delay cell that represents the spatial position of 270◦ during a spatial working memory task,

maintaining firing across the delay period for only that preferred location. Iontophoresis of the selective NMDAR- GluN2B antagonist, TCN237, completely blocks the

ability of the neuron to generate representations of visual space.
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neurotransmission (7). The ability of GluN2B subunits to flux
large amounts of calcium may be a key aspect of why they
support persistent firing in computational models (33) and in
Delay cells (7).

In contrast to NMDAR, blockade of AMPAR has remarkably
subtle effects on Delay cell firing (7) (Figures 3A,B). This finding
was initially confusing, as it is generally thought that AMPAR
are essential to depolarize the PSD membrane and relieve the
magnesium (Mg2+) block within the NMDAR pore, permitting
NMDAR actions (Figure 3C). However, in dlPFC, this key
permissive role appears to be played by acetylcholine acting
at Nic-α7R and muscarinic M1R within the glutamate synapse
(34, 35) which may depolarize the PSD to support persistent
firing (Figures 3A,B). M1R may depolarize the PSD via closing
of KCNQ channels localized in the PSD, and/or by enhancing
levels of internal calcium release. These physiological data are
consistent with behavioral data showing that Ach depletion
from dlPFC is as deleterious as removing the cortex itself
(36). As acetylcholine is released during wakefulness but not
deep sleep, these mechanisms also help to coordinate cognitive
state with arousal state, permitting conscious experience during
wakefulness, but may render us unconscious during deep sleep
when there is no acetylcholine release. Thus, as summarized
in Figures 3A,B, Delay cell firing in dlPFC depends on
NMDAR stimulation, including those with GluN2B subunits,
with permissive actions by acetylcholine and more limited
contributions from AMPAR.

AMPAR neurotransmission does play an important role in
some dlPFC neurons that respond to sensory events, i.e., dlPFC
Cue cells, and dlPFC response feedback cells that are thought to
convey the corollary discharge back to dlPFC that the intended
motor response has occurred (7). As these events require accurate
timing, it is logical that they would have more of a reliance on
rapid AMPAR neurotransmission.

Systemic ketamine treatment has differential effects on dlPFC
neuronal firing depending upon their reliance on AMPAR vs.
NMDAR neurotransmission. Consistent with their reliance on
NMDAR neurotransmission, dlPFC Delay cells show decreased
firing following systemic administration of the NMDAR
antagonist, ketamine, at low doses used to treat intractable
depression (7). This is only seen during cognitive performance
and is not evident at rest. In contrast, systemic ketamine
administration increases the spontaneous firing of response
feedback neurons that rely on AMPAR (7), which resembles
the increased firing seen with deep layer neurons in rat mPFC
following NMDAR blockade, the basis for the “glutamate surge”
(37). Some of this heterogeneity may arise from the balance
of NMDAR on pyramidal cells vs. GABAergic interneurons,
where pyramidal cell circuits with extensive recurrent NMDAR
excitation may show loss of firing, while those circuits with
extensive NMDAR on interneurons (e.g., in the primary sensory
cortices) may have an overall increase in glutamate signaling.
These data caution that ketamine’s actions are heterogeneous,
and that methods that average the response of large populations
of neurons under resting conditions (e.g., resting fMRI, multi-
electrode recording) may miss critical ketamine actions such as
the loss of representations during working memory. The fact

that ketamine’s effects are circuit-specific creates a complicated
picture, confounding our ability to identify the specific actions
relevant to its antidepressant effects, distinguished from its
actions that lead to cognitive disorder.

The importance of NMDAR transmission to the generation
of mental representations needed for working memory and
abstract thought may have relevance to a number of conditions
where NMDAR are blocked or genetically weakened. The
data from monkeys help to explain the profound cognitive
alterations that can occur in the encephalitis arising from anti-
NMDAR antibodies (38). The loss of mental representations with
NMDAR blockade also helps to explain the profound cognitive
impairments in schizophrenia where there can be genetic
mutations that weaken NMDAR signaling (39), and/or blockade
of NMDAR by kynurenic acid, especially under conditions of
inflammation (40). Blockade of NMDAR by kynurenic acid may
also contribute to cognitive deficits in Alzheimer’s disease (41),
given the importance of inflammatory signaling in early stages
of disease. It is also possible that systemic infection may impair
higher brain functions through the uptake of kyrurenine across
the blood brain barrier (42). For example, the pervasive cognitive
deficits in delirium might arise from high levels of kyrurenine
crossing into the brain during systemic infection (43), and that
the residual “brain fog” from infections such as COVID19 (44–
46), which also leads to systemic kynurenine production, may
also involve sustained blockade of NMDAR in higher cortical
circuits by kynurenic acid. As there are pharmacological tools
to reduce kynurenine production that may relieve NMDAR
blockade, these are important areas for future research.

NMDAR-Glun2B EXPRESSION INCREASES
ACROSS THE PRIMATE CORTICAL
HIERARCHY AND ACROSS PRIMATE
EVOLUTION

There are multiple differences in function and physiology
across the cortical hierarchy from primary sensory cortices, to
association cortices to limbic cortices (Figure 1B). For example,
there are increasing time scales in neuronal firing across the
cortical hierarchy in rhesus monkeys (47) and in gray/white
matter ratios in humans that correspond to transcriptional
expression patterns (11). In particular, there is increasing
expressing of the NMDAR GluN2B gene, GRIN2B, across the
cortical hierarchy in humans, with low levels in primary visual
cortex, high levels in dlPFC, and higher levels still in anterior
cingulate cortices (11). As GRIN2B expression in dlPFC also
increases across primate evolution, it suggests that this receptor
plays an increasing role in primate mental experience.

Physiological studies in rodents (48) and monkeys are
consistent with this hypothesis, as NMDAR-GluN2B has a
much larger role in neurotransmission in the PFC than in
the primary visual cortex, area V1. In rat medial PFC, the
recurrent excitatory connections in layer V depend on NMDAR-
GluN2B neurotransmission, while neurons in V1 showed much
less reliance on these receptors (48). Similar results were seen
in rhesus monkey dlPFC vs. V1. Neurons in V1 respond to
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FIGURE 3 | The primate dlPFC and primary visual cortex (V1) have very different neurotransmission. (A) The dlPFC depends on NMDAR neurotransmission, including

those with slowly closing GluN2B subunits, that are exclusively within the PSD. The permissive excitatory effects to relieve the magnesium (Mg2+) block of the NMDAR

(Continued)
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FIGURE 3 | ion channel are provided by acetylcholine (including Nic-a7R), with a surprisingly small influence from AMPAR. (B) Iontophoresis of the AMPAR antagonist,

CNQX, has only subtle effects on dlPFC Delay cell firing, while blockade of NMDAR- GluN2B with Ro25-6981 (Ro) markedly reduces Delay cell firing. (C) Neurons in

primate V1 show a more classic profile, relying heavily on AMPAR neurotransmission, with less influence by NMDAR. (D) Iontophoresis of low doses of the AMPAR

antagonist, CNQX, markedly reduces V1 neuronal firing, while blockade of NMDAR- GluN2B with Ro has little effect. Adapted from (9) and (8). *p < 0.05, ***p < 0.001.

the presentation of visual stimuli of a preferred orientation
in their receptive field. These neurons have a great reliance
on AMPAR transmission, where even low doses of AMPAR
blockers such as CNQX markedly reduce stimulus-related firing
(8) (Figures 3C,D). In contrast, high doses of NMDAR blockers
are needed to reduce V1 neuronal firing [(8), Figures 3C,D]. A
reliance on AMPAR stimulation is consistent with the function of
V1 neurons, as the rapid kinetics of these receptors, in addition
to their membrane properties (49), would allow accurate timing
to encode the onset and offset of a sensory event. Thus, NMDAR
transmission is not uniform across the primate cortex, and may
be a feature of neurons requiring sustained neuronal firing for
cognitive and possibly affective functions.

The very high levels of GRIN2B expression in the human
anterior cingulate cortex (11) suggests that these receptor
subtypes may be particularly important for the functioning of
the cingulate cortices, e.g., in error detection, affective pain
processing, and visceral affective responding. These limbic
cortices and their corresponding connections are part of the
neural networks that create “mood,” a sustained brain state.
Given the role of NMDAR-GluN2B in mediating sustained firing
in dlPFC, it is possible that these receptors have a parallel
role in anterior and subgenual cingulate cortex. Although there
are currently no direct iontophoretic recordings from primate
anterior or subgenual cingulate cortex examining the role of
GluN2B in cingulate physiology, this will be an important
arena for future research. The following section outlines the
importance of these receptors to cingulate processing of pain and
visceral responding.

THE ROLE OF NMDAR-GluN2B IN THE
CINGULATE CORTICES MEDIATING
AFFECTIVE PAIN RESPONSES AND
DEPRESSION

The anterior cingulate (BA24) and subgenual cingulate (BA25)
cortices mediate the emotional responses to pain [(14), reviewed
in (2)], and are overactive in depression (50, 51). For example,
the ACC is overactive in chronic pain and is a common ablation
site for neurosurgical alleviation of intractable pain (52). In
particular, BA25 in particular overactive in depression and a focus
of deep brain stimulation (DBS) to relieve intractable depression
(51). As described below, there is accumulating evidence that
the emotional responses of the anterior and subgenual cingulate
cortices rely on NMDAR-GluN2B neurotransmission, and that
these aversive responses are reduced by ketamine administration
in the treatment of chronic pain and depression.

Increasing evidence indicates that the response to pain in the
rodent ACC (BA24) is mediated by NMDAR, including those
with GluR2B subunits (53). GluR2B upregulate in response to

chronic pain (54, 55), and long-term potentiation in the anterior
cingulate cortex in response to painful stimuli is mediated
by NMDAR-calcium-cAMP signaling, including NMDAR with
GluR2B subunits, consistent with the sensitized response to
chronic pain [reviewed in (56, 57)]. Systemic administration of
ketamine, or of its active enatiomer, esketamine, reduces the
response to pain as well as accompanying depressive symptoms
in both rodents (58) and humans (59–62).

The subgenual cingulate (BA25) has extensive subcortical
projections to mediate the emotional and visceral response
to pain or other affective experiences (14), including to the
lateral habenula (63), a nucleus activated by aversive events
(64). Recent studies in marmosets have illuminated its functional
role and relationship to ketamine treatment. These studies
showed that pharmacological inactivation of BA25 decreased
the autonomic and behavioral correlates of negative emotion
expectation, while inactivation of BA32 increased them via
generalization (27), consistent with BA32 providing top-down
regulation of BA25. Conversely, activation of BA25 in marmosets
induced an anhedonic state and reduced willingness to work for
reward that was reversed by systemic administration of ketamine
(65). 18F-FDG PET imaging of the marmosets showed that
activation of BA25 was accompanied by activation of BA24 and
insular cortex, while systemic ketamine treatment reduced the
activation of these cortical areas (65). Over-activation of BA25
in marmosets also reduced vagal tone and heart rate variability,
reduced the extinction of an aversive response and potentiated
cortisol release during threat (66). Activation of BA25 in this
study was associated with increased activity in the amygdala, the
hypothalamus, and the temporal association area TH (66), but
decreased the activity of the frontopolar cortex area 9, the dlPFC
area 46, the central orbitofrontal cortex area13, and the lateral
caudate (66). However, in this study, systemic ketamine did not
reverse the effects of threat, suggesting that primitive responses
to threat (e.g., in amygdala) may still control network activity.
These data suggest that ketamine treatment may bemost effective
under conditions of safety. Research is still needed to determine
how local infusion of ketamine into BA24 and/or BA25 alters
emotional responding.

UNCONTROLLABLE STRESS IMPAIRS
HIGHER PFC FUNCTIONS

The findings from the Roberts lab that activation of BA25
in marmoset reduces the activity of the rostral PFC and the
dlPFC are consistent with a long line of research showing
that these more newly evolved PFC areas are weakened by
exposure to uncontrollable stress. As described above, under
control conditions the dlPFC and rostral PFC can regulate
emotion via projections to BA25 (Figures 1A, 4A), which in
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FIGURE 4 | Hypothesis regarding the state of cortical circuits under conditions

of health vs. depression, and their normalization by antidepressant treatments.

(Continued)

FIGURE 4 | (A) Under healthy conditions, the dlPFC and rostral medial PFC

areas provide top-down regulation of the cingulate cortices via medial PFC

connections, reducing BA25 activation of the stress response. The dlPFC also

projects directly to the monoamine nuclei in the brainstem to regulate

catecholamine release. (B) Under conditions of stress or depression, elevated

activity in the cingulate cortices can activate the amygdala, and very high

levels of catecholamine release in cortex takes higher PFC areas such as

dlPFC “offline.” Thus, there is a self-perpetuating, unregulated state, where

primitive circuits prevail. (C) Many antidepressant treatments reduce the

activity of BA25. This may give the cortex a “foot in the door” to restore

top-down regulation, especially when treatments promote dendritic spine

restoration in higher PFC circuits. Other treatments may directly enhance the

top-down regulation by the left dlPFC, e.g., rTMS and insight therapies.

turn can control the activity of the brain’s emotional circuits,
including the amygdala, hypothalamus and brainstem (23, 25).
A recent imaging study observed these rapid dynamics in human
brain, where uncontrollable stress exposure initially reduced the
activity of BA32, which then normalized in correspondence with
reducing the stress response, and BA32 increased its functional
connectivity with the dlPFC (67).

The more primitive cingulate and amygdala circuits may
remove the top-down regulation by higher PFC circuits through
activation of catecholamine neurons in the brainstem, which
can weaken PFC connectivity. The PFC and cingulate cortices
receive catecholamine innervation (68) and can also regulate
the activity of the monoamine nuclei in the brainstem (18,
63, 69). The dlPFC requires moderate levels of catecholamines
to function, but high levels of catecholamines released during
even mild uncontrollable stress rapidly take the dlPFC “offline”
[reviewed in (9, 70)]. Studies in rodents have shown that
psychological stressors or threatening stimuli activate projections
from the amygdala, e.g., to the locus coeruleus, increasing
catecholamine release in the medial PFC (71–76). High levels
of catecholamines in dlPFC drive feedforward calcium-cAMP
signaling, opening nearby potassium (K+) channels on spines
to rapidly weaken synaptic efficacy. This reduces the recurrent
excitation underlying the persistent neuronal firing needed for
mental representations [reviewed in (77, 78)]. High levels of
glucocorticoids, released due to hypothalamic-pituitary-adrenal
(HPA) actions, can also impair PFC working memory function
(79), and may do so in part by blocking the extraneuronal
catecholamine transporters on glia, which normally serve to
reduce catecholamine levels in the extracellular space (80).
In contrast to the dlPFC, high levels of catecholamines and
glucocorticoids enhance the affective functioning of the amygdala
(81–83), thus flipping the brain from a reflective to reflexive state.
The rapid loss of dlPFC executive andworkingmemory functions
from a hypercatecholaminergic state has now been documented
in humans (84–86) in addition to the original studies in rodents
and monkeys (9, 77, 78). Thus, BA25 and amygdala can rapidly
remove their regulation from higher order PFC circuits through
activation of excessive catecholamine release in these higher
PFC regions (Figure 4B). The cingulate cortices may also inhibit
dlPFC by activating inhibitory GABAergic interneurons in the
dlPFC (87).
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This state of weakened higher PFC circuits and stronger
BA24/BA25/amygdala control of brain responding is codified by
chronic stress, which induces spine loss and dendritic retraction
in PFC neurons which correlate with impaired working memory
and attention regulation (88–90). Much of this research has been
done in rats, where it is important to identify the projections
of the neurons under study. Shansky’s (91) elegant studies have
shown that chronic stress exposure causes atrophy of cortico-
cortical projecting mPFC neurons, but expands the dendrites
of PFC neurons that activate the amygdala (i.e. those that are
similar to primate BA25). Weaker connectivity and reduced gray
matter in higher PFC circuits following chronic stress exposure
has also been documented in humans (92, 93). Thus, chronic
stress can create a self-perpetuating state where high levels of
BA25/amygdala activity maintain a high catecholamine state,
which simultaneously strengthens the amygdala but weakens
higher PFC areas, removing inhibitory regulation of emotional
response (Figure 4B). It is not known how catecholamines alter
the activity of BA24 or BA25 in primates; this would be an
important area for future research. Studies in rats have shown
that the spine loss and dendritic retraction caused by chronic
stress exposure can reverse with substantial time spent in a non-
stressed state, at least in young animals, indicating a plastic
dendritic response (94).

HYPOTHESIS: THE RAPID
ANTIDEPRESSANT ACTIONS OF
KETAMINE MAY ARISE FROM BLOCKADE
OF MENTAL REPRESENTATIONS
GENERATING AVERSIVE MOOD STATE IN
CINGULATE CORTICES

The loss of rostral PFC and dlPFC activity in concert with
increased cingulate and amygdala activation would shift mental
state from an outward, cognitively-engaged frame of mind to
one focused inwardly on aversive experience. This is common
in depression, where there is often loss of perspective, reduced
empathy for others, anhedonia, and an urgent need for relief
of mental anguish (95). Symptoms such as loss of motivation
and psychomotor paralysis might also arise from BA25 activation
of the peri-aqueductal gray and subthalamic nucleus that are
positioned to reduce motor, cognitive and affective actions.
Thus, the overactive subgenual cingulate must be inhibited to
give more rostral PFC and dlPFC areas a “foot in the door”
to regain regulation of the brain, including the regrowth of
spines in higher PFC areas (96, 97), to restore top-down higher
network connections.

We have hypothesized that ketamine interrupts the self-
perpetuating cycle of primitive circuit activity that is sustained by
BA25 overactivity, allowing higher PFC circuits the opportunity
to restore more normal functioning [Figures 4B,C; (2)]. As noted
by Mayberg (51), all effective antidepressant treatments, whether
pharmacological (selective serotonin reuptake inhibitors (SSRIs),
possibly psilocybin?), electrical (ECT, DBS) or cognitive (talk
therapy, CBT), reduce BA25 hyperactivity in depressed patients

(Figure 4C). rTMS (repetitive transcranial magnetic stimulation)
to strengthen the functioning of the left dlPFC may also help
to restore regulation of the cingulate cortices (Figure 4C), as
the efficacy of this treatment correlates with reduced activity of
the anterior cingulate cortex (98), and weaker connectivity of
the subgenual cingulate cortex (99). The antidepressant effects
of SSRIs may be related to the very high levels of serotonin
transporters in BA25 (100), although research is still needed
to determine the receptor mechanisms by which serotonin can
inhibit BA25 neuronal firing. We have proposed that ketamine’s
therapeutic effects may arise from ultra-rapid inhibition of
BA25 neurons (2). As described above, systemic ketamine
administration can overcome the deleterious effects of BA25
over-activation in marmosets (65), and can also normalize BA25
hyperactivity in depressed subjects (101), which may involve
blockade of NMDAR transmission in the cingulate circuits
representing a sustained, aversive state. Ketamine also reduces
burst firing in the habenula, which may also contribute to its
ultrarapid therapeutic effects (64).

Intranasal ketamine or esketamine administration may
produce ultra-rapid antidepressant effects by delivering the
drug directly to the anterior and subgenual cingulate cortices,
which reside directly caudal to the nasal epithelium (2).
Ultra-rapid effects have been documented following this route
of administration, with significant improvement at 40min
(102), maximal improvement at 24 h, with therapeutic effects
waning, but still evident at 48 h post-administration (102).
We have proposed that the initial improvement at 40min
would arise from NMDAR blockade of excessive neuronal
firing in the anterior and subgenual cingulate cortices, allowing
a restoration of regulation by higher PFC areas, where
spine growth would provide more sustained antidepressant
actions (2).

Support for this hypothesis comes from a remarkable recent
rodent study, where dendritic spine changes in medial PFC
could be monitored in vivo (103). Prolonged exposure to chronic
unpredictable stress increased “depressive-like behaviors” in the
mice, and caused a retraction of dendritic spines in the mPFC,
while systemic administration of ketamine normalized behavior
and restored spine density (103). However, this study found
that ketamine improved behavior prior to spine re-emergence
(103), suggesting that the initial beneficial effects may arise
from alterations in neuronal firing, while the longer-term,
sustained antidepressant response requires regrowth of spines
in PFC circuits that provide top-down regulation. Finally, our
data from the dlPFC in monkeys would suggest that ketamine
levels would need to dissipate before full dlPFC function could
be restored, given the reliance of layer III dlPFC circuits on
NMDAR-GluN2B neurotransmission. This hypothesis would be
consistent with the maximal therapeutic effects observed 24 h
after ketamine administration.

In closing, we are learning that NMDAR transmission is
especially important for persistent neuronal firing. It is possible
that the sustained neuronal activity underlying mood state,
and particularly an aversive mental state, similarly relies on
NMDAR transmission, and thus is relieved by NMDAR blockade
from ketamine.
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