

Turkish Journal of Biology

http://journals.tubitak.gov.tr/biology/

Turk J Biol (2018) 42: 527-536 © TÜBİTAK doi:10.3906/biy-1802-3

Research Article

Identification of conserved miRNA molecules in einkorn wheat (Triticum monococcum subsp. monococcum) by using small RNA sequencing analysis

Ercan Selcuk ÜNLÜ^{1,*}, Sara BATAW², Didem ASLAN SEN², Yunus SAHİN^{2,3}, Nusret ZENCİRCİ²

¹Department of Chemistry, Faculty of Arts and Science, Abant Izzet Baysal University, Bolu, Turkey ²Department of Biology, Faculty of Arts and Science, Abant İzzet Baysal University, Bolu, Turkey

Department of Biochemistry, School of Medicine, Altınbaş University, İstanbul, Turkey

Received: 01.02.2018 •	Accepted/Published Online: 29.03.2018	• Final Version: 10.12.2018
-------------------------------	---------------------------------------	-----------------------------

Abstract: Triticum monococcum subsp. monococcum as a first cultivated diploid wheat species possesses desirable agronomic and quality characteristics. Drought and salinity are the most dramatic environmental stress factors that have serious impact on yield and quality of crops; however, plants can use alternative defense mechanisms against these stresses. The posttranscriptional alteration of gene expression by microRNAs (miRNAs) is one of the most conserved mechanisms. In plant species including wheat genomes, miRNAs have been implicated in the management of salt and drought stress; however, studies on einkorn wheat (Triticum monococcum subsp. monococcum) are not yet available. In this study, we aimed to identify conserved miRNAs in einkorn wheat using next generation sequencing technology and bioinformatics analysis. In order to include a larger set of miRNAs, small RNA molecules from pooled plant samples grown under normal, drought, and salinity conditions were used for the library preparation and sequence analysis. After bioinformatics analysis, we identified 167 putative mature miRNA sequences belonging to 140 distinct miRNA families. We also presented a comparative analysis to propose that miRNAs and their target genes were involved in salt and drought stress control in addition to a comprehensive analysis of the scanned target genes in the T. aestivum genome.

Key words: microRNA, wheat, Perl, Mfold, small RNAs

1. Introduction

Wheat is one of the leading global crops, with an annual production of over 615.8 million metric tons. The level of its polyploidy is an important criterion for the classification of wheat species. Even though the time and the location are not clear, wild diploid wheat was spontaneously evolved from its close relative, Triticum boeticum Boiss. Wild emmer emerged as a tetraploid wheat form and rehybridization of this form over time with a diploid close relative resulted in the rise of spelt-like hexaploid wheat. Due to the influence of human practices, wild diploid and tetraploid plants have undergone genetic selection for their useful agronomic traits. This evolution process resulted in the cultivation of diploid (e.g., einkorn) and tetraploid (e.g., emmer) wheat forms. Wheat is classified under the genus Triticum of Triticeae (Briggle, 1963), and several species have been characterized with diverse morphological and genetic variations (Curwen-McAdams et al., 2016).

T. monococcum subsp. monococcum (einkorn wheat) is a diploid wheat derived from T. boeoticum (wild einkorn wheat). It is capable of growing in adverse environmental conditions. It has a high nutritional value and gives acceptable yield on poor soils. Cultivation of einkorn wheat dates back to early times of the first agricultural activities. Since then, it has been cultivated in some provinces of Turkey (Karagöz and Zencirci, 2005), the Balkan countries, and Morocco (Serpen et al., 2008).

Small RNA molecules are noncoding RNA elements with a diverse group of functions. Several classes of small RNAs (e.g., miRNAs, siRNAs, and piRNAs) have been described (Peters and Meister, 2007). MicroRNA (miRNA) molecules are short and single-stranded noncoding RNA molecules acting as posttranscriptional control elements in animals, plants, and fungi (Bartel, 2004; Carthew and Sontheimer, 2009). Biosynthesis of mature miRNA molecules requires a chain of biochemical reactions starting with the transcription process carried out by Pol II or Pol III enzymes, which yields the primary miRNA (Pri-miRNA) molecules. Pri-miRNA is folded into a stem-loop structure that is then systematically digested to produce approximately 21-23-nt-length mature

^{*} Correspondence: esunlu@ibu.edu.tr

miRNA molecules (Ritchie et al., 2007). Studies on plants have shown that miRNA molecules have crucial roles in growth, development, and stress resistance processes (Jones-Rhoades et al., 2006; Zhang et al., 2006; Budak and Akpinar, 2015).

miRNAs have been discovered from various organisms, and, to date, a total of 1269 plant miRNAs have been identified and deposited in MirBase (Griffiths-Jones et al., 2008). There are more than a hundred entries available for popular plant species, and for some important plants the unique reads are listed as 600 for *Oryza sativa*, 573 for *Glycine max*, 508 for *Arabidopsis thaliana*, and 158 for *Zea mays* as of 1 March 2018. The numbers drop dramatically for plant species with limited or unknown genome sequences, such as 118 for *Triticum aestivum*, 116 for *Hordeum vulgare*, 102 from *Solanum lycopersicum*, 18 from *Vigna unguiculata*, 16 from *Saccharum officinarum*, and 12 from *Phaseolus vulgaris* (http://www.mirbase.org).

In a recent comprehensive study, 88 miRNA reads for T. monococcum subsp. monococcum were predicted by the homology-based analysis of putative miRNA sequences from the transcriptome assemblies in the NCBI database (Alptekin and Budak, 2016). The numbers of miRNAs identified from other plant species suggest that more miRNA molecules are yet to be identified from T. monococcum subsp. monococcum. In particular, we hypothesize that identification of miRNAs involved in stress regulation requires alternative strategies since most of those miRNAs are expressed during stress conditions. In the present study, we pooled the samples of T. monococcum subsp. monococcum tissues grown under normal conditions and from those subjected to salt and drought stress to increase the number of identified miRNAs, and analyzed the sequences of extracted small RNA molecules to identify the expressed miRNA sequences.

2. Materials and methods

2.1. Sampling of *T. monococcum* subsp. *monococcum* cultures

Einkorn seeds belonging to six different wheat populations were surface-sterilized using 70% ethanol and 30% sodium hypochlorite. Seeds were germinated on half-strength MS solution. The cultures were incubated for 10 days in a growth chamber under controlled conditions at 24 ± 2 °C with a 16-h light and 8-h dark photoperiod before the stress treatment.

After 10 days, the plant samples were grown under control (no treatment), salt stress (100 mM NaCl), and drought stress (0.3 MPa PEG-600) conditions in a growth chamber under the same conditions as defined above (Mahmood et al., 2002). Leaf and root samples from control and treated plants were harvested after 0, 3, 9, 12, and 24 h of the stress application and immediately frozen in liquid nitrogen. Approximately 4.0-g samples of the pooled wheat tissues from all the treated and control wheat samples were submitted to Source BioScience Plc (Nottingham, UK) for RNA isolation, small RNA library preparation, and sequencing using the Illumina MiSeq next generation sequencing platform.

2.2. Small RNA isolation

Small RNA molecules (<200 nt) were extracted from the pooled samples using a mirVana miRNA Isolation Kit according to the manufacturer's instructions (Life Technologies). The sample was quantified using an Agilent 2100 Bioanalyzer to ensure that the quantity and quality of the submitted material met the specified criteria before progressing through the library preparation.

2.3. Small RNA library construction and sequencing

The library was prepared using a TruSeq Small RNA Sample Preparation Kit. The 3' and 5' adapters were ligated to each end of the RNA molecule, and a reverse transcription reaction was used to create single stranded cDNA. Then cDNA fragments having adapter molecules on both ends underwent 11 cycles of PCR to amplify the amount of prepared material. The resulting library (18.35 nM) was validated with the Agilent 2100 Bioanalyzer. The library was then loaded onto an Illumina MiSeq Flow Cell at a concentration of 8 pM, and the samples were then sequenced using 50-bp paired-end runs.

2.4. Computational sequence analysis

2.4.1. Trimming and collapsing sequences

Before starting blast analysis, the data were cleaned of redundant sequences. First, the sequences were adapted and quality-trimmed using Skewer (version 0.1.12) (Jiang et al., 2014). The trimming parameters were adjusted for the small RNA input. The first processing step of merging identical reads and saving their occurrences (collapsing) was performed in order to provide data in the least redundant way possible and to speed up the classification process.

2.4.2. Profiling of small RNAs

For the general classification of available small RNA molecules, the collapsed sequence data were mapped to the *A. thaliana* genome as a reference from Ensembl (TAIR10) (Kersey et al., 2016) using Bowtie (Langmead et al., 2009) and filtered for known RNA elements. The detailed analysis of the small RNA library sequences received from the Illumina MiSeq platform was analyzed using Perl codes designed by our group as described by Ünlü et al. (2015). Basically, the blast code was generated to analyze small RNA sequences compared with the database generated using formatdb (Altschul et al., 1990) from a total of 30,424 known mature miRNA sequences belonging to 203 different species available at miRBase (Kozomara and Griffiths-Jones, 2011). Given the short

sequences, the code selected sequences having more than a 90% identity to reduce the risk of false positives.

2.4.3. Prediction of secondary structures

For the secondary structure prediction studies, a previously designed Perl code was used to identify precursor miRNA sequences (Ünlü et al., 2015). The code searches for 100% matches for putative mature miRNA sequences in T. monococcum subsp. monococcum chromosomal scaffold sequences (downloaded from NCBI). When a match is located, the sequence is extracted along with 80 nucleotides upstream and downstream of the located miRNA. Then a prediction of the secondary structures of the extracted miRNA precursor sequences was carried out using the RNA Folding Form application (http://mfold.rna.albany. edu) (Zuker, 2003) with the default software settings. The structural output files in the ct file format were uploaded to the Mfold server using the Structure Display and Free Energy Determination application to display the structure (Mathews et al., 1999).

2.4.4. Bioinformatics analysis for the characterization of putative miRNA target genes

To identify the target genes for the predicted miRNAs in this study, the complementary sequence matches were screened in *A. thaliana* and *T. aestivum* genomes using the psRNATarget tool (Dai and Zhao, 2011). We set the parameter to default values except for the maximum expectation being set to 3.0, the length for complementarity scoring (hspsize) being set to 18, and the number of top target genes for each small RNA being set to 50. For the categorization of target genes and the extents of their involvement in stress control, we downloaded the list of *A. thaliana* genes from the TAIR database (http://www.arabidopsis.org) and filtered those annotated as "response to stress" under the GO Slim functional category. Then we compared the list of predicted target genes in terms of whether they belonged to any of the filtered 519 stress-related genes.

For a detailed annotation analysis of miRNA target genes in *T. aestivum*, we downloaded the annotation file (Version 2.2) (Mayer et al., 2014) from the Joint Genome Institute portal that reported the protein-coding gene sequences in *T. aestivum*. We extracted the information for the genes showing the target fingerprints against the identified miRNA sequences. Using simple Perl codes (available from https:// github.com/esunlu/go_cluster_analysis), we clustered the GO annotations for the terms "biological process", "molecular function", and "cellular component" and analyzed the data to obtain a detailed functional categorization.

3. Results

3.1. Prediction of small RNAs

An average of 4.0 g pooled wheat tissues were processed to prepare the small RNA sequencing library. After sequencing, 15,139,448 raw reads were obtained. The reads were processed by trimming adapter sequences, quality filtering, and merging identical reads, yielding 751,647 identical small RNA sequences. The results were further filtered against several databases of known elements in *A. thaliana* in which the largest family of small RNAs was identified including miRNAs, CDS, mRNAs, tRNAs, snoRNAs, ncRNAs, snRNAs, and rRNAs (Figure 1).

From the miRBase database, 30,434 known mature miRNA sequences belonging to 203 different species were obtained and formatted for blast analysis. To reduce the numbers of false positives, we set the parameters to >90% identity and >0.0001 E-value in our blast code. The analysis identified 167 putative mature miRNA sequences belonging to 140 miRNA families (shown in S1 Table). When the sequence lengths were compared, the most abundant read length was 18 nucleotides (24.55%), followed by 21 nucleotides (19.76%) and 19 nucleotides (16.77%) among the total identified miRNAs (Figure 2).

The base distribution analysis at each position of the identified miRNA sequences revealed that uracil and guanine were the most abundant in the first and second positions with 64 and 53 of the sequences, respectively (Figure 3A). In addition, when the base distribution was analyzed against the length of miRNAs, a dominant bias towards uracil (U) at the first nucleotide was found especially for miRNAs with a length of 19–21 nt (Figure 3B).

3.1.1. Validation of *T. monococcum* subsp. *monococcum* miRNAs by secondary structure prediction

Since there are no available sequence data for *T. monococcum* subsp. *monococcum* chromosomes, the *Triticum urartu* chromosomal scaffold sequence data were downloaded from NCBI and used as reference to extract the precursor miRNA sequences. Using the encoded Perl script, 1,455,436 scaffold sequences, with sequence lengths ranging from 50 to 82,078 nucleotides, were searched for 100% positive matches. The extracted sequence frame corresponds to 80 nucleotides upstream of the start of the matching mature miRNA and 80 nucleotides downstream of miRNA.

We were able to extract 111 precursors to be analyzed for characteristic secondary structure folding. Mfold software was used to analyze secondary structures of the extracted pre-miRNA sequences. The default parameters were used to analyze secondary structures of the selected sequences. Seventy-seven of the sequences showed a stem-loop structure that is characterized for pre-miRNA sequences (see S2 Table). It is obvious that completing the assembly of *T. monococcum* subsp. *monococcum* of *T. urartu* chromosomal sequences will enhance the potential of the bioinformatics analysis for the *Triticum* species. The failure to predict of the secondary structure for the remaining 34 *T. monococcum* subsp. *monococcum*

Figure 1. Distribution of small RNA molecules in T. monococcum subsp. monococcum sequence data.

Figure 2. Length distribution of predicted miRNA molecules.

miRNAs was likely to have been due to the incomplete and fragmented nature of the *T. urartu* scaffold sequences used for the analysis.

3.2. Characterization of putative miRNA targets by bioinformatics prediction

Target prediction is an important step to characterize miRNA function. We compared the predicted miRNAs to those verified by experimental analysis in other plants under drought and salt stress conditions (Table 1). In this study, 23 salt stress and 24 drought stress-related miRNAs were identified for *T. monococcum* subsp. *monococcum*.

A comparison of the data among different plants suggests that most of the stress-related miRNAs are common across the compared species. According to the literature data as listed in Table 1, co-expression of 17 identified miRNAs was associated with both salt and drought stress conditions, experimentally (qPCR, northern blot, microarray, etc.). In addition, more than

Figure 3. Nucleotide distribution analysis. Analysis for the first nucleotide (A) and positional (B) biases.

half of the salt and drought stress-related miRNAs were conserved in at least two different species (Figure 4). None of the miRNAs controlling either condition was conserved in all five of the analyzed species.

We used the psRNATarget tool to scan possible target genes for sequences of the predicted miRNA families presented in Table 1. For the salt response-related miRNA targets, of the 1435 genes that were identified, 78.33% were proposed to be controlled by cleaving the corresponding transcript. For the drought stress-related miRNA target genes, it is proposed that 79.01% of 1548 genes were controlled by cleaving the corresponding transcript. To enrich our data in terms of the stress responsive gene targets, we compared the identified target genes with A. thaliana stress-related genes. In this study, the 22 miRNA families that were identified revealed that 30 target genes were directly related to stress in A. thaliana. A list of the names of the miRNAs and the predicted targets is presented in Table 2. To validate whether those A. thaliana target genes are conserved in wheat, we carried out a blast analysis for the target gene products containing T. urartu proteins. All the proteins are verified in the T. urartu genome but five of them are yet to be functionally characterized (Table 2).

We also scanned possible target genes for sequences of the predicted miRNA families in the available *T. aestivum* genome in order to present a more comprehensive putative target list. Screening an EMBL-based reference genome sequence revealed that 113 of the miRNA sequences statistically significantly matched the *T. aestivum* target genes, and 92.90% of 1085 genes were likely to be controlled by cleaving the corresponding transcript. We extracted the detailed annotation information for the target genes and clustered GO annotations under the terms "biological process", "molecular function", and "cellular component" for 908 putative target genes. We were able to retrieve 14,336 GO term matches, of which 39% were clustered for biological process, followed by 35% for cellular component, and 26% for molecular function clusters (Figure 5). A summary of the functional distribution of the matching GO terms is presented in Figure 6.

4. Discussion

Across the globe, wheat is one of the most demanded crops. In the present study, we aimed to fill an information gap regarding miRNA data for *T. monococcum* subsp. *monococcum*. We carried out a small RNA sequencing analysis to elucidate the miRNA sequences. To increase the number of identified miRNAs, we pooled samples of plants grown under normal, salt, and drought stress conditions. By adopting comparative genomics approaches, we successfully identified 140 distinct miRNA families covering 167 miRNA sequences.

The general sequence profiles of the identified miRNA molecules were similar to those proposed for miRNA characterization studies. Both the first nucleotide bias and the position nucleotide bias observations fit the previously described characteristics of the miRNAs (Lau et al., 2001; Ge et al., 2013). Due to a lack of chromosomal sequence information, we were not able to analyze the secondary structures for all the identified miRNA sequences; however, we did successfully display the structure models for 77 of the 111 analyzed pre-miRNAs extracted from *T. urartu* chromosomal scaffold data.

	Status of expressional verification									
miR	T. aestivu	т	H. vulgar	H. vulgare		а	Z. mays		O. sativa	
	Salt ^a	Drought ^f	Salt ^b	Drought ^g	Salt ^c	Drought ^c	Salt ^d	Drought ⁱ	Salt ^e	Drought ^e
miR156			\checkmark		\checkmark		\checkmark			\checkmark
miR157						\checkmark				
miR159		\checkmark			\checkmark		\checkmark	\checkmark		
miR160	\checkmark						\checkmark	\checkmark		\checkmark
miR164	\checkmark		\checkmark				\checkmark			
miR165					\checkmark					
miR166			\checkmark				\checkmark	\checkmark		\checkmark
miR167					\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
miR168					\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
miR169			\checkmark		\checkmark			\checkmark		
miR171			\checkmark		\checkmark	\checkmark	\checkmark			
miR172		\checkmark								
miR319					\checkmark		\checkmark		\checkmark	
miR393				\checkmark	\checkmark	\checkmark				
miR394					\checkmark				\checkmark	
miR395		\checkmark								
miR396					\checkmark	\checkmark		\checkmark		
miR397										\checkmark
miR398								\checkmark		
miR408			\checkmark			\checkmark		\checkmark		\checkmark
miR444										
miR528										
miR529	\checkmark									\checkmark
miR530									\checkmark	
miR535	\checkmark									
miR845										\checkmark
miR894										
miR1125										
miR5048										
miR5049		\checkmark		\checkmark						

Table 1. A comparison of the miRNA families identified for *T. monococcum* subsp. monococcum in terms of their responsiveness to drought and salt stress in different plant species.

a (Eren et al., 2015), b (Deng et al., 2015), c (Liu et al., 2008), d (Ding et al., 2009), e (Barrera-Figueroa et al., 2012; Zhou et al., 2010), f (Akdogan et al., 2016), g (Hackenberg et al., 2015), i (Wei et al., 2009)

Figure 4. Comparison for number of salt and drought stress related miRNAs among species. Data summarize the conservation level of stress related miRNA among other plant miRNAs that are known to be associated with stress tolerance functions.

Table 2. Summary of the target prediction of stress related miRNAs.

We also carried out a bioinformatics analysis for the characterization of the identified miRNA sequences regarding their potential involvement in salt and drought stress regulation. We characterized 23 miRNAs as potential regulators for salt stress and 24 miRNAs as potential regulators for drought stress in T. monococcum subsp. monococcum. When we analyzed the putative targets for those miRNA sequences, our results showed that 20 target genes and their corresponding miRNAs were identical when compared with the lists for drought and salt stress, except for miR148 and mir845. This suggests that both salt and drought stress are under a common master regulator that controls both conditions, and this fits with a previously proposed model (Deng et al., 2015). It is likely that the AGO1 gene (predicted as a target for miR168 family) acts as a master regulator for both drought and salt responsive target genes in T. monococcum subsp. monococcum as previously suggested for A. thaliana (Vaucheret et al., 2009). In addition, it was previously shown that this interaction is necessary for a salt stress response in barley, and it is directly related to the miR168 levels under salt stress conditions (Deng et al., 2015). In fact, there is a conserved nature for regulation of miRNA

	,				F
miP family	miR	Drought	Salt	GenBank	Protein product
	name	Diougin	San	(T. urartu)	(T. urartu)
miR156	miR156-3p		\checkmark	EMS63385.1	Argonaute 1B
	miR159-3p	\checkmark	\checkmark	EMS55264.1	IAA-amino acid hydrolase ILR1-like 5
miR159	miR159-3p		\checkmark	EMS66412.1	IAA-amino acid hydrolase ILR1-like 3
	miR159-5p	\checkmark	\checkmark	EMS59656.1	Acetyl-CoA carboxylase
miR165	miR165	x	\checkmark	EMS60006.1	3-ketoacyl-CoA synthase 6
	miR166		\checkmark	EMS47855.1	Putative glutathione S-transferase
mik166	miR166-5p	\checkmark	\checkmark	EMS67450.1	Zinc finger CCCH domain-containing protein 45
	miR168-5p		\checkmark	EMS63385.1	Protein argonaute 1B
	miR168	\checkmark	\checkmark	EMS63385.1	Protein argonaute 1B
m;D160	miR168-5p	\checkmark	\checkmark	EMS48655.1	Proline-rich receptor-like protein kinase PERK13
mik168	miR168-5p	\checkmark	\checkmark	EMS55864.1	Mitogen-activated protein kinase 17
n	miR168	\checkmark	\checkmark	EMS55864.1	Mitogen-activated protein kinase 17
miR168-5p		\checkmark	\checkmark	EMS62275.1	Receptor-like protein kinase
miD160	miR169		\checkmark	EMS46116.1	D repeat and FYVE domain-containing protein 3
mikio9	miR169		\checkmark	EMS61213.1	Protein TIFY 6B
m;D172	miR172	\checkmark	\checkmark	EMS66886.1	Trihelix transcription factor GT-2
miR172 miR172-5p		\checkmark	\checkmark	EMS50683.1	Cell division cycle 5-like protein
miR393	miR393	\checkmark	\checkmark	EMS56796.1	Hypothetical protein
	miR395-5p		\checkmark	EMS53304.1	Hypothetical protein
mik395	miR395-5p	\checkmark	\checkmark	EMS68547.1	Alpha-glucan water dikinase, chloroplastic
miR396	miR396-3p		\checkmark	EMS61897.1	ATP-dependent DNA helicase MPH1
: 10.200	miR398-3p		\checkmark	EMS67509.1	Copper chaperone for superoxide dismutase
m1K398	miR398-3p	V	\checkmark	EMS45437.1	Pectinesterase
:10.200	miR399		\checkmark	EMS47483.1	Disease resistance protein RGA2
mik399	miR399		\checkmark	EMS48356.1	Hypothetical protein
miR408	miR408		\checkmark	EMS53029.1	DNA polymerase epsilon catalytic subunit A
miR444	miR444	V	\checkmark	EMS60248.1	Hypothetical protein
miR529	miR529		\checkmark	EMS53316.1	Transcriptional corepressor SEUSS
miR845-5p	miR845-5p		х	EMS63076.1	Hypothetical protein
miR5049	miR5049	\checkmark		EMS46913.1	Pyruvate decarboxylase isozyme 2

Figure 5. General GO term distributions for miRNAs target genes in the *T. aestivum* genome.

Figure 6. Summarized GO classification of miRNAs target genes in the *T. aestivum* genome. The representation of the number of genes was limited to ten functional classes showing the highest number of genes for each GO term.

machinery especially for stress response (Datta and Paul, 2015). Thus, proposing the involvement of AGO1 in miRNA regulation during stress response would not be misestimating assumption.

In this study, we also carried out a target analysis using the *T. aestivum* genome as a reference. The GO annotation analysis for putative target genes affiliated with the identified miRNAs has a role in protein interactions and the regulation of mRNA levels. Data suggest that the identified miRNAs are involved in transcriptional and posttranscriptional regulatory control. The miRNA/target gene data presented in this study can be used as a reference for comprehensive functional genomics studies.

References

- Akdogan G, Tufekci ED, Uranbey S, Unver T (2016). miRNA-based drought regulation in wheat. Funct Integr Genomics 16: 221-233.
- Alptekin B, Budak H (2016). Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics 17: 171-187.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. J Mol Biol 215: 403-410.
- Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK (2012). High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12: 132.
- Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
- Briggle L (1963). Classification of Triticum species and of wheat varieties grown in the United States. 1st ed. Washington, D.C., USA: United States Department of Agriculture.
- Budak H, Akpinar BA (2015). Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15: 523-531.
- Carthew RW, Sontheimer EJ (2009). Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642-655.
- Curwen-McAdams C, Arterburn M, Murphy K, Cai X, Jones SS (2016). Toward a taxonomic definition of perennial wheat: a new species ×Tritipyrum aaseae described. Genet Resour Crop Evol 64: 1651-1659.
- Dai X, Zhao PX (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39: W155-9.
- Datta R, Paul S (2015). Plant microRNAs: master regulator of gene expression mechanism. Cell Biol Int 39: 1185-1190.
- Deng P, Wang L, Cui L, Feng K, Liu F, Du X, Tong W, Nie X, Ji W, Weining S (2015). Global identification of microRNAs and their targets in barley under salinity stress. PLoS One 10: e0137990.

In conclusion, this study provides a large amount of putative miRNA sequence information for einkorn wheat. As a follow up, the expression profiles of proposed miRNAs and their potential targets under diverse stress conditions should be evaluated in a comprehensive study. In addition, the *T. monococcum* subsp. *monococcum* genome assembly is yet to be completed, and this is the major drawback for detailed molecular and bioinformatics studies on einkorn. Completing the assembly of at least one species among wheat can escalate further molecular studies.

Acknowledgment

This study was supported by Abant İzzet Baysal University BAP grant, Grant No: 2015.03.01.880.

- Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009). Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103: 29-38.
- Eren H, Pekmezci MY, Okay S, Turktas M, Inal B, Ilhan E, Atak M, Erayman M, Unver T (2015). Hexaploid wheat (*Triticum aestivum*) root miRNome analysis in response to salt stress. Ann Appl Biol 167: 208-216.
- Ge X, Zhang Y, Jiang J, Zhong Y, Yang X, Li Z, Huang Y, Tan A (2013). Identification of microRNAs in *Helicoverpa armigera* and *Spodoptera litura* based on deep sequencing and homology analysis. Int J Biol Sci 9: 1-15.
- Griffiths-Jones S, Saini HK, Dongen S van, Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154-8.
- Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015). Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13: 2-13.
- Jiang H, Lei R, Ding SW, Zhu S (2014). Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15: 182.
- Jones-Rhoades MW, Bartel DP, Bartel B (2006). MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57: 19-53.
- Karagöz A, Zencirci N (2005). Variation in wheat (*Triticum* spp.) landraces from different altitudes of three regions of Turkey. Genet Resour Crop Evol 52: 775-785.
- Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C et al (2016). Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 44: D574-D580.
- Kozomara A, Griffiths-Jones S (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: D152-D157.

- Langmead B, Trapnell C, Pop M, Salzberg SL (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
- Lau NC, Lim LP, Weinstein EG, Bartel DP (2001). An abundant class of tiny RNAs with probable regulatory roles in *Caenorhabditis elegans*. Science 294: 858-862.
- Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008). Microarraybased analysis of stress-regulated microRNAs in *Arabidopsis thaliana*. RNA 14: 836-843.
- Mahmood I, Razzaq A, Hafiz I, Kaleem S, Khan A, Qayyum A, Ahmad M (2002). Interaction of callus selection media and stress duration for in vitro selection of drought tolerant callus of wheat. African J Biotechnol 11: 4000-4006.
- Mathews DH, Sabina J, Zuker M, Turner DH (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911-940.
- Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P et al (2014). A chromosome-based draft sequence of the hexaploid bread wheat (*Triticum aestivum*) genome. Science 345: 1251788.
- Peters L, Meister G (2007). Argonaute proteins: mediators of RNA silencing. Mol Cell 26: 611-623.
- Ritchie W, Legendre M, Gautheret D (2007). RNA stem-loops: to be or not to be cleaved by RNAse III. RNA 13: 457-462.

- Serpen A, Gökmen V, Karagöz A, Köksel H (2008). Phytochemical quantification and total antioxidant capacities of emmer (*Triticum dicoccon* Schrank) and einkorn (*Triticum monococcum* L.) wheat landraces. J Agric Food Chem 56: 7285-7292.
- Ünlü ES, Gordon DM, Telli M (2015). Small RNA sequencing based identification of miRNAs in *Daphnia magna*. PLoS One 10: e0137617.
- Vaucheret H (2009). AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 species by MIR168a and MIR168b. PLoS One 4: e6442.
- Wei L, Zhang D, Xiang F, Zhang Z (2009). Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci 170: 979-989.
- Zhang B, Pan X, Cobb GP, Anderson TA (2006). Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289: 3-16.
- Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010). Genome-wide identification and analysis of drought-responsive microRNAs in *Oryza sativa*. J Exp Bot 61: 4157-4168.
- Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406-3415.

SUPPLEMENTARY DATA

S1 Table. Sequence information for the identified miRNAs.

Predicted miRNA family name	Predicted miRNA name	Sequence length	Copy number	Sequence
miR22	tmo-miR22	22	1	AAGCUGCCAGUUGAAGAACUGU
miR30	tmo-miR30-5p	20	1	UGUAAACAUCCUCGACUGGA
miR99	tmo-miR99	21	1	CACCCGUAGAACCGACCUUGC
	tmo-miR156	20	5	UGACAGAAGAGAGUGAGCAU
miR156	tmo-miR156-3p	21	16	GCUCACCCUCUCUCUGUCAGC
	tmo-miR156-5p	20	1	UGACAGAAGAGAGCGAGCAC
miR157	tmo-miR157	21	1	UUGACAGAAGAUAGAGAGCAC
	tmo-miR159	21	1	UUUGGAUUGAAGGGAGCUCUG
miR159	tmo-miR159-3p	18	1	UUUGCAUGACCGAGGAGC
	tmo-miR159-5p	21	1	AGCUGCUUGUUCAUGGUUCCC
miR160	tmo-miR160	21	1	UGCCUGGCUCCCUGAAUGCCA
miR164	tmo-miR164	21	7	UGGAGAAGCAGGGCACGUGCA
miR165	tmo-miR165	21	1	UCGGACCAGGCUUCAUCCCCC
	tmo-miR166	21	1	UCGGACCAGGCUUCAUUCCCC
miR166	tmo-miR166-3p	17	1	UCGGACCAGGCUUCAAU
	tmo-miR166-5p	18	2	GGUUGUUGUCUGGUUCAA
- D1 (5	tmo-miR167	22	1	UGAAGCUGCCAGAAUGAUCUGA
m1R167	tmo-miR167-3p	18	13	UCAUGCUGGAGUUUCAUC
	tmo-miR168	21	2	UCGCUUGGUGCAGGUCGGGAA
miR168	tmo-miR168-3p	18	13	CCCGCCUUGCACCAAGUG
	tmo-miR168-5p	19	1	UUGCUUGGUGCAGAUCGGG
miR169	tmo-miR169	19	1	AGCCAAGGAUGACUUGCCA
	tmo-miR169-3p	19	4	GGCAGUCUCCUUGGCUAGC
	tmo-miR171	21	3	UUGAGCCGUGCCAAUAUCACG
miR171	tmo-miR171-3p	20	2	UUGAGCCGUGCCAAUAUCAC
	tmo-miR171-5p	19	1	UGGUAUUGUUUCGGCUCAU
:D172	tmo-miR172	19	2	GAAUCUUGAUGAUGCUGCA
miR1/2	tmo-miR172-5p	21	1	GCAGCACCACCAAGAUUCACA
miR181	tmo-miR181-5p	22	1	AACAUUCAACGCUGUCGGUGAG
miR182	tmo-miR182	18	1	GUGGCACUAGUGGAAUUC
	tmo-miR319	19	2	UUGGACUGAAGGGAGCUCC
miR319	tmo-miR319-3p	21	46	CUUGGACUGAAGGGUGCUCCC
	tmo-miR319-5p	20	3	AGAGCGUCCUUCAGUCCACU
:D200	tmo-miR390	21	1	AAGCUCAGGAGGGAUAGCGCC
m1R390	tmo-miR390-3p	19	2	GCUAUCUAUCCUGAGCUCC
	tmo-miR393	21	46	UCCAAAGGGAUCGCAUUGAUC
m1R393	tmo-miR393-3p	22	1	GAUCAGUGCAAUCCCUCUGGAA
ID ag (tmo-miR394	17	5	UUGGCAUUCUGUCCACC
m1R394	tmo-miR394-3p	18	1	GUGGGCAUACUGCCAAUG
miR3944	tmo-miR3944-3p	18	1	ACCUUCGGGCUGGCCUGC

:D205	tmo-miR395	21	1	UGAAGUGUUUGGGGGAACUCC
m1K395	tmo-miR395-5p	18	1	UGAAGUGUUUGAGGGAAC
:D206	tmo-miR396	20	1	UCCACAGGCUUUCUUGAACU
IIIK390	tmo-miR396-3p	21	4	GGUCAAGAAAGCUGUGGGAAG
miR397	tmo-miR397	20	12	UUGAGUGCAGCGUUGAUGAA
m;D209	tmo-miR398	20	1	UGUGUUCUCAGGUCACCCCU
mik398	tmo-miR398-3p	20	1	GUGUUCUCAGGUCGCCCCUG
miR399	tmo-miR399	21	3	UGCCAAAGGAGAAUUGCCCUG
miR408	tmo-miR408	21	1	UGCACUGCCUCUUCCCUGGCU
miR414	tmo-miR414	17	1	GAGGAUGAUGAGGAUGA
miD444	tmo-miR444	19	1	UGCAGUUGCUGUCUCAAGC
1111K444	tmo-miR444-3p	21	8	UGCAGUUGCUGCCUCAAGCUU
miR456	tmo-miR456-5p	18	1	UGCACUGCCUUCAGAGUG
miR466	tmo-miR466-5p	19	1	AACACACACACACACACAC
miR479	tmo-miR479	21	1	UGAGCCGAACCAAUAUCACUC
miR529	tmo-miR529	21	1	AGAAGAGAGAGAGUACAGCCC
	tmo-miR529-3p	18	1	GCUGUACCCUCUCUUC
miR530	tmo-miR530	20	1	CUGCAUUUGCACCUGCACCU
miR535	tmo-miR535	22	1	UGACAACGAGAGAGGGGCACGCG
miR619	tmo-miR619-5p	22	1	GCCUCGGCCUCUCAAAGUGCUG
miR650	tmo-miR650	21	1	CCAUGGUGGAGAUGUCCUGAG
miR706	tmo-miR706	22	1	CCAGGGCUAUACAGAGAAACAC
miR716	tmo-miR716	19	1	CGAGCCCGGGCGGAGCGGC
miR767	tmo-miR767-5p	23	1	UGCACCAUGGUUGUCUGAGCAUG
miR827	tmo-miR827	21	1	UUAGAUGACCAUCAGCAAACA
1111027	tmo-miR827-5p	22	1	UCUGAACUUGUUUUGCUGGUUG
miR845	tmo-miR845-5p	19	1	ACCUUGCUCUGAUACCAAU
miR894	tmo-miR894	20	2	UUCGUUUCACGUCGGGUUCA
miR928	tmo-miR928	17	1	GUGGCUGUGGAAGCUGG
miR1117	tmo-miR1117	19	1	UUAGUACCGGUUCGUGGCA
miR1120	tmo-miR1120	18	1	AUUUUUAUAUUAUGAGAC
miR11214	tmo-miR11214	20	1	UAGUGAUCUAAACGCUCUUA
miR1122	tmo-miR1122	19	1	GUCUAGAUACGGAUGUAUC
miR1125	tmo-miR1125	24	1	AAAUUUAACCAACGAGACCAACUG
miR1131	tmo-miR1131	18	1	CUUUAGUACCGGUUCGUG
miR1133	tmo-miR1133	18	1	AAGUUUUUUCGGACGGAG
miR1135	tmo-miR1135	23	1	CCGUUCGGAAUUACUUGUCGCAG
miR1136	tmo-miR1136	22	2	ACUUGUCGCAGGUAUGGAUAUA
miR1137	tmo-miR1137	18	1	AGUUAGUACAAAGUUGAG
miR1139	tmo-miR1139	22	1	AUGUUACUAGUGUAUGUUACUC
miR1207	tmo-miR1207-5p	18	1	GGGGCAGGGAGGCAGGGA
miR1273	tmo-miR1273	22	1	AAUGAUUCGAUCUCGACUCACU
miK12/3	tmo-miR1273-3p	18	1	GUCCUGCUCUGUCACCCA

miR1285	tmo-miR1285	20	1	CAGAGGUUGCAGUGAGUGGA
miR1432	tmo-miR1432-5p	20	2	UCAGGAGAGAUGACACCGAC
miR1436	tmo-miR1436	19	1	AUUAUGGGACGGAGGGAGU
miR1520	tmo-miR1520	18	1	CCCAUCACGUGUCAUGUU
miR1584	tmo-miR1584	18	1	AGGAUCAAGGGAAUCGGG
miR1878	tmo-miR1878-3p	23	2	AUUUGUAGUGUUCGGAUUGAGUU
miR2111	tmo-miR2111-5p	21	1	UAAUCUGCAUCCUGAGGUUUA
miR2120	tmo-miR2120	18	1	GAACCGGGACUAAAGAUC
miR2478	tmo-miR2478	18	1	AGAGGGCGUGGGUUCAUA
miR2525	tmo-miR2525	19	1	UUUGAUCCACUUCGCUGUC
miR2538	tmo-miR2538-5p	18	1	AUCCUCUAUUAUUUUAGU
miR2673	tmo-miR2673	18	1	сииисииссисииссис
miR2916	tmo-miR2916	20	1	CAAGAACGAAAGUUGGGGAC
miR2919	tmo-miR2919	19	1	CCUGCCGUCGCUGUGCUUC
miR3348	tmo-miR3348	17	1	CCUCGCCGGGAGGCUCG
miR3630	tmo-miR3630-3p	17	31	AUGGGAAUCUCUCUGAU
miR3682	tmo-miR3682-5p	18	1	AGGAUAACACAGGUAGAA
miR3711	tmo-miR3711	18	3	GCCCUCCUUCUAGCGCCA
miR3885	tmo-miR3885-5p	19	1	UGCUGAGCGGCGGCCGCCG
miR3887	tmo-miR3887-3p	18	1	GGAGAGAUGGCUGUGGAA
miR4922	tmo-miR4922	18	1	UAAAUUGUAUCAUUUUUC
miR4995	tmo-miR4995	21	6	CAUAGGCAGUGGCUUGGUUAA
miR5021	tmo-miR5021	18	1	CUACAAUUUCUUCUUCUU
miR5048	tmo-miR5048	20	1	UAUAUUUGCAGGUUUUAGGU
m;D5040	tmo-miR5049	23	1	AGCUGAGACACUUAUUUUGGGAC
miK5049	tmo-miR5049-3p	20	1	CAAGUAAUAUGGAUCGGAGG
miR5050	tmo-miR5050	17	1	UUUUGCUGGUUGAACGA
miR5054	tmo-miR5054	18	1	AACCACGUGGCCGUGGGU
miR5056	tmo-miR5056	21	1	UCGGGAGGAAGAACCGGUAAU
miR5059	tmo-miR5059	17	1	CGAGCCUGGGCAGCACC
miR5062	tmo-miR5062	20	2	UGAACCUUGGGGAAAAGCCG
miR5064	tmo-miR5064	20	38	UGAAUUUGUCCAUAGCAUCA
miR5067	tmo-miR5067	18	1	UUCAUAUUAGUUGUCGCU
miR5072	tmo-miR5072	19	4	UUCUGGGUUCGUUCCCCAG
miR5073	tmo-miR5073	23	1	GUUUGGUGAAUCGGAAACAAUUU
miR5076	tmo-miR5076	21	1	UCUUUUUCCUUAAAUGGGAGC
miR5079	tmo-miR5079	22	1	UAUAAUUUGGAUUUGUUAUUUU
miR5082	tmo-miR5082	19	2	GCGAUGAUGGCCGCGCGGG
miR5083	tmo-miR5083	20	1	UAUUUAGUGUUGACCAAAUU
miR5084	tmo-miR5084	20	1	GUGAUCCUCUGCAGUACUGU
miR5096	tmo-miR5096	21	1	AGACAGGGUUUCACCAUGUUG
miR5106	tmo-miR5106	18	1	GGGUCUGUAGCUCAGUUG

miR5141 two-miR5141 17 1 CCGUCAGUCGCGUCGGG miR5169 two-miR519 18 1 UUGACCAAGUUQUAGAA miR5174 two-miR5174-3p 19 1 UUAUGAACGAGGGAGGAGUA miR5174 two-miR5174-5p 19 1 CAAAAACGCUGUUAUAUA miR5181 two-miR5184.5p 12 UGGAAGGGGCACCACGAGGAG miR528 two-miR5387 18 1 CGAACGCGGCCAAGGGA miR5381 two-miR5387 18 1 CGAACCGGGCCAAGGGA miR5383 two-miR5383 22 1 AAUGCCUCUGAAAAGUCCGAA miR5533 two-miR5532 22 1 AUGGUGAAAGUGACAAGUCCAA miR5534 two-miR5538 22 1 AUGUGAACAACAGGAGAAUCUCA miR5535 two-miR5538 19 1 CAGGGAAGUGACAAUGUCA miR5553 two-miR5571-5p 21 1 CAUGGAAGAUGAUGAUGAUGA miR5553 two-miR558 19 1 CAUGGACACACAGACACAUCACA miR5554 two-miR6177 20 1					
miR5169 tmo-miR5149 18 1 UUGACCAAGUUUGUAGAA miR5174 tmo-miR5174 3p 19 1 UAUGGAACGGAGGGAGUA miR5181 tmo-miR5181 19 1 AAAAGGCUGUUAUAUUA miR5181 tmo-miR5181 19 1 AACUGCGACCAUUGAGAGGAG miR538 tmo-miR5387 18 1 GACCCGGGGCCAAGGGA miR5383 tmo-miR5383 18 1 CGAACGGGGCUCUAAAGGA miR5393 tmo-miR5583 19 1 UACUGUAGAAAAGAUUCUCCA miR5531 tmo-miR5532 22 1 ACUGUUGAGUAACGACAAGCUG miR5531 tmo-miR5532 22 1 ACUGUUGAGUAACGACACCACAGU miR553 tmo-miR5531 22 1 ACUGUUGAGUAACCACAGCACAGU miR553 tmo-miR5531 20 1 CAUGAGAUGAUGAGAGCCCAGU miR617 tmo-miR6177 20 1 CCCUUGAUGACACCCCAGU miR6181 tmo-miR6181 22 1 GAUGAUUGAUGAUGAUGAUGUU miR6181 tmo-miR6199 18	miR5141	tmo-miR5141	17	1	CCGUCAGUCGCGUCGGG
nik5174 tmo-mik5174-3p 19 1 UUAUGGAACGGAGGAGUA mik5174 tmo-mik714-5p 19 1 CAAAAACCCUGUUAUUAUUA mik5181 tmo-mik73181 19 1 AACUGCGACACUUAUUAUG mik528 tmo-mik7368 18 1 CGCAACGGGCAUCCAAGGAG mik5387 tmo-mik7387 18 1 CGAACCGGUCCUAAGGA mik5387 tmo-mik7533 22 1 AAUGCCUCUAGAAAGAUUCCC mik5538 tmo-mik7533 19 1 UAACUGAGUAAUAUGUCC mik5538 tmo-mik7537 22 1 AUGUGGACCAAGCAAGCAAGGUGCCGCGCCCUA mik5553 tmo-mik7557-5p 21 1 AUGUGAACCAAGCAAUUUCCC mik5558 tmo-mik7585-3p 22 1 CCAUGGAAGCAGCAGCAGA mik555 tmo-mik6181 20 1 AUGUGAACCAGCAGAUGA mik6177 tmo-mik6181 20 1 CCAUGGACAGAAGGACUCCAGUUA mik6181 tmo-mik6182 21 1 UCCCUUUAUGAGAACCCCGGUUA mik6181 tmo-mik6182 <t< td=""><td>miR5169</td><td>tmo-miR5169</td><td>18</td><td>1</td><td>UUGACCAAGUUUGUAGAA</td></t<>	miR5169	tmo-miR5169	18	1	UUGACCAAGUUUGUAGAA
miR5174 tmo-miR5174-5p 19 1 CAAAAACGCUGUUAUAUUA miR5181 tmo-miR5181 19 1 AACUGCGACACUUAUUAUG miR528 tmo-miR528-5p 21 2 UGGAAGGGCAUGCAGAGGAG miR5368 tmo-miR5368 18 1 CGAACCGGUGCUAAAGGA miR5503 tmo-miR5503 22 1 AAUGCUCUGAAAGAUCCGAA miR5533 tmo-miR5532 19 1 UAAUGAUAUAUGAAAAGUCCGAA miR5533 tmo-miR5532 22 1 UAUGGAAAGUAUUCC miR5534 tmo-miR5538 22 1 ACUGUUGAGAAACAAGGGGGGCCUUA miR5558 tmo-miR5571-5p 21 1 ACUGUUGAGAUAACGACACGCACUCA miR6173 tmo-miR6173 20 1 CAUGAGAUAGAGCACUCAGU miR6171 tmo-miR6181 22 1 UGCUUCUUGAGGACACUCCGGU miR6181 tmo-miR6182 21 1 GGAGGUUGAGUGAUGAUGAUGUUA miR6191 tmo-miR6181 2 1 GGAGGUUGAGUGAUGAUGUUA miR6182 tmo-miR6181	miR5174	tmo-miR5174-3p	19	1	UUAUGGAACGGAGGAGUA
miR5181 tmo-miR5181 19 1 AACUGCGACACUUAUUAUG miR528 tmo-miR538-5p 21 2 UGGAAGGGCGUCGACGAGGAG miR538 tmo-miR5387 18 1 GACCCGCGGCCAAGGAG miR5387 tmo-miR5387 18 1 CGAACCGGUGCUAAAGGA miR5503 tmo-miR5503 22 1 AAUGCCUCUAGAAAGAUCGGAA miR5532 tmo-miR5532 22 1 UAACUAGUAAAUAUGUUCC miR5538 tmo-miR5532 22 1 AUGGAAUAAUAGUGACAAAGGUG miR553 tmo-miR5583 22 1 AUGGGAUGAACCAAGCAAUUCUCA miR558 tmo-miR5585 19 1 GAUGAAGUGAUGAUGAUGAUGAUGAUGAUGAUGAUGAUGA	miR5174	tmo-miR5174-5p	19	1	CAAAAACGCUGUUAUAUUA
miR528 tmo-miR538-5p 21 2 UGGAAGGGGCAUGCAGGAGGAG miR5368 tmo-miR5387 18 1 GACCCCGCGGCCAAGGGA miR5387 tmo-miR5387 18 1 CGAACCGGUGCUAAGGGA miR593 tmo-miR533 22 1 AAUGCCUCUAGAAAGAUCCGAA miR553 tmo-miR5532 22 1 UAUGGAAUAUAUGACGACAGCAGAGG miR5538 tmo-miR5538 22 1 AUGUGAACCAAGCAAUUCUCA miR558 tmo-miR558-3p 22 1 CCAGGCAAGGUGGCGGCACCU miR5658 tmo-miR6173 20 1 CCAGGCAAGGUCAGUGAGGACUUA miR6173 tmo-miR6173 20 1 CCAUGGAAUGAUGAUGAUGAUGAUGAUGAUGAUGAUGAUGAU	miR5181	tmo-miR5181	19	1	AACUGCGACACUUAUUAUG
miR3368 tmo-miR5368 18 1 GACCCGCGGGCCAAGGGA miR5387 tmo-miR5387 18 1 CGAACCGGUGCAAAGGA miR5303 tmo-miR5503 22 1 AAUGCCUCUGAAAAGAUCCGAA miR5231 tmo-miR5532 19 1 UAACUAGUAAAGAUCCGAA miR5531 tmo-miR5538 22 1 ACUGUUGAGUAACGGCAGCACAAG miR5585 tmo-miR5585-3p 21 1 AUGUGAACCAAGCAUCAUCUCA miR5585 tmo-miR6585 19 1 GAUGAGAAGGAGCACCU miR6173 tmo-miR6173 20 1 CCAUGGAAGGAGCACUA miR6181 tmo-miR617 20 1 CCAUGGAAGAGGACCUCAUGAUGACUCAGGAGCACUU miR6181 tmo-miR6181 22 1 UGCUCUUCAUGGACUGAGGCCUU miR6188 tmo-miR6188 19 1 GAGGAGUUGAUGACUGAGUGUCUU miR6198 tmo-miR6191 18 1 CUUAGAUUUGUCUAGAUGACUCCGG miR6199 tmo-miR6199 18 1 CCACAAAUUCUUCACAGG miR6204 tmo-miR6214	miR528	tmo-miR528-5p	21	2	UGGAAGGGGCAUGCAGAGGAG
miRs387 tmo-miRs587 18 1 CGAACCGGUGCUAAAGGA miRs503 tmo-miRs503 22 1 AAUGCCUCUGAAAAGAUCCGAA miRs532 tmo-miRs532 19 1 UAACGAAAUAUGGAAAAGAUCCGAA miRs533 tmo-miRs538 22 1 ACUGUUGAAUAAUAUGACAAAGGUG miRs538 tmo-miRs571-5p 21 1 AUGUGAACAAAGGUGCGGCGACCQ miRs585 tmo-miRs658 19 1 GAUGGAAUGAUGAUGAUGAUGAU miRs618 tmo-miRs6173 20 1 AUGUGAAUGAUGAUGAUGAUGAUGAUGAUGAUGAUGAUGA	miR5368	tmo-miR5368	18	1	GACCCGCGGGCCAAGGGA
miR5503 tmo-miR5503 22 1 AAUGCCUCUAGAAAGAUCCGAA miR5523 tmo-miR5523 19 1 UAACUAGUAAAUAUGUCC miR5532 tmo-miR5532 22 1 UAUGGAAUAUAUGACAAAGGUG miR5531 tmo-miR5538 22 1 AUGUGAACGACAGCAGCAGCAG miR5571 tmo-miR558-3p 22 1 AUGGGAUUGAGGACCACGU miR5658 tmo-miR6173 20 1 AUGGGAUUGAGACGCACCU miR6173 tmo-miR6172 20 1 CCAUGGACAGAGCCCCAGU miR6174 tmo-miR6177 20 1 CCAUGGACAGAGCCCCUU miR6181 tmo-miR6181 22 1 UGCUCUUCAUGAACGCCCCUU miR6182 tmo-miR6181 22 1 UGCUCUUCAUGAACGCCCGG miR6191 tmo-miR6181 1 CUUAGAUUGUUGAUGAUGAUCGCUUU miR6198 miR6198 tmo-miR6198 22 2 CGCUCUUCAUGAUGAUGAUCAUA miR6203 tmo-miR6203 1 AGGAUUUCUUCAGAUGAUCUUCUUAA miR6214 tmo-miR6203 1 <t< td=""><td>miR5387</td><td>tmo-miR5387</td><td>18</td><td>1</td><td>CGAACCGGUGCUAAAGGA</td></t<>	miR5387	tmo-miR5387	18	1	CGAACCGGUGCUAAAGGA
mik5523 tmo-mik5523 19 1 UAACUAGUAAAUAUGUCC mik5532 tmo-mik5532 22 1 UAUGGAAUAUAUGACAAAGGUG mik5538 tmo-mik5538 22 1 ACUGUUGAGUAACGACAAGCAAG mik5585 tmo-mik5571-5p 21 1 AUGGAAUGAUAUGAUCAU mik5585 tmo-mik5658 19 1 CAUGGAAUGAUGAUGAUGAUGAU mik6173 tmo-mik6173 20 1 CCAUGGACAGAAGGCACCUUA mik6181 tmo-mik6177 20 1 CCAUGGACAGAAGGCACCUUA mik6181 tmo-mik6181 22 1 UGCUCUUCAUGAUGGAUGGCGCGCG mik6181 tmo-mik6181 22 1 GAUGUGUGUAGAUGAUGGCUUU mik6181 tmo-mik6182 21 1 GAGUGUGUGUAUGAUGGAUGGUUU mik6184 tmo-mik6182 21 1 GAGUGUUUGUAUGAUGAUGAUGAUU mik6193 tmo-mik6192 18 1 CUUAGAUUUCUCACAGU mik6199 tmo-mik6203 21 1 AGAAUUGAAUCUUCUUAA mik6204 tmo-mik6204 <td< td=""><td>miR5503</td><td>tmo-miR5503</td><td>22</td><td>1</td><td>AAUGCCUCUAGAAAGAUCCGAA</td></td<>	miR5503	tmo-miR5503	22	1	AAUGCCUCUAGAAAGAUCCGAA
miR5532 tmo-miR5532 22 1 UAUGGAAUAUAUGACAAAGGUG miR5538 tmo-miR5558 22 1 ACUGUUGAGUAACGGCAGCAAG miR5571 tmo-miR5558 1 AUGUGAACCAAGGAGCAGCAAG miR5585 tmo-miR5658 1 1 AUGUGAACCAAGGAGGGGGCACCU miR6173 tmo-miR5658 19 1 GAUGAGAUGAUGAUGAUGAUGAUGA miR6173 tmo-miR6173 20 1 AUGGGAUUAGAGACCCCAGU miR6171 tmo-miR6177 20 1 CCAUGGACAGAAGGCACUUA miR6181 tmo-miR6181 22 1 UGCUCUUCAUGAAGAGCACUCAGU miR6182 tmo-miR6182 21 1 GAGUGAUGAGUGAUGACUGAGUCAU miR6184 tmo-miR6188 19 1 GAGGAUUGGAUGAUAACGGGUCUU miR6184 tmo-miR6188 19 1 CCACAGAAUUCUCACAGU miR6193 tmo-miR6198 22 2 CGGCUCUUGGAUGAUAUAU miR6194 tmo-miR6198 1 CCACAGAAUUCUCACAGU miR6204 18 1 UGUAAACGGGAACAGACGACA	miR5523	tmo-miR5523	19	1	UAACUAGUAAAUAUGUUCC
miR5538 tmo-miR5538 22 1 ACUGUUGAGUAACGGCAGCAAG miR5571 tmo-miR5571-5p 21 1 AUGUGAACCAAGCAAUUCUCA miR5585 tmo-miR5585-3p 22 1 CCAGGCAAGUGAGGGCACCU miR6173 tmo-miR5658 19 1 GAUGAGAUGAUGAUGAUGAUGAU miR6173 tmo-miR6177 20 1 CCAUGGACAGAGGCCCCAGU miR6181 tmo-miR6181 22 1 UGCUUUCAUGGACCGCAGCAGU miR6181 tmo-miR6181 22 1 UGCUUUCAUGGAUGAGUGGCUUU miR6184 tmo-miR6182 21 1 GAGUGAUCAUGAUGAUGAUGAUGAUGAUGAUGAUGAUU miR6188 tmo-miR6182 21 1 GAGUGUUGAUGAUGAUA miR6191 miR6191 tmo-miR6192 18 1 CUUAGAUUUGUUGAUAGAU miR6193 miR6193 tmo-miR6193 1 AGGAAUGAGAGAGAAAUAUU miR6204 tmo-miR6203 21 1 AGAAAUGGAAAGGAGAAGAAGAGAAUAUU miR6204 22 1 AGGAAAUGGACAGGACAGAC miR6204 1 UGCAGCACGAGCAGCACAGAC miR621	miR5532	tmo-miR5532	22	1	UAUGGAAUAUAUGACAAAGGUG
miR5571 tmo-miR5571-5p 21 1 AUGUGAACCAAGCAAUUCUCA miR5585 tmo-miR5585-3p 22 1 CCAGGCAAGGUGGCGGCACCU miR5585 tmo-miR558 19 1 GAUGAGAUGAUGAUGAUGAUGAUGAUGAUGAUGAUGAUGA	miR5538	tmo-miR5538	22	1	ACUGUUGAGUAACGGCAGCAAG
miR5585 tmo-miR5585-3p 22 1 CCAGGCAAGGUGGCGGGCACCU miR5658 tmo-miR5658 19 1 GAUGAGAUGAUGAUGAUGAUGAU miR6173 tmo-miR6173 20 1 AUGGGAUGAUGAUGAUGAU miR6173 tmo-miR6177 20 1 CCAUGGACAGAAGGCACUUA miR6181 tmo-miR6181 22 1 UGCUCUUCAUGGACGGCGCCUU miR6182 tmo-miR6182 21 1 GAUGGUGUGAUGAUGAUGGCUUU miR6188 tmo-miR6188 19 1 GGAUGAUGAUGAUGAUGAUGAUGAUA miR6198 tmo-miR6198 12 2 CGGCUCUGUCUUGAUAGAUGAUGAUA miR6198 tmo-miR6198 22 2 CGGCUCUGUCUUGAUGAUGAUGAUGAUAU miR6198 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6199 tmo-miR6199 18 1 CGACGUUGCUUGAUAGAUAUUU miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGACACAGA miR6214 tmo-miR620 1 UGUUGUGUCUGGGGCUUCG miR6253 miR6250 tmo-miR6250<	miR5571	tmo-miR5571-5p	21	1	AUGUGAACCAAGCAAUUCUCA
miR5658 tmo-miR6578 19 1 GAUGAGAUGAUGAUGAUGAUGAU miR6173 tmo-miR6173 20 1 AUGGGAUUAGAGACCCCAGU miR6177 tmo-miR6177 20 1 CCAUGGACAGAAGGCACUUA miR6181 tmo-miR6181 22 1 UGCUCUUCAUGGACUGGACGGCGC miR6182 tmo-miR6182 21 1 GAGGAUCGAUGAUGGAUGGCUUU miR6188 tmo-miR6182 21 1 GAGGAUCGAUGAUGGAUGGCUUU miR6188 tmo-miR6191 18 1 CUUAGAUUGUCUGAUAGAU miR6198 tmo-miR6198 22 2 CGGCUCUGUCUGGAUGGUCUUCUUAA miR6203 tmo-miR6203 21 1 AGGAAUGGAAGGAGAAUAAUU miR6214 tmo-miR6204 22 1 AGGAAUGGAAGGAGACUAAU miR6214 tmo-miR6214 20 1 ACGACGACGAGGACGAGACGAGA miR6250 tmo-miR6250 20 1 UGUAGAAGUGGGCAUUAGGGG miR6478 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGGG miR6478 tmo-miR6478	miR5585	tmo-miR5585-3p	22	1	CCAGGCAAGGUGGCGGGCACCU
miR6173 tmo-miR6173 20 1 AUGGGAUUAGAGACCCCAGU miR6177 tmo-miR6177 20 1 CCAUGGACAGAAGGCACUUA miR6181 tmo-miR6181 22 1 UGCUCUUCAUGGACUGAGGCGCG miR6182 tmo-miR6182 21 1 GAGUGUGUGAUGGAUGGCUUU miR6182 tmo-miR6182 21 1 GAGGGAUCGAUGAACCCGGG miR6184 tmo-miR6188 19 1 GGAGGAUUGAUGAUGAUCGAUGAUGAUCAU miR6191 tmo-miR6198 22 2 CGGCUCUGUCUUGGAUGGUCAU miR6198 tmo-miR6199 18 1 CCUAGAAUUCUCAAGU miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCUAAGU miR6203 tmo-miR6204 22 1 AGAAAUGAAAGGAGAAUAUU miR6214 tmo-miR6204 20 1 ACGACACGACGACGACACA miR6219 tmo-miR6214 20 1 UGUAGAGUCUGGUUCGGGUUCG miR6250 tmo-miR6250 20 1 UGCCUGUGUGUGUGGGUUCG miR6478 tmo-miR6253 19	miR5658	tmo-miR5658	19	1	GAUGAGAUGAUGAUGA
miR6177 tmo-miR6177 20 1 CCAUGGACAGAAGGCACUUA miR6181 tmo-miR6181 22 1 UGCUCUUCAUGGACUGCGCGCG miR6182 tmo-miR6182 21 1 GAGUGUGUGAUGAUGGAUGGCUUU miR6182 tmo-miR6188 19 1 GGAGGAUCGAUGAACCCGG miR6191 tmo-miR6198 12 2 CGGCUCUGUCUUGAUGGUCAU miR6198 tmo-miR6198 22 2 CGGCUCUGUCUGAGAUGUCAU miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6203 tmo-miR6203 21 1 AGGAAUGGAGAGUCUUCUUAA miR6204 tmo-miR6204 22 1 AGGAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 AGGAAUGGACAGGACCAAC miR6219 tmo-miR6219-5p 18 1 UGUCUGUGUGGGGCUCG miR6250 tmo-miR6250 20 1 UGCCGCAAUUUCUCCGGGG miR6300 tmo-miR6478 10 CCUUGUGGUCAAUAGUGG miR6478 tmo-miR6478 20 1	miR6173	tmo-miR6173	20	1	AUGGGAUUAGAGACCCCAGU
miR6181 tmo-miR6181 22 1 UGCUCUUCAUGGACUGCGCGCGC miR6182 tmo-miR6182 21 1 GAGUGUGUGAUGGAUGGCUUU miR6188 tmo-miR6188 19 1 GGAGGAUCGAUGAACCCGG miR6191 tmo-miR6191 18 1 CUUAGAUUUGUCUAGAUA miR6198 tmo-miR6198 22 2 CGGCUCUGUCUGGAUGGUCAU miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6203 tmo-miR6203 21 1 AGGAAUUGCAGGUCUUCUUAA miR6204 tmo-miR6204 22 1 AGGAAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGACGACGAC miR6219 tmo-miR6219-5p 18 1 UGUAAGAACCGGGACUAA miR6219 tmo-miR6214 19 1 CCUUGUGUGUGGUGGUCGG miR6250 tmo-miR6253 19 1 AGGAAAGUGGCAGUUGGG miR6253 tmo-miR6253 19 1 AGGAAAGUGGCAGUUGGGG miR6478 tmo-miR6478 20 <t< td=""><td>miR6177</td><td>tmo-miR6177</td><td>20</td><td>1</td><td>CCAUGGACAGAAGGCACUUA</td></t<>	miR6177	tmo-miR6177	20	1	CCAUGGACAGAAGGCACUUA
miR6182 tmo-miR6182 21 1 GAGUGUGUGAUGAUGGAUGGCUUU miR6188 tmo-miR6188 19 1 GGAGGAUCGAUGAACCCGG miR6191 tmo-miR6191 18 1 CUUAGAUUUGUCUAGAUA miR6198 tmo-miR6198 22 2 CGGCUCUGUCUUGGAUGGUCAU miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6203 tmo-miR6203 21 1 AGGAAUGGAAGGAGAUAAUU miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGACCACCA miR6219 tmo-miR6214 19 1 CCUUGUGUGUGGUGUGGGUUCG miR6244 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6300 tmo-miR6253 19 1 AGGAAAGUGGAAGUAGGG miR6478 tmo-miR6478 20 1 CCGACCUUAGUCAGUUGGU miR6621 tmo-miR6478 20 1 CCGACCUUAGUUCUGCUGU miR6874 tmo-miR687-3p 18 <	miR6181	tmo-miR6181	22	1	UGCUCUUCAUGGACUGCGGCGC
miR6188 tmo-miR6188 19 1 GGAGGAUCGAUGAACCCGG miR6191 tmo-miR6191 18 1 CUUAGAUUUGUCUAGAUA miR6198 tmo-miR6198 22 2 CGGCUCUGUCUGGAUGGUCAU miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6203 tmo-miR6203 21 1 AGGAAUGGAAAGGAGAUAAUU miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGAGCACGAC miR6219 tmo-miR6219-5p 18 1 UGUAAGAACCGGGACUAA miR6244 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6300 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGG miR6478 tmo-miR6478 20 1 CCGACCUUAGUCAGUCAGUUGGU miR6621 tmo-miR6478 20 1 CCGACCUUAGUCAGUGUGUG miR6874 tmo-miR6874-3p 18 1 UUUACCUAGUUCUGCUGU miR6981 tmo-miR6981-5p 22	miR6182	tmo-miR6182	21	1	GAGUGUGUGAUGGAUGGCUUU
miR6191 tmo-miR6191 18 1 CUUAGAUUUGUCUAGAUA miR6198 tmo-miR6198 22 2 CGGCUCUGUCUUGGAUGGUCAU miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6203 tmo-miR6203 21 1 AGGGAUUGCAGGUCUUCUUAA miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGAGCACGAC miR6219 tmo-miR6219-5p 18 1 UGUAAGAACCGGGACUAA miR6244 tmo-miR6219 20 1 UGCACGCAAUCUUCUCGGGG miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6300 tmo-miR6253 19 1 AGGAAAGUGGCAGUUGGG miR6478 tmo-miR6478 20 1 CCGACCUUAGCUCAGUUGGU miR6621 tmo-miR6478 20 1 CCGACCUUAGUUCUGCUGU miR6874 tmo-miR6981-5p 22 1 AGAGGAGAAGAAGAAGAAGAAGAAGAAGAAGAAACAA miR7042 tmo-miR6981-5p <	miR6188	tmo-miR6188	19	1	GGAGGAUCGAUGAACCCGG
miR6198 tmo-miR6198 22 2 CGGCUCUGUCUUGGAUGGUCAU miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6203 tmo-miR6203 21 1 AGGGAUUGCAGGUCUUCUUAA miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGAGCACGAC miR6219 tmo-miR6219-5p 18 1 UGUAAGAACCGGGACUAA miR6244 tmo-miR6219 tmo-miR6219 1 CCUUGUGGUCGUGGGUUCG miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6300 tmo-miR6253 19 1 AGGAAAGUGGCAGUUGGG miR6478 tmo-miR6478 20 1 CCGACCUUAGUAGUAUAGUGG miR6478 tmo-miR6478 20 1 CCGACCUUAGUCAGUUGGU miR6621 tmo-miR6478 20 1 CCGACCUUAGUUCGCUGU miR6874 tmo-miR6981-5p 22 1 AGAGAGAAGAAGAAGAAGACGGAAGAAGUGAAA miR7042 tmo-miR7042-3p	miR6191	tmo-miR6191	18	1	CUUAGAUUUGUCUAGAUA
miR6199 tmo-miR6199 18 1 CCACAGAAUUCUCACAGU miR6203 tmo-miR6203 21 1 AGGGAUUGCAGGUCUUCUUAA miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGACGACGACCACGAC miR6219 tmo-miR6214 20 1 ACGACGACGACGACGACCACGAC miR6219 tmo-miR6214 19 1 CCUUGUGGUCGUGGGACUAA miR6219 tmo-miR6219 10 UGCACGCAAUCUUCUCGGGGACUAA miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGGG miR6253 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGG miR6300 tmo-miR6300 18 1 GUCGUUGUAGUAUAGUGG miR6478 tmo-miR6478 20 1 CCGACCUUAGCUCAGUUGGU miR6621 tmo-miR6478 20 1 CCGACCUUAGUUCUGCUGU miR6874 tmo-miR6874-3p 18 1 UUUACCUAGUUCUGCUGU miR6981 tmo-miR6981-5p 22 1<	miR6198	tmo-miR6198	22	2	CGGCUCUGUCUUGGAUGGUCAU
miR6203 tmo-miR6203 21 1 AGGGAUUGCAGGUCUUCUUAA miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGAGAAUAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGAGCACGAC miR6219 tmo-miR6219-5p 18 1 UGUAAGAACCGGGACUAA miR6244 tmo-miR6219 1 CCUUGUGGUCGUGGGUUCG miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6253 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGG miR6300 tmo-miR6300 18 1 GUCGUUGUAGUAUAGUGG miR6478 tmo-miR6478 20 1 CCGACCUUAGCUCAGUUGGU miR6821 tmo-miR6478 20 1 CCGACCUUAGUUCAGUUGGU miR6981 tmo-miR6621-5p 19 1 AUCUGGUACAACAGCCUGU miR6981 tmo-miR6874-3p 18 1 UUUACCUAGUUCUGCUGU miR7042 tmo-miR7042-3p 18 1 UCCUUUUUCCUUUGCCUU miR7116 tmo-miR77398-3p 17 1	miR6199	tmo-miR6199	18	1	CCACAGAAUUCUCACAGU
miR6204 tmo-miR6204 22 1 AGAAAUGGAAAGGAGAAUAAUU miR6214 tmo-miR6214 20 1 ACGACGACGACGACGACGACGAC miR6219 tmo-miR6219-5p 18 1 UGUAAGAACCGGGACUAA miR6244 tmo-miR6214 19 1 CCUUGUGGUCGUGGGUUCG miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6253 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGG miR6300 tmo-miR6300 18 1 GUCGUUGUAGUAUAGUGG miR6478 tmo-miR6478 20 1 CCGACCUUAGCUCAGUUGGU miR6621 tmo-miR6621-5p 19 1 AUCUGGUACAACAGCCUGU miR6981 tmo-miR6981-5p 22 1 AGAAGGAAAGAAGAAAAAAAAAAAAAAAAAAAAAAAA	miR6203	tmo-miR6203	21	1	AGGGAUUGCAGGUCUUCUUAA
miR6214 tmo-miR6214 20 1 ACGACGACGACGACGACGACGACGACGACGACGACGACGA	miR6204	tmo-miR6204	22	1	AGAAAUGGAAAGGAGAAUAAUU
miR6219 tmo-miR6219-5p 18 1 UGUAAGAACCGGGACUAA miR6244 tmo-miR6244 19 1 CCUUGUGGUCGUGGGUUCG miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6253 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGG miR6300 tmo-miR6300 18 1 GUCGUUGUAGUAUAGUGG miR6478 tmo-miR6478 20 1 CCGACCUUAGCUCAGUUGGU miR6621 tmo-miR6621-5p 19 1 AUCUGGUACAACAGCCUGU miR6874 tmo-miR6874-3p 18 1 UUUACCUAGUUCUGCUGU miR6981 tmo-miR6981-5p 22 1 AGAGGAGAAGAAAGAAGAAGCUGAA miR7042 tmo-miR7042-3p 18 1 UCCUUUUUCCUUUGCCUU miR7398 tmo-miR7116-3p 18 1 UCCUUUUUCCUUUGCCUU miR7398 tmo-miR7757-5p 17 2 CACAAAACCUUCAGCUA miR8155 tmo-miR8155 17 6 ACCUGGCUCUGAUACCA miR-B6 tmo-miR-B6-3p 17	miR6214	tmo-miR6214	20	1	ACGACGACGACGAGCACGAC
miR6244 tmo-miR6244 19 1 CCUUGUGGUCGUGGGUUCG miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6253 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGG miR6300 tmo-miR6300 18 1 GUCGUUGUAGUAUAGUGG miR6478 tmo-miR6478 20 1 CCGACCUUAGCUCAGUUGGU miR6621 tmo-miR6621-5p 19 1 AUCUGGUACAACAGCCUGU miR6874 tmo-miR6874-3p 18 1 UUUACCUAGUUCUGCUGU miR6981 tmo-miR6881-5p 22 1 AGAGGAGAAGGAAGAAGCUGAA miR7042 tmo-miR7042-3p 18 1 UCCUUUUUCCUUUGCCUU miR7398 tmo-miR7116-3p 18 1 UCCUUUUUCCUUUGCCUU miR7398 tmo-miR7398-3p 17 1 CGUAAGAGAAGGGAAA miR757 tmo-miR8155 17 6 ACCUGGCUCUGAUACCA miR-15 tmo-miR-86-3p 17 1 CGUCUCCGGCGCCGGGU miR-15 tmo-miR-86-3p 17 <td< td=""><td>miR6219</td><td>tmo-miR6219-5p</td><td>18</td><td>1</td><td>UGUAAGAACCGGGACUAA</td></td<>	miR6219	tmo-miR6219-5p	18	1	UGUAAGAACCGGGACUAA
miR6250 tmo-miR6250 20 1 UGCCGCCAAUCUUCUCGGGG miR6253 tmo-miR6253 19 1 AGGAAAGUGGGCAGUUGGG miR6300 tmo-miR6300 18 1 GUCGUUGUAGUAUAGUGG miR6478 tmo-miR6478 20 1 CCGACCUUAGCUCAGUUGGU miR6621 tmo-miR6621-5p 19 1 AUCUGGUACAACAGCCUGU miR6874 tmo-miR6874-3p 18 1 UUUACCUAGUUCUGCUGU miR6981 tmo-miR6981-5p 22 1 AGAGGAGAAGGAAGAAGAAGAAGAAGAAGAAGAAGAAGA	miR6244	tmo-miR6244	19	1	CCUUGUGGUCGUGGGUUCG
miR6253tmo-miR6253191AGGAAAGUGGGCAGUUGGGmiR6300tmo-miR6300181GUCGUUGUAGUAUAGUGGmiR6478tmo-miR6478201CCGACCUUAGCUCAGUUGGUmiR6621tmo-miR6621-5p191AUCUGGUACAACAGCCUGUmiR6874tmo-miR6874-3p181UUUACCUAGUUCUGCUGUmiR6981tmo-miR6981-5p221AGAGGAGAAGAAGAAGAAGACGAAAmiR7042tmo-miR7042-3p181UCCUUUUUCCUUUGCCUUmiR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGAGAAAmiR755tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-B5-3p181UCUUCCGGCGCCGGGU	miR6250	tmo-miR6250	20	1	UGCCGCCAAUCUUCUCGGGG
miR6300tmo-miR6300181GUCGUUGUAGUAUAGUGGmiR6478tmo-miR6478201CCGACCUUAGCUCAGUUGGUmiR6621tmo-miR6621-5p191AUCUGGUACAACAGCCUGUmiR6874tmo-miR6874-3p181UUUACCUAGUUCUGCUGUmiR6981tmo-miR6981-5p221AGAGGAGAAGAAGAAGCUGAAmiR7042tmo-miR7042-3p181GUAUCAAGAGAGAAAACAmiR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGGAGAAmiR757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-15-3p181Horder Cource Cource	miR6253	tmo-miR6253	19	1	AGGAAAGUGGGCAGUUGGG
miR6478tmo-miR6478201CCGACCUUAGCUCAGUUGGUmiR6621tmo-miR6621-5p191AUCUGGUACAACAGCCUGUmiR6874tmo-miR6874-3p181UUUACCUAGUUCUGCUGUmiR6981tmo-miR6981-5p221AGAGGAGAAGGAAGGAAGCUGAAmiR7042tmo-miR7042-3p181GUAUCAAGAGAGAAGAAACAmiR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGAAAAACAmiR7757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGAGAGACGACGA	miR6300	tmo-miR6300	18	1	GUCGUUGUAGUAUAGUGG
miR6621tmo-miR6621-5p191AUCUGGUACAACAGCCUGUmiR6874tmo-miR6874-3p181UUUACCUAGUUCUGCUGUmiR6981tmo-miR6981-5p221AGAGGAGAAGGAAGAAGCUGAAmiR7042tmo-miR7042-3p181GUAUCAAGAGAGAAAACAmiR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGGAGAAmiR7757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGACGACGACGA	miR6478	tmo-miR6478	20	1	CCGACCUUAGCUCAGUUGGU
miR6874tmo-miR6874-3p181UUUACCUAGUUCUGCUGUmiR6981tmo-miR6981-5p221AGAGGAGAAGGAAGGAAGCUGAAmiR7042tmo-miR7042-3p181GUAUCAAGAGAGAAAAACAmiR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGGAGAAmiR7757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGAGAGAGAGAGAGA	miR6621	tmo-miR6621-5p	19	1	AUCUGGUACAACAGCCUGU
miR6981tmo-miR6981-5p221AGAGGAGAAGGAAGGAAGCUGAAmiR7042tmo-miR7042-3p181GUAUCAAGAGAGAAAACAmiR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGGAGAAmiR7757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGAAGACGACGA	miR6874	tmo-miR6874-3p	18	1	UUUACCUAGUUCUGCUGU
miR7042tmo-miR7042-3p181GUAUCAAGAGAGAGAAAACAmiR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGGAGAAmiR7757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGACGACGA	miR6981	tmo-miR6981-5p	22	1	AGAGGAGAAGGAAGAAGCUGAA
miR7116tmo-miR7116-3p181UCCUUUUUCCUUUGCCUUmiR7398tmo-miR7398-3p171CGUAAGAGAAGGGAGAAmiR757tmo-miR757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGACGACGA	miR7042	tmo-miR7042-3p	18	1	GUAUCAAGAGAGAAAACA
miR7398tmo-miR7398-3p171CGUAAGAGAAGGGAGAAmiR7757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGACGACGA	miR7116	tmo-miR7116-3p	18	1	UCCUUUUUCCUUUGCCUU
miR7757tmo-miR7757-5p172CACAAAACCUUCAGCUAmiR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGACGACGA	miR7398	tmo-miR7398-3p	17	1	CGUAAGAGAAGGGAGAA
miR8155tmo-miR8155176ACCUGGCUCUGAUACCAmiR-B6tmo-miR-B6-3p171CGUCUCCGGCGCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGACGACGA	miR7757	tmo-miR7757-5p	17	2	CACAAAACCUUCAGCUA
miR-B6tmo-miR-B6-3p171CGUCUCCGGCGCCGGGUmiR-I5tmo-miR-I5-3p181GGAUGAAGAAGACGACGA	miR8155	tmo-miR8155	17	6	ACCUGGCUCUGAUACCA
miR-I5 tmo-miR-I5-3p 18 1 GGAUGAAGAAGACGACGA	miR-B6	tmo-miR-B6-3p	17	1	CGUCUCCGGCGCCGGGU
	miR-I5	tmo-miR-I5-3p	18	1	GGAUGAAGAAGACGACGA

Predicted miRNA name	Predicted secondary structure
tmo-mir-156-3p	U - A A GGUU - G GG CUGACAGA AGAG GUGAGCAC CGCGGU UCCUAGCAUG C A CC GACUGUCU UCUC CACUCGUG GCGUCG AGGGUCGUAC G G - C C C C C
tmo-mir-156-5p	G <u>A A C CA</u> G A CCC GU GGAGGC <u>UGAC GA GAGAG GAG C</u> ACG CGG GG GCGUC \ CCUCCGGCUG CU UUCUC CUC GUGC GCC CC CGCAG G G C CCUA ACA - CAC AG
tmo-mir-159	C UUU GAC CG- CU UG UUGUGG GCAU CGAGGAGC CUUCGAUCC GGC \ GACACC CGUA GUUC <u>CUCG</u> <u>GAAGUUAGG</u> UCG A U U AAA \ <u>AGG</u> <u>UUU</u> G CC
tmo-mir-159-3p	GUGCA G U GUUC UAU C A A AGGGUUU GCU CUUG UCAUG CCAC CC AUCUCC UUG A UCUCGAG <u>CGA GAGC AGUAC</u> GGUG GG UAGAGG AGC A \ <u>G C GUUU</u> UUC C - A
tmo-mir-159-5p	UAUCGA U U- <u>A G U GUUC</u> UAU C A A AGGG UUG GC <u>GCU CUUG UCAUG</u> <u>CCAC</u> CC AUCUCC UUG A UCCC AGC CG CGA GAGC AGUAC GGUG GG UAGAGG AGC A UCGG U UU C G C GUUU UUC C - A
tmo-mir-160	GGU C G UGAGA C GU C GCC GCU <u>UGC UGGCUCCCU AAUGCCA</u> CC AGCG \ GGGAGG G CGG CGGACG ACUGAGGGA UUACGGU GG UCGC G UCCUCC U CUC U G U \ C C
tmo-mir-164	UGGAGA C GG - U- G C - UCUCC UC <u>AG AG CACGUGCA</u> UGCA GC AGCG GCUC GA UCCUGCC C UC UC GUGCACGU ACGU CG UCGU CGAG CU AGGGCGG G U UU C CC A - G CU
tmo-mir-166	UU CGUC U GA C - AGAGAG A CUUGG CCG AUGG UGUC GGGGAAUGA GCC GG UCCGAAA ACGC \ GGACU GGU UACC ACAG <u>CCCCUUACU</u> <u>CGG CC AGGCU</u> UU UGCG U U- AC UA <u>U A</u> - \ G
tmo-mir-166-3p	UU A U A GA GGGGGUUG GUCUGGUUC AGGUC CCA CAUACA UCAUAU CAUG \ UCCC <u>UAAC CGGACCAGG U</u> CCAG GGU GUAUGU GGUAUA GUAC G <u>UU C</u> U UUA UA - GA
tmo-mir-166-5p	UUAA UU A U A GA GGG <u>GGUUG GUCUGGUUC</u> AGGUC CCA CAUACA UCAUAU CAUG \ UCCCUAAC CGGACCAGG UCCAG GGU GUAUGU GGUAUA GUAC G UU C U UUA UA - GA
tmo-mir-167-3p	A - A U G - CUAACUC C GUGC CC AC AGC GGUGAAGCU CCAGGCAUGAUCUGAU GAC AUGGAU A CACG GG UG CUACUUUGA GGUCGUACUGGACUA CUG UACCUA G A C G U - A A
tmo-mir-169	G GAA C – <u>A</u> – ACAG GAGAGUG UG <u>AGCCAAGGAUG ACUUGCC</u> GCA–-GC A CUCUCAU AC UCGGUUCCUAC UGAACGG CGU CG A U UCC A C CC \ GAAC
tmo-mir-169-3p	CC <u>CGA</u> -, U U U AU UU UC AGCCAAGGA GACU GCCUG UG GC GUGA GGGAUC UCU C \ <u>UCGGUUCCU CUGA</u> C <u>G</u> GAC AC CG CACU CUCUGG AGG G U U A UAUCAU CU UG UC

S2 Table. Predicted secondary structures for putative miRNA sequences identified in *T. monococcum* subsp. *monococcum*.

tmo-mir-171	GG U UG AG A U UG AGGA UGCGAG GAG GAA CGCG GUAUUGG CGGUUCAAUC AG GC GG CCCC \ ACGCUC UUC CUU GC <u>GC UAUAACC</u> GCCGAGUUAG UC CG CC GGGG G \ AG U UG <u>AC</u> <u>GU</u> CU C - UU AACA
tmo-mir-172	C C A GA U U GGUGCAGCA CA CAAGAUUC CAUCG UC CGUCG CGUAAAU \ CU <u>ACGUCGU GU GUUCUAAG</u> GUAGU AG GCAGC GUAUUUA A <u>A A</u> A GGAC C - A
tmo-mir-172-5p	UU A <u>C C</u> <u>A</u> GA U U GC GGU <u>GCAGCA CA CAAGAUUC CAUCG</u> UC CGUCG CGUAAAU \ CG CUACGUCGU GU GUUCUAAG GUAGU AG GCAGC GUAUUUA A A- A A A GGAC C - A
tmo-mir-319-3p	ACCGU U <u>CU-</u> U UUUCU CC CGU G <u>CUUGGA GA AGGG G</u> UCGGGGCG A GUA CGAAUCU CU U <u>CCC C</u> AGUCCGC U GAUGUAUU C CUC CC <u>U</u> AGCU- CA
tmo-mir-384-5p	CA UG AA CCA UCC- AU CCGUA AAGGAG GCA AGC \ GGCAG GUCA UC GUGCUUA \ UUUCCUC CGU UCG G <u>CUGUC CGGU</u> AG CACGAAU G - \ - UG CC <u>CAC UUA</u> <u>UUAU</u> AC CUUAA
tmo-mir-393	A U U CAUCCA GC GGGGAAGC <u>UCCAAAGGGAUCGCAU GAUC</u> C UC UGGU GUUGAUG \ CUCCUUCG AGGUUUUUCCUAGCGUA CUAGG AG ACCA UAACUAC U A - C CUCG AC UG
tmo-mir-393-3p	A U A C U GGA GC AGUGGAGGAUUCCA AGGGAU GCAUUGAUCCAUC UCU CCG A CCU CG UCGCCUCUU <u>AAGGU UCCCUA CGUGACUAG</u> GUAG AGA GGC A C U <u>C A</u> CU ACUCGC C
tmo-mir-397	- C AAAGG C A <u>GCGUUGAUG</u> - UA- C GGAGGAAG AGA GC UG CAUU <u>G</u> <u>GUGCA</u> <u>AACCG UCC CUC U</u> CCUCUUUC UCU CG GC GUAAC CACGU UUGGC AGG GAG C G A A G CCG C
tmo-mir-398	A CCAA G- UC CGAUCCAGAGG GUG CUGAGAACAC AGCGC GGC C GUUGGGUU <u>UCC CAC GACUCUUGUG</u> UCGUG CUG U <u>C UG</u> - \- GA UU
tmo-mir-399	U- UGUA AG UG G AGU GGCAUGGUGGCA GCA CC GGUA UG CGGC UGC U UCGUACCA CC <u>GU CGU GG CCGU</u> GC GCCG ACG U \ <u>CC UAAGA AAA</u> GU A GUC
tmo-mir-414	UG G A ACAAAG GAA GUCGU AUUU UGUCA CA G CAGUA <u>UAGG GUAGU G</u> U A <u>G A AGGA</u> AUU
tmo-mir-466-5p	A GGA C Ugugugu ugugug ug uug A <u>ACACACA ACACAC A</u> C GAC U <u>AC C A AA</u> - A
tmo-mir-528-5p	G- A CG U G C - UGG UGCUU AGC GCAG GUGGAAGGGGCA GCA AGGAG G GCCA GAGCUU \ UCG CGUC UACCUUCUCCGU CGU UCCUC C CGGU CUCGGA G AG G CU C G U U UCUCC
tmo-mir-530	-CAUA U UU U CAG GGA AGAGAG AAAG A CU GGU GCA GU GCAAG AGCU CCA GC UGC \ GA <u>CCA CGU CA CGUUU UC</u> GA GGU UG ACG C <u>U</u> <u>ACG</u> GAUAG- AU GGAA A

tmo-mir-827-5p	U CU AU UAUAUCUCAGUUCAU C <u>U UUGUUUU C</u> UC CGCCA CU CA CG GCAG <u>CUGAAC G UGGUUG</u> \ GUGGU GA GU GC CGUC GAOUUG C ACCAAU A - UC AU CU U U CU
tmo-mir-845-5p	C UAAACCA GG AAAAUCACA A UGA AUAAC ACU GGC U CAGA CAAG \ UAUUG UGA CCG U <u>GUCU</u> GU A UG \ AA AAGU <u>UAACCAUA C</u> CAU
tmo-mir-1117	UU AU GGUA UC UAGUACCGGUUCGUGGC GAACC \ AG AUCAUGGCCAAGCACCG CUUGG C CU UU AAAU
tmo-mir-1120	UGAGA C C UC UC UUUUAA GUACUA UC CU GU UAUAAUAUAG G CAUGAU AG GA <u>CA GUAUUAUAUU</u> A A U GA <u>GA UUUA</u> UA
tmo-mir-1122	AAUUACUUGUCUUGGAUUU <u>GUC</u> <u>AGAUACGGAUGUAUC</u> UAG ACU U UUAAUGAACGGAACCUAAACAG UCUAUGCCUACAUAGAUC UGA U U G UU
tmo-mir-1131	<u>A CGU</u> C A UCU GGAC <u>CUUUAGU CCGGUU</u> <u>G</u> GCACGAAC GGGACUAA GG C UCUGGAAAUCA GGCCAA CCGUGCUUG CCCUGAUU CC A UGAUUUCUAA G ACU U A CCA
tmo-mir-1133	-GAGAAAA A- C C CUAA CUU UCC AAGCUUGUCCCU AAA GAUGUAUCUAACA \ <u>GAG</u> <u>AGG</u> <u>UUUGAA</u> CAGGGA UUU CUAA <u>GC</u> <u>CUUU</u> A AC
tmo-mir-1135	UUUA- <u>GCA</u> A - GUA UACUCCCU <u>CCGUUCGGAAUUACUUGUC</u> GA AUGGAUGUAUCUAGA C \ AUGAGGGAGGCAAGCCUUAAUGAACAG CU UACCUACAUAGAUCU G U GUAAG AGC A U AUU
tmo-mir-1136	UG <u>GU</u> C UGUAU UACUUCCUUCGUUC AAUU <u>ACUUGUCGCAG</u> AUGGAUAUAU UAGA \ AUGAGGGAGGCAAG UUAAUGAGCAGCGUC UACCUAUAUA AUCU U GU UU A UAAUU
tmo-mir-1137	A G A - U CCAAA UAAGUGUCUCAA CUU GUAC AACUUUG \ GGUUU AUUCACA <u>GAGUU GAA CAUG UUGA</u> AAU A C - <u>A A</u> C
tmo-mir-1432-5p	A A G AU C A GGGUCCUGUG UCAGG GAG UGACACCGAC CCG CGGAUGGGU GCUU A CUCGGGAUAC AGUCC CUC ACUGUGGUUG GGC GUCUGCCUA CCGGA C A G C A CG CGUA C
tmo-mir-1436	CCUCAU G U AAC GUACUCC UCCGUCCCAUAAUAUAAGAGCGUUUUU ACAC \ CAUGAGG AGGCAGGGUAUUAUAUUCUUGCAAAAA UGUG A G C AUC
tmo-mir-1584	AGGAGAA AGAGGGAG <u>AG AAGGGAA GGG</u> GCGGCGCU UG <u>GAUC UC</u> U CGUCGUGG GC CUAG AG A AGAGGAAG GGUAG GAA GGGGCAG AGG
tmo-mir-1878-3p	UC CA C U GC UG A U G AAUCUUA AAC ACU UU AAACUUAGUCU GCACUAUAAAUUUA AAUG GCAUGU \ UUAGAAU UUG UGA AA U <u>UUGAGUUAGG</u> UGUGAUGUUUAAAU UUAC CGUAUA A C- C U UA <u>CU</u> A U A

tmo-mir-2120	A- G AGUAUAA A- UAGG CGU GAGGCCCAUCUGUCCCGGUU GAACCGGGGACUAAAG UC GC U GUA UUCCGGGUAGACAGGGCCAA CUUGGCCCUGAUUUC AG UG U AA - CC CAA- A
tmo-mir-2538-5p	A CAGUGU UC- UC AUC AUUUUA UC UUUGAGAGAGA CCUUCG UUCA U CUCUAUU GU U AGACUUUUUU GGAAGC AGGU A GAGAUAA CA U - ACCCU- UUU UA A CGUACC CC
tmo-mir-2673	.CC U UUCC CAG GCUGG U UG UU UCUUCCUC UCGGCA GAC GUCGCCU AU C AG GGGAGGAG AGCCGU UUG CGGCGGG UA C GC C CACGCCACAU A U UC
tmo-mir-3348	CACA U <u>C</u> <u>GC</u> AUU AG AUAGC CC CCGCG AUCCU <u>GCC</u> <u>GGGAG</u> <u>UCG</u> CUGG CCA G UGUCG GG GGCGU UAGGA CGG CCCUC AGCGACC GGU C C U A AG AC AACC \ AC
tmo-mir-3630-3p	UC UG U U A AG ACA- G U CA GAAACA AG GA GAU CCA AGAC GG UCA AACCC U GU UUUUG <u>U UC CU CUA GGU</u> UCUG UC AGU UUGGG C UA <u>AG U</u> - <u>AG A</u> AUA CA AGAC A G
tmo-mir-3682-5p	-UUU GA A UG AA UGUGAGAA UG GU U AACC GU UGAGGGACU UGUGUU \ AC CA U UUGG UA ACUCCCUG <u>A ACACAA</u> U AG G UU CU GUU <u>AGAUGG</u> <u>UAGGA</u> UGU
tmo-mir-3711	U UG U CGA <u>GCCCUCCUUC</u> <u>C</u> UCUCG- UCG CGCGGG GC U G <u>UAGCG CA</u> GGUCAGC C GUGUCC UG G U GUCGC GU CCA GUCG C - GU U U U UAAAAA \ UCU
tmo-mir-4995	GA AA -U <u>UU AA</u> GAACG UGG AGGGA G <u>CAUAGGÇAGUGGC GGUU</u> GG G GCC UCUCU U GUAUUCGUCACUG CCGA CC A CGUGU AG AG - \ GG ACCCA
tmo-mir-5048	CUU UC UCUUGAC - C UUUUUG- ACC U UGCUUU \ AGACC AAAAUC GUAA GC AUG U ACGAAA U UC <u>UGG UUUUGG CGUU</u> CG UGC U CU <u>A A UAUAU</u> AA AUC U
tmo-mir-5049	G- AAA AACU CUUUGAU GUUUGCCUCC UCCCAAAAUAAGUGUCUCA GAGAUUA CA AUGAGGGAGG AG A C CGAA CGAA
tmo-mir-5049-3p	C <u>AGU</u> - <u>UC</u> <u>G</u> CAAUU GA <u>CA AAU AUGGA GGAG</u> GAGUAU U UUGU UUA UACUU CCUU CUCGUA U UGUCCAUGUAU CUU C UA \ - ACAUA
tmo-mir-5050	CGCCG <u>UU</u> GCUGGUUGAACGACCUCAUCAUGACGC CCUCU CCU GGC C UUGCUGGUUGAACGACCUCAUCAUGAC GC UCU CCU GGC C AACGGCCCAACUUGCUGGAGUGGUAC UG CG AGA GGA CUG U AGC G- G- A G U
tmo-mir-5054	UU- CU A AGCCAAAAACA -CU <u>AACC</u> - UUC UGGA AU UGGA \ <u>ACG UGGCCGUGGG</u> \ ACUU UA ACCU A UGC GCUGGCACCC G UUC UU A AAUUUUACAGU G CUA
tmo-mir-5064	AAAUCC U <u>UU</u> U U AUUCAAU- UG U UC GGU <u>UGAA</u> <u>UGUCCAUAGCAUCA</u> CCA CCUACC GG GC G AG CCAACUU AUAGGUAUCGUGGU GGU GGAUGG CC CG A GU C CG C - GUGGCAAC GU U

tmo-mir-5067	UC UC CG C C A GUACUCCUU GUU <u>AUAUUAGUUGU</u> CU AAA GGAUGUAUUUAG ACUU A UAUGAGGGA CAA UAUAAUCAACA GA UUU CCUACAUAGAUC UGAA A GU GA AA C A - U
tmo-mir-5073	UUGGU- UGAAUCGGAAA AU UUGG CAAUUUU \ AACC GUUAAAA A UUCUUU UUAAAAAUGGA AG
tmo-mir-5076	AAAUCAA AC AUC- UUCC C CGUG GC UAGG \ CUCCC UUU AGGAAGAA A CG AUCC U <u>GAGGG</u> AAA <u>UCCUUUUU</u> A - \ UU AGA <u>C</u> <u>U</u> <u>U</u> <u>CU</u> UA
tmo-mir-5079	UUCG- AU A UAG GA GUAC CACUUAU CA UUUAU UAC UAG AACAAAUCCAAAUUG AGG GAAUUCUG \ GU AAAUA AUG G <u>UU UUGUUUAGGUUUAAU</u> <u>U</u> UC UUUAGGAU A CUAAA A \ <u>UUA A</u> AGCUUCG
tmo-mir-5084	AAA- AC UCAUA U -AUAGAU GU A CU AU AAAAC GA UC GGUU GAUCCUCUGC GUA GU \ UUUUUG U CU AG CCAA CUAGGAGAUG CAU CG G CCAC GU U UC A CG UA
tmo-mir-5141	AAUUAGA CUAU CG - UAU <u>CCG CGCGUCG G</u> U U AAAGC CCAC UAA UUG GCU <u>UCAGU G</u> CUGCCGC CACUUG U GGUG GUU AAC CGG GGUCA C GAUGGCG GUGAAC A AAGC AU A UUAA AAA UU U AAAGU
tmo-mir-5174-5p	UUUCAU CU UA C GAA A G GC UUAAC AA AC UACUCCCUCUGU CCAUAAUAUAA CGUUUUUG CAUUA \ CG AGUUG UU UG AUGAGGAGACA GGU <u>AUUAUAUU</u> GCAAAAAC GUGAU U UAUUUUAUAC U U- UC CU A <u>GUC</u> G G
tmo-mir-5181	AACCAAUAAAUU A C A UG U AG GUACUCC UC GAUCCA AAUAAGUGUCG GUUUUG ACUAAGGUU \ CAUGAGG AG CUAG <u>GU UUAUUCACAGC</u> CAAAAC UGAUUCUAA U G A <u>A</u> <u>GU</u> U CU
tmo-mir-5368	AAGA U GA A G UC <u>A CG GG</u> - <u>GG</u> A CA GC CG UUCU ACCUU UG A <u>G CC CG</u> <u>CCA AG</u> <u>A</u> C GUCU \ CG GC GAGG UGGAA AC UC GG GC GGU UC UG CAGA G CUUUGGAAA U G- CAA A CC C AU GG A UU A UG
tmo-mir-5387	A U AG GCCCCCCCUUUAGUACCG UUC \ CGGGGG <u>GGAAAUCGUGGC AAG</u> C A \ <u>C</u> <u>C</u> A
tmo-mir-5523	AUGCAGA UA <u>U U AUA UCC</u> AUGUC UAU UGA <u>AAC AGUAA UGU</u> UCCCC AACA U ACU UUG UCAUU ACA AGGGG UUGU U GAUAUAA U U C UUA GAU UAU
tmo-mir-6182	CAA CU ACA UGU GG - A U UGAC \ C <u>GAG GUGAU A UGGCUUU</u> G GCG \ AUUG A GCUC CACUA U ACUGGAAC CGC U A AC AUCAAACAACG UUCUCC GU C C U
tmo-mir-6191	UCCA C G <u>UGUCUAGAUA</u> A- UA UC GUCCCAAAUUACUU U <u>CUUAGAUU</u> UGGAUGUAUCU ACAC A AG CAGGGUUUAAUGAA AGAAUCUAA ACCUACAUAGA UGUG A UUAG A G CC CA
tmo-mir-6198	GAGA UUU - UU GUAUUGA <u>C G U AUG</u> U ACC UC A CUCACCGA <u>GGCUCU UCU GG GUCAU</u> UC G UGG AG U GGGUGGUU CCGAGG AGA CC UAGUGAG U AAAG UCU U GG ACUUCAGU AA- U

tmo-mir-6203	AUCCCAA GAACAAUAAAAUUAA UU UU AAGG AGGCGA AAU CUUC U UUCC UCUGCU <u>UUA</u> <u>GA</u> GG U <u>AAUUCUUCUGGACG</u> - <u>GG</u> CU
tmo-mir-6219-5p	U G CG <u>UGUAA</u> GAGA U GC CCCUUUAGUCCCGGUU <u>GAACCGGGACUAA</u> AGGG GGUA U CG GGGAAAUCAGGGCCAA CUUGGCCCUGAUUUCCC CCAU A AUUC - AAG AG G
tmo-mir-6250	CCUG- ACU U GAUUCU U - UC GAAAU CUU UGCGUU UCCUCUCUCU UGA AAG UUGGCGGGC C CUUUG GAA GCGCAG AGGGGA <u>GGG GCU UUC AACCGCCG</u> C CUAAA CU- CUAGAU <u>C U</u> <u>U</u> A
tmo-mir-6478	A CGA AUCAAAA G- GGG GC GCUGGGCUA GUUGGC GA UUCU \ UG UGACUCGAU CAGCCG CU AAGG A - GU UC- AACA AA AGG
tmo-mir-6874-3p	A UU ACU CA <u>UUUACCU</u> <u>UGC</u> GAC UAUA UUU GAGGGAAC <u>AGUUC</u> <u>UGU</u> UUU U GUGU AAA UUCCCUUG UUAAG ACAAAG U UUAAC UU CUU UUUAUUUUACUUU UU- ACC
tmo-mir-8155	AAAA C AG GG GU <u>CCUG GCU UG UACCA</u> CU UU GGAAU A GGGC CGA AC GUGGUGG AA CUUUA G GGGA AA U - \ - AA AU
tmo-mir-B6-3p	AC G CG AC CUCAACAA <u>U</u> UC GGC GC GCUGGUG \ <u>CGUCUCC</u> <u>GGCG</u> <u>CCGGG</u> \ CCG UG CGA CCAC G GUAGAGG CCGC GGCCC C CU \ UC A \ AG UGA
tmo-mir-15-3p	A G CGA GGACG G AA- CCU CCAA GU A GCGUUGU GU UCUUC UC GUUG \ GGUU CA G CGU <u>AGCA CA AGAAG AG</u> CAGC G - G AAA AGA <u>G GA U G</u> UG UCG